
Sashittal et al. 
Algorithms for Molecular Biology            (2022) 17:3  
https://doi.org/10.1186/s13015-022-00209-9

RESEARCH

Parsimonious Clone Tree Integration 
in cancer
Palash Sashittal1, Simone Zaccaria2,3 and Mohammed El‑Kebir1,4* 

Abstract 

Background:  Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation 
of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to 
copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, 
several computational methods have been introduced to identify clones from DNA sequencing data. However, due to 
technological and methodological limitations, current analyses are restricted to identifying tumor clones only based 
on either SNVs or CNAs, preventing a comprehensive characterization of a tumor’s clonal composition.

Results:  To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as 
a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize 
the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), 
an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we 
show that tumor clones can be identified reliably, especially when further taking into account the ancestral relation‑
ships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our 
integration approach provides a higher resolution view of tumor evolution than previous studies.

Conclusion:  PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by inte‑
grating SNV and CNA clones inferred using existing methods.

Keywords:  Intra-tumor heterogeneity, Perfect phylogeny, Constraint programming, Single-cell DNA sequencing, 
Perfect phylogeny
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Background
Cancer results from an evolutionary process where 
somatic mutations accumulate in the genomes of dif-
ferent cells. This process yields highly heterogeneous 
tumors composed of different clones, each corresponding 
to a distinct subpopulation of cells with the same com-
plement of somatic mutations  [1]. The resulting intra-
tumor heterogeneity has been clearly linked to critically 
important cancer phenotypes, including cancer progno-
sis and the potential of developing resistance to cancer 

therapy [2, 3]. Therefore, important downstream applica-
tions rely on accurate reconstructions of a tumor’s clonal 
architecture, which in turn requires the identification of 
the different clones, their proportions and their evolu-
tionary history. However, the presence of different types 
of somatic mutations in the same clones renders these 
tasks particularly challenging. In particular, the follow-
ing two types of somatic mutations are frequent in can-
cer [4–6]: (1) single nucleotide variants (SNVs), which are 
substitutions of individual DNA nucleotides, and (2) copy 
number alterations (CNAs), which are amplifications and 
deletions of large genomic regions.

Most cancer sequencing studies use bulk DNA 
sequencing technology, where one does not directly 
measure the co-occurrence of different mutations in the 
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same clone because the generated DNA sequencing reads 
originate from unknown mixtures of millions of dif-
ferent cells in a bulk tumor sample. To identify distinct 
clones from such data, one thus needs to deconvolve the 
mixed sequencing data into the different clonal com-
ponents  [7]. Several computational methods have been 
introduced to perform this task. However, the majority 
of existing methods only focus on either SNVs [8–12] or 
CNAs [13–19], but rarely on both. Methods that attempt 
to identify clones in terms of both SNVs and CNAs do 
not not scale to the numbers of current cancer sequenc-
ing datasets (e.g., number of samples, mutations, clones, 
etc.) and often require heuristics to reduce the size of 
input instances [20–22]. As a result, current cancer evo-
lutionary analyses  [23, 24] do not apply such proposed 
methods but rather perform a post hoc analysis, manually 
assigning CNAs to a tree inferred from SNVs. Further-
more, we note that similar issues arise with some single-
cell DNA sequencing technologies, since the different 
features of these technologies only allow the reliable 
measurement of either SNVs or CNAs  [25]. For exam-
ple, targeted MDA single-cell sequencing technologies 
are more suited for the idenification of SNVs whereas 
whole-exome/genome DOP-PCR single-cell technologies 
are more suited for the identification of CNAs, and both 
these technologies have been used in parallel on the same 
tumor sample [26].

In this study, we investigate whether tumor clonal 
compositions can be comprehensively reconstructed by 
an alternative simpler and automated approach. Lever-
aging the SNV and CNA clone proportions that can be 
independently and reliably inferred by existing methods, 
we introduce the Parsimonious Clone Integration 
(pci) and Parsimonious Clone Tree Integration 
(pcti) problems to infer clones in terms of both SNVs 
and CNAs, their proportions and, additionally for the 
pcti problem, their evolutionary relationships (Fig.  1). 
We prove that the proposed problems are NP-hard and 
we introduce PACTION (PArsimonious Clone Tree 
integratION), an algorithm that solves these problems 
using two mixed integer linear programming formula-
tions. Using simulations, we find that our approach reli-
ably handles errors in input SNV and CNA proportions 
and scales to practical instance sizes. On 49 samples from 
prostate cancer patients  [23], we find that our approach 
more comprehensively reconstructs tumor clonal archi-
tectures compared to the manual approach adopted in 
the previous analysis of the same data.

Problem statements
We introduce two integration problem formulations to 
reconstruct tumor clonal composition from inferred 
SNV and CNA clone proportions. The first problem 
aims at inferring tumor clones and related proportions 

Fig. 1  Overview. A tumor is composed of multiple subpopulations of cells, or clones, with distinct somatic mutations, which can be measured 
using DNA sequencing. a Due to limitations in inference algorithms and/or sequencing technologies, we are limited to characterizing tumor clones 
in terms of either single-nucleotide variants (SNVs, stars) or copy-number aberrations (CNAs, triangles). That is, we infer clones �1 , proportions U1 and 
a clone tree T1 for the SNVs. Similarly, we infer clones �2 , proportions U2 and a clone tree T2 for the CNAs. b PACTION solves the Parsimonious  Clone 
Tree Integration problem of inferring clones � ⊆ �1 ×�2 , a clone tree T and proportions U that characterize the clones of the tumor in terms of 
both SNVs and CNAs
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with both SNVs and CNAs given the clone proportions 
of SNVs and CNAs independently. The second problem 
additionally considers phylogenetic trees describing the 
evolution of tumor clones with either different SNVs or 
CNAs.

Parsimonious Clone Integration
Suppose a tumor is composed of a set � of n = |�| clones, 
which are characterised by unique complements of two 
different features (e.g., SNVs and CNAs). These clones 
occur in m samples at varying proportions, defined as 
follows.

Definition 1  An m× n matrix U = [up,ℓ] is a propor-
tion matrix for n clones � provided (i) up,ℓ ≥ 0 for all sam-
ples p ∈ [m] and clones ℓ ∈ [n] , and (ii) 

∑n
ℓ=1 up,ℓ = 1 for 

all samples p ∈ [m].

Due to limitations in inference algorithms and/or 
sequencing technologies, we only infer clones and their 
proportions for one feature in isolation. These two fea-
tures lead to two distinct partitions of all tumor cells: a 
set �1 = [n1] of clones induced by the first feature (e.g., 
SNVs) and a set �2 = [n2] of clones induced by the sec-
ond feature (e.g., CNAs). We refer to the original clones 
as �-clones and the clones induced by the first and the 
second features as �1-clones and �2-clones, respectively. 
The proportions of the �1-clones and �2-clones are given 
by the m× n1 proportion matrix U1 = [u

(1)
p,i ] and the 

m× n2 proportions matrix U2 = [u
(2)
p,j ] , respectively. How 

are the proportions U1 for �1-clones and the proportions 
U2 for �2-clones related to the proportions U of the �
-clones?

To answer this question, recall that � is a partition of 
all tumor cells induced by the combination of both the 
two features, whereas �1 and �2 are partitions induced 
by each feature in isolation (Fig. 2a). As such, we have 
that the partition � is a refinement of partitions �1 
and �2 . Thus, each �-clone ℓ corresponds to a unique 
�1-clone i and a unique �2-clone j. In other words, we 
may view the set � as a binary relation of sets �1 and 
�2 of clones composed of pairs ℓ = (i, j) of clones, i.e., 
� ⊆ �1 ×�2 . This relation is captured by the projec-
tion functions π1 : � → �1 and π2 : � → �2 such that 
π1((i, j)) = i and π2((i, j)) = j for all (i, j) ∈ � . We relate 
the proportion matrix U for clones � to the proportion 
matrix U1 for clones �1 and the proportion matrix U2 
for clones �2 as follows.

Definition 2  Given projection functions π1 : � → �1 
and π2 : � → �2 induced by the set � ⊆ �1 ×�2 of 
clones, the proportion matrix U = [up,ℓ] for clones � 
is consistent with a proportion matrix U1 = [u

(1)
p,i ] for 

clones �1 = [n1] and proportion matrix U2 = [u
(2)
p,j ] 

for clones �2 = [n2] provided (i) u(1)p,i =
∑

ℓ:π1(ℓ)=i up,ℓ 
for all samples p ∈ [m] and clones i ∈ [n1] , and (ii) 
u
(2)
p,j =

∑
ℓ:π2(ℓ)=j up,ℓ for all samples p ∈ [m] and clones 

j ∈ [n2].

The above definition formalizes the intuition that 
clones � of the tumor are a refinement of the input 
clones �1 and �2 , and therefore their proportions 
U must be consistent with the input proportions U1 
and U2 . Our goal is to recover the set � ⊆ �1 ×�2 of 
clones and their proportions U from the proportion 

Fig. 2  The parsimonious clone integration  (pci) problem. a Given clones �1 and �2 and corresponding proportions U1 and U2 , we seek clones 
� ⊆ �1 ×�2 and corresponding proportions U consistent with U1 and U2 . b There always exists a consistent proportion matrix U′ for the trivial 
solution �′ = �1 ×�2 , which can be identified by solving a maximum flow problem. c We seek the solution � with minimum number |�| of 
clones. Here, |�| = 4 , which is smaller than ground truth (see panel (a)). The corresponding matrix U follows from solving the illustrated maximum 
flow problem. However, incorporating tree constraints, as in the pcti problem, will lead to ground truth (Fig. 1)
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matrices U1 and U2 for clones �1 and �2 , respectively. 
While there always exist trivial solutions given by the 
full set �′ = �1 ×�2 of n = n1 · n2 clones (Fig. 2b), we 
seek a solution � with the smallest number n of clones 
under the principle of parsimony (Fig. 2c).

Problem  1  (Parsimonious Clone Integration (PCI)) 
Given proportions U1 for clones �1 = [n1] and propor-
tions U2 for clones �2 = [n2] , find (i) the smallest set 
� ⊆ �1 ×�2 of clones and (ii) proportions U for � such 
that U is consistent with U1 and U2.

Parsimonious Clone Tree Integration
In practice, proportions U1 and U2 are not measured 
exactly but are affected by potential measurement errors. 
As such, accurate recovery of the original clones � and 
their proportions U requires correcting U1 and U2 . To 
accomplish this, we require additional information and 
constraints. In this work, we propose to use the evolu-
tionary relationships among the clones �1 and �2 that 
can be inferred by existing methods in the form of clone 
trees [8, 9, 27–30]. Specifically, a rooted tree T is a clone 
tree for clones � provided the vertex set V(T) equals � . 
Moreover, the root vertex r(T) of a clone tree T corre-
sponds to the normal clone while each edge (u, v) ∈ E(T ) 
represents a mutation event that altered one of the fea-
tures of clone u and led to the formation of the clone v.

Similarly to the pci problem, we are given two clone 
trees, one for each feature in isolation. In the specific 
example of two features (e.g., SNVs and CNAs), let clone 
tree T1 describe the evolution of clones �1 (e.g., SNVs) 
and clone tree T2 describe the evolution of clones �2 (e.g., 
CNAs). These trees are inferred using standard algo-
rithms in the field  [8–19]. Since all clones share a com-
mon evolutionary history, the original clone tree T is a 
refinement [11, 31] of the clone trees T1 and T2 , which is 
defined as follows.

Definition 3  Clone tree T for clones � is a refinement 
of clone trees T1 for clones �1 and clone tree T2 for clones 
�2 provided 

	(i)	 for each edge (i, i′) ∈ E(T1) there exists exactly one 
j ∈ �2 such that ((i, j), (i′, j)) ∈ E(T ),

	(ii)	 for each edge (j, j′) ∈ E(T2) there exists exactly one 
i ∈ �1 such that ((i, j), (i, j′)) ∈ E(T ),

	(iii)	 for each ((i, j), (i′, j′)) ∈ E(T ) , it holds that 
(i, i′) ∈ E(T1) and j = j′ , or (j, j′) ∈ E(T2) and i = i′

.

Intuitively, the above definition states that when col-
lapsing vertices of T corresponding to identical �1-clones 
one obtains T1 , and, similarly, T2 is obtained by collapsing 
vertices of T corresponding to identical �2-clones.

Under a principle of parsimony and given clone trees 
T1,T2 with related proportions U1,U2 , our goal is to find 
a set � ⊆ �1 ×�2 of clones, a clone proportion matrix 
U, and a T1,T2-refined clone tree T that require the 
smallest correction in U1 and U2 . This motivates the fol-
lowing problem statement.

Problem  2  (Parsimonious Clone Tree Integration 
(PCTI)) Given proportions U1 and tree T1 for clones 
�1 = [n1] and proportions U2 and tree T2 for clones 
�2 = [n2] , find (i) the set � of clones, (ii) clone tree T 
and (iii) proportions U for � such that the clone tree T 
is a refinement of T1 and T2 and minimizes the total error 
J (U ,U1,U2) such that

Note that J (U ,U1,U2) = 0 if and only if U is consistent 
with U1 and U2 . The clone trees T, T1 and T2 do not appear 
in the objective function J (U ,U1,U2) and only provides 
constraints to the optimization problem. Due to these 
constraints, unlike the previous pci problem, pcti does 
not always admit a trivial solution with J (U ,U1,U2) = 0 
(as we further discuss in the next Section).

Combinatorial characterization and computational 
complexity
We investigate the combinatorial structure and compu-
tational complexity of the two proposed pci and pcti 
problems in the following two sections, respectively.

Parsimonious Clone Integration
We characterize the combinatorial structure of feasi-
ble and optimal solutions (�,U) for the PCI problem. 
We first observe that the PCI problem always has a 
trivial solution. Specifically, given a set �1 of n1 = |�1| 
clones and a set �2 of n2 = |�2| clones and correspond-
ing proportions U1 ∈ [0, 1]m×n1 and U2 ∈ [0, 1]m×n2 , 
a trivial feasible solution is composed of n = n1n2 
clones � = �1 ×�2 , which may have many pos-
sible corresponding proportions U (Fig.  2b). For 
example, proportions U = [up,(i,j)] can be computed 

J (U ,U1,U2) =

m∑

p=1

n1∑

i=1

|u
(1)
p,i −

∑

ℓ:π1(ℓ)=i

up,ℓ|

+

m∑

p=1

n2∑

j=1

|u
(2)
p,j −

∑

ℓ:π2(ℓ)=i

up,ℓ|.
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greedily by considering the n clones in any arbitrary 
order, and assigning each clone (i, j) ∈ � a proportion of 
up,(i,j) = min(u

(1)
p,i ,u

(2)
p,j ) followed by subsequently updat-

ing u(1)p,i := u
(1)
p,i − up,(i,j) and u(2)p,j := u

(2)
p,j − up,(i,j) for each 

sample p ∈ [m] . Thus, n = n1n2 is an upper bound on 
the number of clones needed. Can we similarly identify a 
lower bound on n?

To answer this question, let the support S(U) of an 
m× n proportion matrix U be defined as the number of 
non-zero entries in the vector U1m where 1m is a m× 1 
vector with all entries equal to one. That is, the support 
S(U) of a proportion matrix U of clones � signifies the 
number of clones with non-zero proportion in at least 
one of the samples p ∈ [m] . Any such clone must be 
part of at least one clone ℓ ∈ � in the solution to the 
pci problem to ensure consistency of the proportion 
matrices. This leads to the following observation.

Observation 1  Given an instance (�1,U1,�2,U2) 
of the pci problem with solution � we have 
n ≥ max(S(U1), S(U2)) where n = |�|.

Given any set � ⊆ �1 ×�2 of clones, deciding 
whether there exists a proportion matrix U that is con-
sistent with given proportion matrix U1 for clones �1 
and U2 for clones �2 , and constructing such a matrix is 
equivalent to solving a maximum flow problem, which 
takes polynomial time  [32] (see Additional file  1: Sec-
tion B). Figure  2 illustrates the construction such that 
there exists a consistent proportion matrix if and only 
the value of the flow is 1. Note that for m > 1 samples, 
we need to solve a multi-commodity rather than a sin-
gle-commodity flow problem. However, the pci prob-
lem, where we simultaneously seek � and U, is NP-hard 
and the hardness comes from having to identify the 
smallest set � of clones.

Theorem 1  The pci problem is NP-hard even for num-
ber m = 1 of samples.

This follows by reduction from the 3-partition 
problem, a known NP-complete problem [33, 34] stated 
as follows.

Problem 3  (3-PARTITION) Given an integer B ∈ N
>0 , 

a multiset A = {a1, · · · , a3q} of 3q positive integers such 
that ai ∈ (B/4,B/2) for all i ∈ [3q] , and 

∑3q
i=1

ai = Bq , 
does there exist a partition of A into q disjoint subsets 
such that the sum of the integers in each subset equals B?

Note that since each ai occurs within the open interval 
(B/4, B/2) and the elements in each subset of the desired 
partition sum to B, it holds that each subset must be 
composed of exactly three elements from the multiset 
A—hence the name of the problem.

We represent the solution to an instance (A, B) of the 
3-partition problem as a function σ : [3q] → [q] , 
which encodes the division of the elements of 
A = {a1, . . . , a3q} into q disjoint subsets. The inverse of 
this function specifies the subset corresponding to each 
j ∈ [q] as σ−1(j) = {i ∈ [3q] : σ(i) = j} . Note that any 
solution σ : [3q] → [q] of the 3-partition problem sat-
isfies the following constraint.

Figure  3a provides an example 3-PARTITION instance 
and solution.

Given a 3-partition problem instance (A, B), we con-
struct an instance of the pci problem with number m = 1 
of samples as follows. The set �1(A,B) of clones is given 
by the set [3q]. The corresponding proportions are given 

(1)
∑

i∈σ−1(j)

ai = B, ∀j ∈ [q].

Fig. 3  Reduction from 3-partition. a Example instance of 3-PARTITION with a multiset A of 6 elements and target sum B = 40 . b Corresponding pci 
instance (�1,U1,�2,U2) and solution (�,U) . (c) Corresponding pcti instance (T1,�1,U1, T2,�2,U2) and solution (T ,�,U)
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by the 1× 3q proportion matrix U1(A,B) = [u
(1)
1,i ]

 where 
u
(1)
1,i = ai/(Bq) for all i ∈ [3q] . Clearly, U1(A,B) = [u

(1)
1,i ] is 

a proportion matrix for �1(A,B) as, by construction, we 
have that 

∑3q
i=1

u
(1)
1,i = 1 and u(1)

1,i ≥ 0 for all i ∈ [3q] . The 
second set �2(A,B) of clones is given by [q]. The corre-
sponding proportions are given by the 1× q proportion 
matrix U2(A,B) = [u

(2)
1,j ] where u(2)

1,j = 1/q for all j ∈ [q] . 
It is easy to verify that U2(A,B) is a proportion matrix 
for �2(A,B) . Clearly, this construction takes polynomial 
time. Figure 3b shows an example. Hardness follows from 
the following lemma whose proof is in Additional file 1: 
Section A.

Lemma 1  Given proportions U1(A,B) for clones 
�1(A,B) = [3q] and proportions U2(A,B) for clones 
�2(A,B) = [q], there exists a set � of clones of size 
n = |�| ≤ 3q with proportions U that are consistent with 
U1(A,B) and U2(A,B) if and only if there exists a solution 
to the 3-partition instance (A, B).

Parsimonious Clone Tree Integration
We now characterize the combinatorial structure of fea-
sible and optimal solutions (�,U ,T ) for the PCTI prob-
lem. Let T1 be the first input clone tree for the input set 
�1 of n1 = |�1| clones. Similarly, let T2 be the second 
input clone tree for the input set �2 of n2 = |�2| clones. 
Let T be a solution clone tree that is a refinement of both 
T1 and T2 . First, we observe that the clones that label 
the root vertices r(T1) and r(T2) of the two input trees 
together label the root vertex r(T) of the output tree T, 
i.e., r(T ) = (r(T1), r(T2)).

Observation 2  If clones � , clone tree T and propor-
tion matrix U form a solution to the pcti instance 
(�1,T1,U1,�2,T2,U2) , then (r(T1), r(T2)) ∈ � and 
r(T ) = (r(T1), r(T2)).

Next, from Definition  3 it follows that in the output 
clone tree T it must hold that along each edge there is 
either a change in corresponding �1-clones or �2-clones 
but not both.

Observation 3  For each (i, j) ∈ V (T ) \ {r(T )} it holds 
that either ((i′, j), (i, j)) ∈ E(T ) or ((i, j′), (i, j)) ∈ E(T ) 
where (i′, i) ∈ E(T1) and (j′, j) ∈ E(T2).

Combining these observations, we get that the number 
of vertices/clones in T equals n = n1 + n2 − 1.

Observation 4  The number of clones V(T) equals 
n = n1 + n2 − 1.

We note that T is a multi-state perfect phylogeny with 
two characters, i.e. each character state labels at most one 
edge of T, whose two sets of states correspond to �1 and 
�2 . Moreover, T1 and T2 impose an ordering of two sets 
of states to which T must adhere—i.e., the two characters 
are cladistic  [35]. Additional file  1: Section C gives pre-
cise definitions of these concepts and also discusses how 
the problem of deciding whether there exists an error-
free solution of pcti with J (U ,U1,U2) = 0 is equivalent 
to a special case of the cladistic multi-state serfect 
phylogeny deconvolution problem  [21]. Although 
the tree constraints alter the solution space of pcti prob-
lem compared to the pci problem (see Figs.  1 and   2c), 
pcti remains NP-hard, as we will show in the following.

Theorem 2  The pcti problem is NP-hard even for num-
ber m = 1 of samples.

For a given instance (A,  B) of the 3-partition prob-
lem, we construct an instance of the pcti problem as 
follows. The first set �1(A,B) of clones equals {0} ∪ [3q] 
with corresponding 1× (3q + 1) proportion matrix 
U1(A,B) = [u

(1)
1,i ] where u(1)

1,i = ai/(Bq) for all i ∈ [3q] , 
and u(1)

1,0
= 0 . The second set �2(A,B) of clones equals 

{0} ∪ [q] with corresponding 1× (q + 1) proportion 
matrix U2(A,B) = [u

(2)
1,j ] where u(2)

1,j = 1/q for all j ∈ [q] , 
and u(2)

1,0
= 0 . The clone tree T1(A,B) is a star phylogeny 

rooted at �1-clone i = 0 with outgoing edges to each of 
the remaining �1-clones. Similarly, clone tree T2(A,B) is 
also a star phylogeny rooted at �2-clone j = 0 with out-
going edges to each of the remaining �2-clones. It is easy 
to verify that U1(A,B) and U2(A,B) are proportion matri-
ces for �1(A,B) and �2(A,B) , respectively. Clearly, this 
construction takes polynomial time. Figure 3c shows an 
example. The hardness follows from the following lemma 
whose proof is in Additional file 1: Section A.

Lemma 2  Given proportions U1(A,B) and clone tree T1 
for clones �1(A,B) = {0} ∪ [3q] and proportions U2(A,B) 
and clone tree T2 for clones �2(A,B) = {0} ∪ [q], there 
exists a set � of clones of size n = |�| = 4q + 1, clone tree 
T and proportion matrix U such that T is a refinement of 
T1 and T2 and J (U ,U1,U2) = 0 if and only if there exists a 
solution of the 3-partition instance (A, B).

Methods
We introduce two mixed integer linear programming 
(MILP) formulations to solve the pci and the pcti prob-
lems. We implement these two formulations within the 
algorithm PACTION (PArsimonious Clone Tree inte-
gratION), which uses the MILP-solver Gurobi version 



Page 7 of 14Sashittal et al. Algorithms for Molecular Biology            (2022) 17:3 	

9.1. PACTION is available at https://​github.​com/​elkeb​ir-​
group/​pacti​on.

Parsimonious Clone Integration
To solve the PCI problem, we introduce an MILP for-
mulation composed of O(n1n2m) variables (including 
O(n1n2) binary variables) and O(n1n2m) constraints. We 
introduce binary variables xi,j ∈ {0, 1} for each �1-clone 
i ∈ [n1] and �2-clone j ∈ [n2] that indicate if clone (i, j) 
belongs to � . As such, the corresponding proportion of 
clone (i, j) in sample p ∈ [m] is denoted by the continu-
ous variable up,i,j ∈ [0, 1] . In the following we define the 
constraints on these variables by first describing the 
constraints for consistency and next those for encoding 
the objective function.

Consistency constraints This first set of constraints 
ensure that proportion matrix U is consistent with pro-
portion matrices U1 and U2 . We begin by forcing up,i,j to 
0 if (i, j) is not a clone in the solution �.

These above constraints allow us to model consistency 
of the solution U with input proportions U1 = [u

(1)
p,i ] and 

U2 = [u
(2)
p,j ] as follows.

Note that these two sets of constraints imply that ∑n1
i=1

∑n2
j=1

up,i,j = 1 for all p ∈ [m].
Objective function We minimize the total number of 

clones in the set � by minimizing the following objec-
tive function.

Parsimonious Clone Tree Integration
To solve the PCTI problem, we introduce an MILP for-
mulation composed of O(n1n2m) variables (including 
O(n1n2) binary variables) and O(n1n2m) constraints. 
Similarly to the pci MILP, we introduce binary vari-
ables xi,j ∈ {0, 1} for i ∈ [n1] and j ∈ [n2] that indicate 
if clone (i,  j) belongs to � . As such, the corresponding 
proportion of clone (i,  j) in sample p ∈ [m] is denoted 

up,i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2].

n2∑

j=1

up,i,j = u
(1)
p,i ∀p ∈ [m], i ∈ [n1],

n1∑

i=1

up,i,j = u
(2)
p,j ∀p ∈ [m], j ∈ [n2].

min

n1∑

i=1

n2∑

j=1

xi,j .

by the continuous variable up,i,j ∈ [0, 1] . We introduce 
constraints to model the error J (U ,U1,U2) used in the 
objective function, as well constraints to enforce that 
U is a proportion matrix, and finally constraints to 
enforce that T is a refinement of T1 and T2.

Correction constraints Unlike the pci problem, the 
proportion matrix U need not be consistent with pro-
portion matrices U1 and U2 . We introduce continuous 
variables c(1)p,i ∈ [0, 1] for p ∈ [m], i ∈ [n1] and c(2)p,j ∈ [0, 1] 
for p ∈ [m], j ∈ [n2] to model the entry-wise abso-
lute differences, i.e., c

(1)
p,i = |

∑n2
j=1

up,i,j − u
(1)
p,i | and 

c
(2)
p,j = |

∑n2
j=1

up,i,j − u
(2)
p,j | . We do so with the following 

constraints.

Proportion matrix constraints To model that our output 
matrix U is a proportion matrix, we begin by ensuring 
that up,i,j = 0 with xi,j = 0 , i.e., the proportion of clone 
(i, j) is zero when it is not part of the solution � with the 
following constraints.

Next, we ensure that matrix U is a valid proportion 
matrix by enforcing that the proportions of the clones in 
each sample sum to 1.

Refinement constraints We introduce constraints that 
ensure that the clone tree T is a refinement of the clone 
trees T1 and T2 . Following condition (iii) in Definition 3, 
we require that for each clone (i, j)  = (r(T1), r(T2)) there 
only two possible parents, i.e., either (i′, j) or (i, j′) where 
(i′, i) ∈ E(T1) and (j′, j) ∈ E(T2) . We model the first case 
with continuous variables z(1)

(i,i′),j ∈ [0, 1] and the second 
case with continuous variables z(2)i,(j,j′) . More specifically, 
we model the products z(1)

(i,i′),j = xi,jxi′,j and z(2)i,(j,j′) = xi,jxi,j′ 
with the following constraints.

c
(1)
p,i ≥

n2∑

j=1

up,i,j − u
(1)
p,i ∀p ∈ [m], i ∈ [n1],

c
(1)
p,i ≥ u

(1)
p,i −

n2∑

j=1

up,i,j ∀p ∈ [m], i ∈ [n1],

c
(2)
p,j ≥

n1∑

i=1

up,i,j − u
(2)
p,j ∀p ∈ [m], j ∈ [n2],

c
(2)
p,j ≥ u

(2)
p,j −

n1∑

i=1

up,i,j ∀p ∈ [m], j ∈ [n2].

up.i,j ≤ xi,j ∀p ∈ [m], i ∈ [n1], j ∈ [n2].

n1∑

i=1

n2∑

j=1

up,i,j = 1 ∀p ∈ [m].

https://github.com/elkebir-group/paction
https://github.com/elkebir-group/paction
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We now enforce conditions (i) and (ii) in Definition 3 as 
follows.

Objective function Our goal is to minimize the differ-
ence between projections of proportion matrix U with U1 
and U2 . To that end, we minimize the following objective 
function

We provide the full MILP for reference in Additional 
file 1: Section D.

Results
Simulations
We perform simulations to investigate the performance 
of PACTION when solving the pci and pcti problems 
under different simulation regimes.

Setup Given numbers n1, n2 of clones, number m of 
samples and noise parameter h ∈ [0, 1] , we use a three-
step procedure to simulate a set � of n = n1 + n2 clones 
whose SNV and CNA evolution is described by a clone 
tree T and with clone proportions U on m samples. From 
T and U, we obtain input trees T1 and T2 as well as input 
proportion matrices U1 and U2 subject to additional noise 
h. We detail the three steps in the following.

First, we use an approach based on growing random 
networks  [36] to simulate T: starting from the root ver-
tex (representing the normal clone (1,  1)) T’s topology 
is built by iteratively adding descendant vertices, choos-
ing each parent uniformly at random. Specifically, we 
label each edge with a single event from either the first 
set {2, . . . , n1} or second set {2, . . . , n2} of features. Thus, 
the overall clones � are obtained by labeling all vertices 

z
(1)

(i,i′),j ≤ xi,j ∀(i, i′) ∈ E(T1), j ∈ [n2],

z
(1)

(i,i′),j ≤ xi′,j ∀(i, i′) ∈ E(T1), j ∈ [n2],

z
(1)

(i,i′),j ≥ xi,j + xi′,j − 1 ∀(i, i′) ∈ E(T1), j ∈ [n2].

z
(2)

i,(j,j′) ≤ xi,j ∀i ∈ [n1], (j, j
′) ∈ E(T2),

z
(2)

i,(j,j′) ≤ xi,j′ ∀i ∈ [n1], (j, j
′) ∈ E(T2),

z
(2)

i,(j,j′) ≥ xi,j + xi,j′ − 1 ∀i ∈ [n1], (j, j
′) ∈ E(T2).

n2∑

j=1

z
(1)

(i,i′),j = 1 ∀(i, i′) ∈ E(T1),

n1∑

i=1

z
(2)

i,(j,j′) = 1 ∀(j, j′) ∈ E(T2).

min

m∑

p=1

n1∑

i=1

c
(1)
p,i +

m∑

p=1

n2∑

j=1

c
(2)
p,j .

with a depth-first traversal. Second, we obtain the clone 
trees T1 and T2 by collapsing vertices of T corresponding 
to identical �1-clones and collapsing vertices of T cor-
responding to identical �2-clones, respectively. Third, 
the proportions U of the �-clones in each sample are 
simulated by using a Dirichlet distribution with all con-
centration parameters equal to 1, similarly to previous 
methods [9, 27]. Proportions U1 and U2 are thus obtained 
following the consistency condition (Definition  2). Fur-
thermore, we introduce noise in these two proportion 
matrices by mixing in a second draw from the same Dir-
ichlet distribution using the parameter h ∈ [0, 1] —a value 
of h = 0 indicates the absence of noise. Details are in 
Additional file 1: Section E.

We ran PACTION in both PCI and PCTI mode on 360 
simulated instances that we obtained by generating 10 
instances for each combination of varying parameters. 
Matching numbers observed in recent cancer genomics 
studies  [15, 23, 24], we varied the numbers n1 ∈ {3, 5, 8} 
and n2 ∈ {3, 5, 8} of clones, the number m ∈ {1, 2, 5} of 
samples and noise level h ∈ {0, 0.05, 0.1, 0.15} . Note that 
both proportions U1,U2 and the simulated trees T1,T2 
are taken in input in PCTI mode, while only proportions 
U1,U2 are considered in PCI mode.

Results We measure the performance of PACTION 
based on recall, which is the fraction of ground truth 
clones that are predicted by our method, i.e., the clone 
recall equals |� ∩�∗|/|�∗| where � is the set of clones 
inferred by PACTION and �∗ are the ground truth 
clones. As expected, PACTION in pcti mode leverages 
additional information from the clone trees T1 and T2 
and thus resulted in higher recall compared to pci mode 
(Fig.  4a). Interestingly, recall increased with increasing 
number m of samples, as each additional samples pro-
vides additional constraints regarding consistency of the 
output clone proportions. Breaking down the clone recall 
by noise level h, we found that performance decreased 
with increasing noise levels in both pci mode (Fig.  4b) 
as well as pcti mode (Fig.  4c). However, we found that 
the pcti solver better handles increasing noise levels h, 
with a medial clone recall of 1 for noise level h = 0 as well 
as h = 0.05 when number m of samples is 5 (Fig. 4c and 
Additional file 1: Fig. S1).

Next, we investigated how well PACTION in pcti 
mode infers ground truth clone trees T ∗ . To that end, 
we computed the parent-child distance  [37] between 
the predicted clone tree T and the clone tree T ∗ in the 
ground truth. Specifically, the parent-child distance 
equals the ratio between the size |E(T )

�
E(T ∗)| of 

the symmetric difference of the edge sets by the size 
|E(T ) ∪ E(T ∗)| of the union of edge sets. We observed 
that the clone tree distance is inversely correlated with 
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the clone recall and when the clone recall is 1, the 
predicted clone tree matches the ground truth per-
fectly (Fig. 4d). Indeed, we observed that performance 
increases with increasing number m of samples, e.g., 
for m = 5 samples the median parent-child distance is 
0 for noise levels h ∈ {0, 0.05, 0.1} indicating that in the 
majority of these instances PACTION perfectly inferred 
ground truth trees. The reason why performance 
drops for decreasing number of samples is because the 
number of solutions increases with decreasing num-
ber of samples (Fig.  4e). We used the correspondence 
between the pcti problem (subject to the constraint 
that J (U ,U1,U2) = 0 , i.e., the proportions are error-
free) and the perfect phylogeny mixture problem solved 
by SPRUCE  [21] to enumerate all solutions for h = 0 
instances (details in Additional file  1: Section C). For 
instances with a large number of optimal solutions, the 
pcti problem and consequently the MILP lacks addi-
tional constraints to disambiguate between solutions, 
thus sometimes reporting solutions that do not match 
the ground truth.

Finally, we investigated the running times of PACTION 
in pci and pcti modes. Overall, the running times in pci 
mode (median of 0.79 s and mean of 385.52 s) were larger 
than pcti mode (median of 0.77  s and mean of 0.95  s), 
likely due to the tree constraints providing more guidance 
for the MILP solver (Additional file 1: Table S1). Interest-
ingly, while running time decreased with increasing num-
ber m of samples in pci mode, the opposite is true in pcti 
mode. The reason is that in pcti mode the MILP is often 
solved in the first iteration prior to branching, where the 
running time of solving the linear programming relaxation 
will depend on the size of the formulation, which in turn 
depends on m. However, in pci mode, the solver requires 
branching, and here additional constraints due to more 
samples will provide stronger bounds that will lead to 
more pruning and reduction in overall running time.

In summary, our simulations demonstrate that PAC-
TION is able to quickly and accurately reconstruct 
ground truth clonal architectures under varying noise 
levels h, especially when the number m is large and when 
run in pcti mode.

Fig. 4  Simulations show that PACTION quickly and accurately reconstructs comprehensive clonal architectures. a Clone recall of PACTION in the 
pci and pcti mode for simulation instances with increasing number m of samples. Clone recall of PACTION in b pci mode and c pcti mode for different 
noise levels h and number m of samples. d Parent-child distance between the clone tree in the ground truth and the solution of PACTION in the 
pcti mode for simulation instances with increasing number m of samples. e Number of solutions to the error-free version of the pcti problem (with 
additional constraint of J(U,U1,U2) = 0 ) by SPRUCE (Additional file 1: Section C) for increasing number n of clones. f Running time of PACTION in 
the pci and pcti modes for simulation instances with increasing number m of samples. Running time of PACTION in g pci mode and h pcti mode for 
simulation instances with increasing number n of clones and number m of samples
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Metastatic prostate cancer
In this study, we analyze whole-genome sequencing data 
from 49 tumor samples from 10 metastatic prostate can-
cer patients [23]. In a previous analysis of this data, Gun-
dem et al.  [23] identified SNV clones and reconstructed 
the SNV clone tree for each of the 10 patients. To fur-
ther investigate the role of CNAs on tumor evolution, 
the authors annotated the SNV clone trees with CNA 
events in a post hoc analysis by manually comparing 
and matching frequencies of SNVs and CNAs. However, 
this approach does not allow us to identify tumor clones 
that are only distinguished by different CNAs and have 
the same SNVs. Therefore, there is no information about 
CNA-only driven tumor clones nor information about 
the ordering of the CNA events and the SNV events on 
the same edge of the tree. Such information is crucial to 
understand cancer progression [38] and is the subject of 
numerous studies  [39–41]. Therefore, we investigated 
whether we can use PACTION to provide a more com-
prehensive analysis of these tumor clonal compositions 
by jointly considering SNVs and CNAs.

We applied PACTION to previously inferred SNV and 
CNA clone proportions. First, we used the SNV clone 
proportions as well as the SNV clone tree T1 inferred for 
each patient by Gundem et al. [23]. Note that each edge 
of the SNV tree represents a cluster of SNV mutations. 
As such, we computed the SNV clone proportions U1 
using the published cancer cell fractions of SNVs (details 
in Additional file 1: Section F). Second, we used the CNA 
clones obtained from a previous copy-number analy-
sis  [15] of the same patients. Since this previous analy-
sis does not provide CNA clone trees, we enumerated 
all possible binary trees [42] with the CNA clones as the 

leaves and independently ran PACTION in pcti mode 
with each tree as input. We then selected the CNA clone 
tree with the smallest correction J (U ,U1,U2) , which for 
each patient was unique. results. Overall, we ultimately 
obtained SNV trees with n1 ∈ {5, . . . , 16} clones and CNA 
trees with n2 ∈ {4, . . . , 8} clones across m ∈ {2, . . . , 10} 
samples (Additional file 1: Table S2).

In all patients but A29, we found that one cannot inte-
grate independently-inferred SNV and CNA clone trees 
without additional corrections to the clone proportions. 
Importantly, this observation highlights that the clone 
proportions inferred by existing methods are generally 
characterized by errors (Fig.  5a). As previously demon-
strated in our simulation study, PACTION, however, reli-
ably handles the presence of noise, enabling the inference 
of the complete clonal composition and tumor evolution 
with limited corrections for all patients. Specifically, the 
corrections applied by PACTION were limited to only 
a few samples per patient, potentially indicating sam-
ple-specific errors in previous analysis or samples with 
higher levels of noise. Importantly, we also observed that 
corrections were uniformly needed for both SNV and 
CNA clone proportions (Fig. 5). This important observa-
tion highlights that both features are generally character-
ized by errors and, therefore, one cannot simply leave one 
feature fixed and use it to reconcile the other feature, as 
done previously [23].

Notably, we found that the integrated clone trees 
inferred by PACTION reveal additional branching 
events that were previously missed. As an example, in 
patient A12, Gundem et al. [23] inferred an SNV clone 
tree with five clones and annotated this tree with five 
clonal CNA events, including loss-of-heterozygosity 

Fig. 5  Overview of PACTION results on samples from 10 metastatic prostate cancer patients [23]. a The corrections made by PACTION to the SNV 
and CNA clone proportions in the samples from each of the 10 patients. b The total correction made to clone proportions J(U,U1,U2) in samples 
from each patient
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(LOH) of gene TP53 and chromosomes 8p and 13q, as 
well as deletions of genes FOXP1 and FANCD2 (gray 
edge in Fig.  6a). The tree also contains a single sub-
clonal CNA event, amplification of gene FGFR1 (green 
edge in Fig. 6a). When using PACTION to analyze the 
previously-inferred SNV and CNA clone proportions, 
we reconstructed a integrated clone tree with higher 
resolution. In fact, PACTION reconstructed a more 
refined clone tree with 12 clones while only apply-
ing modest corrections to the input clone proportions 
(Fig.  5a). Similarly to the published tree, PACTION’s 
inferred clone tree contains a trunk with the same four 
clonal CNA events. However, PACTION’s tree con-
tains additional branching events that are absent in the 
published SNV tree. Specifically, we observed that two 
SNV clones in the published tree (i.e., 2 and 3) were 
split into multiple clones in PACTION’s refined tree 
(i.e., (2, 2), (2, 4), and (2, 5) for SNV clone 2, and (3, 3), 
(3, 6), and (3, 7) for SNV clone 3). Importantly, a subset 
of these refined clones are present at large proportions 
in the sequenced samples (Fig.  6d), thus showing that 
PACTION enables a more fine-grained analysis of cur-
rent sequencing data.

Finally, we found that the more refined clone trees 
inferred by PACTION also reveal novel insights about 
the relative temporal ordering of SNVs and CNAs. This 
phenomenon is particularly interesting in patient A10 
(Fig. 7a), for which PACTION inferred a clone tree with 
17 clones and relatively high corrections to the previ-
ous SNV clone proportions (Fig.  7b–d). PACTION’s 
tree recapitulates the same four clonal CNAs identi-
fied in the previous tree, including gain of chromosome 
8q and amplifications of genes NCOA2, CTNNB1 and 
MDM2 (gray edge in Fig.  7a). Importantly, PACTION’s 
tree also recapitulates subclonal CNA events as in the 
previous tree but further revealed that these CNA events 
precede the SNV events placed on the same edges in the 
published SNV clone tree (Fig.  7e). More specifically, 
PACTION revealed that LOH of chromosome 8p and 
amplification of gene NCOA2 occur on the edge from 
clone (2, 3) to (2, 7) which precedes the SNV cluster rep-
resented by the edge from clone (2, 7) to (3, 7). Similarly, 
PACTION revealed that LOH of chromosome 8p occurs 
on the edge from clone (1, 1) to (1, 2) which precedes the 
SNV cluster represented by the edge from clone (1, 2) to 
(6, 2).

Fig. 6  PACTION results for patient A12. a The SNV clone tree reported by Gundem et al. [23] where the authors manually annotated edges with 
CNA events. b SNV clone tree T1 and CNA clone tree T2 describing the evolution of the SNV clones �1 and CNA clones �2 in the tumor samples of 
patient A12, respectively. c Proportions U1 of SNV clones �1 and proportions U2 of CNA clones �2 in the four samples of patient A12. d Proportions 
U of tumor clones � in the four samples of patient A12 inferred by PACTION. e Integrated clone tree T inferred by PACTION. amp: amplification, del: 
deletion, LOH: loss of heterozygosity
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In summary, we demonstrated on metastatic prostate 
cancer patients that PACTION is able to resolve the tem-
poral ordering of mutations and reveal branching events 
that are either unclear or hidden when the SNV tree or 
the CNA tree are considered in isolation.

Discussion
In this paper, we introduced PACTION, a new algo-
rithm that infers comprehensive tumor clonal compo-
sitions by integrating the clones proportions of both 
SNVs and CNAs that are inferred by existing methods. 
Our algorithm can additionally leverage SNV and CNA 
clone trees reconstructed by existing methods to obtain 
a refined tumor clone tree and correct potential errors 
in the input proportions. We formulated two problems, 
the pci problem to infer the clones and their proportions, 
and the pcti problem to additionally infer tumor clone 
trees with both SNVs and CNAs. We showed that both 
problems are NP-hard and can be solved exactly by PAC-
TION using two mixed inter linear programming formu-
lations. We demonstrated the performance of PACTION 
on simulations, showing that our method accurately rec-
onciles clone trees, reliably handles errors in clone pro-
portions, and scales to practical input sizes. Finally, we 

applied our method to whole-genome sequencing data 
from 10 metastatic prostate cancer patients [23], obtain-
ing a higher resolution view of tumor evolution than pre-
viously reported.

In addition to the contributions of this study, we fore-
see four major avenues for future research. First, build-
ing upon the established relationship of the error-free 
pcti and the cladistic multi-state perfect phylogeny 
deconvolution problems (Additional file  1: Section C), 
we can adapt the existing method SPRUCE [21] to enu-
merate all possible solution of the pcti problem in the 
presence of errors in the input proportions. Second, 
PACTION can be extended to account for uncertainty 
in the input clone trees and quantify its effect on the 
solution space. One way of incorporating the uncer-
tainty in the input clone trees, is to consider a set of 
possible clone trees for each feature instead of a single 
input tree, choosing the best tree that leads to the most 
parsimonious solution. Moreover, we plan to adapt the 
pci and pcti to incorporate probabilistic models that 
account for uncertainty in the estimated clone propor-
tions. Third, the pci and pcti problems can be general-
ized to integrate more than two features. For instance, 
in addition to SNVs and CNAs, tumor cells may be 

Fig. 7  PACTION results for patient A10. a The SNV clone tree reported by Gundem et al. [23] where the authors manually annotated edges with 
CNA events. b SNV clone tree T1 and CNA clone tree T2 describing the evolution of the SNV clones �1 and CNA clones �2 in the tumor samples of 
patient A12, respectively. c Proportions U1 of SNV clones �1 and proportions U2 of CNA clones �2 in the four samples of patient A10. d Proportions U 
of tumor clones � in the four samples of patient A10 inferred by PACTION. e Integrated clone tree T inferred by PACTION. amp: amplification, LOH: 
loss of heterozygosity
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partitioned into clones based on RNA expression or 
DNA methylation profiles. Finally, a likelihood-based 
objective function could be used to incorporate a joint 
evolutionary model for SNVs and CNAs [43].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​022-​00209-9.

Additional file 1. Supplementary proofs for lemmas and theorems in the 
main text, a section showing the equivalence of the PCTI problem and the 
Multi-state Cladistic Perfect Phylogeny Mixture Deconvolution problem, 
detailed MILP formulation for the PCTI problem, simulation and real data 
processing details, and 1 figure and 2 tables describing additional results.

Acknowledgements
This work was a project in the course CS598MEB (Computational Cancer 
Genomics, Spring 2021) at UIUC. We thank the students in this course for their 
valuable feedback. We also thank Ron Zeira for providing the code to compute 
distances between copy number profiles.

Authors’ contributions
PS formulated the problem statements, developed the algorithms, imple‑
mented the code and executed the experimental analysis. SZ aided with 
the biological interpretation of the results. ME-K conceived and supervised 
the project. All authors drafted the final manuscript. All authors read and 
approved the final manuscript.

Funding
SZ was supported by the Rosetrees Trust and CRUK Lung Cancer Centre of 
Excellence grant reference M917. MEK was supported by the National Science 
Foundation award numbers CCF 1850502 and CCF 2046488.

Availability of data and materials
PACTION is available at https://​github.​com/​elkeb​ir-​group/​pacti​on.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, University of Illinois Urbana-Champaign, 
Urbana, IL, USA. 2 Computational Cancer Genomics Research Group, University 
College London Cancer Institute, London, UK. 3 Cancer Research UK Lung 
Cancer Centre of Excellence, University College London Cancer Institute, 
London, UK. 4 Cancer Center at Illinois, University of Illinois Urbana-Champaign, 
Urbana, IL, USA. 

Received: 15 November 2021   Accepted: 25 January 2022

References
	1.	 Nowell PC. The clonal evolution of tumor cell populations. Science. 

1976;194(4260):23–8.
	2.	 Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and 

consequences of genetic heterogeneity in cancer evolution. Nature. 
2013;501(7467):338–45.

	3.	 McGranahan N, Swanton C. Biological and therapeutic impact of intratu‑
mor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26.

	4.	 Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. 
Emerging landscape of oncogenic signatures across human cancers. Nat 
Genet. 2013;45(10):1127–33.

	5.	 ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, et al. 
Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82.

	6.	 Watkins TB, Lim EL, Petkovic M, Elizalde S, Birkbak NJ, Wilson GA, Moore 
DA, Grönroos E, Rowan A, Dewhurst SM, et al. Pervasive chromo‑
somal instability and karyotype order in tumour evolution. Nature. 
2020;587(7832):126–32.

	7.	 Tarabichi M, Salcedo A, Deshwar AG, Leathlobhair MN, Wintersinger 
J, Wedge DC, Van Loo P, Morris QD, Boutros PC. A practical guide to 
cancer subclonal reconstruction from dna sequencing. Nat Methods. 
2021;18(2):144–55.

	8.	 Popic V, Salari R, Hajirasouliha I, Kashef-Haghighi D, West RB, Batzoglou 
S. Fast and scalable inference of multi-sample cancer lineages. Genome 
Biol. 2015;16(1):1–17.

	9.	 El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of 
clonal trees and tumor composition from multi-sample sequencing data. 
Bioinformatics. 2015;31(12):62–70.

	10.	 Strino F, Parisi F, Micsinai M, Kluger Y. Trap: a tree approach for fin‑
gerprinting subclonal tumor composition. Nucleic Acids Res. 
2013;41(17):165–165.

	11.	 Satas G, Raphael BJ. Tumor phylogeny inference using tree-constrained 
importance sampling. Bioinformatics. 2017;33(14):152–60.

	12.	 Sundermann LK, Wintersinger J, Rätsch G, Stoye J, Morris Q. Reconstruct‑
ing tumor evolutionary histories and clone trees in polynomial-time with 
submarine. PLoS Comput Biol. 2021;17(1):1008400.

	13.	 Oesper L, Mahmoody A, Raphael BJ. Theta: inferring intra-tumor het‑
erogeneity from high-throughput dna sequencing data. Genome Biol. 
2013;14(7):1–21.

	14.	 Fischer A, Vázquez-García I, Illingworth CJ, Mustonen V. High-
definition reconstruction of clonal composition in cancer. Cell Rep. 
2014;7(5):1740–52.

	15.	 Zaccaria S, Raphael BJ. Accurate quantification of copy-number aberra‑
tions and whole-genome duplications in multi-sample tumor sequenc‑
ing data. Nat Commun. 2020;11(1):1–13.

	16.	 Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, 
Denroche RE, Liang S-B, Brown AM, Kim JC, et al. A renewed model of 
pancreatic cancer evolution based on genomic rearrangement patterns. 
Nature. 2016;538(7625):378–82.

	17.	 Zaccaria S, El-Kebir M, Klau GW, Raphael BJ. The copy-number tree 
mixture deconvolution problem and applications to multi-sample bulk 
sequencing tumor data. In: International Conference on Research in 
Computational Molecular Biology, 2017:318–335. Springer

	18.	 McPherson AW, Roth A, Ha G, Chauve C, Steif A, de Souza CP, Eirew P, 
Bouchard-Côté A, Aparicio S, Sahinalp SC, et al. Remixt: clone-specific 
genomic structure estimation in cancer. Genome Biol. 2017;18(1):1–14.

	19.	 Zaccaria S, El-Kebir M, Klau GW, Raphael BJ. Phylogenetic copy-
number factorization of multiple tumor samples. J Comput Biol. 
2018;25(7):689–708.

	20.	 Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. Phylowgs: 
reconstructing subclonal composition and evolution from whole-
genome sequencing of tumors. Genome Biol. 2015;16(1):1–20.

	21.	 El-Kebir M, Satas G, Oesper L, Raphael BJ. Inferring the mutational his‑
tory of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 
2016;3(1):43–53. https://​doi.​org/​10.​1016/j.​cels.​2016.​07.​004.

	22.	 Jiang Y, Qiu Y, Minn AJ, Zhang NR. Assessing intratumor heterogeneity 
and tracking longitudinal and spatial clonal evolutionary history by next-
generation sequencing. Proc Natl Acad Sci. 2016;113(37):5528–37.

	23.	 Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papae‑
mmanuil E, Brewer DS, Kallio HM, Högnäs G, Annala M, et al. The 
evolutionary history of lethal metastatic prostate cancer. Nature. 
2015;520(7547):353–7.

	24.	 Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins 
TB, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, et al. Track‑
ing the evolution of non-small-cell lung cancer. N Engl J Med. 
2017;376(22):2109–21.

	25.	 Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state 
of the science. Nat Rev Genet. 2016;17(3):175.

https://doi.org/10.1186/s13015-022-00209-9
https://doi.org/10.1186/s13015-022-00209-9
https://github.com/elkebir-group/paction
https://doi.org/10.1016/j.cels.2016.07.004


Page 14 of 14Sashittal et al. Algorithms for Molecular Biology            (2022) 17:3 

	26.	 Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru 
D, Kopetz S, Navin NE. Single-cell dna sequencing reveals a late-
dissemination model in metastatic colorectal cancer. Genome Res. 
2017;27(8):1287–99.

	27.	 Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality infer‑
ence in multiple tumor samples using phylogeny. Bioinformatics. 
2015;31(9):1349–56.

	28.	 Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, Markowetz F. Phylo‑
genetic quantification of intra-tumour heterogeneity. PLoS Comput Biol. 
2014;10(4):1003535.

	29.	 El-Kebir M, Raphael BJ, Shamir R, Sharan R, Zaccaria S, Zehavi M, Zeira 
R. Copy-number evolution problems: complexity and algorithms. In: 
International Workshop on Algorithms in Bioinformatics, 2016;137–149. 
Springer

	30.	 El-Kebir M, Raphael BJ, Shamir R, Sharan R, Zaccaria S, Zehavi M, Zeira 
R. Complexity and algorithms for copy-number evolution problems. 
Algorithms Mol Biol. 2017;12(1):1–11.

	31.	 Wu T, Moulton V, Steel M. Refining phylogenetic trees given additional 
data: an algorithm based on parsimony. IEEE/ACM Trans Comput Biol 
Bioinform. 2008;6(1):118–25.

	32.	 Ahuja RK, Magnanti TL, Orlin JB, Weihe K. Network flows: theory, 
algorithms and applications. ZOR Methods Models Operat Res. 
1995;41(3):252–4.

	33.	 Garey MR, Johnson DS. Computers and intractability. JSTOR: A guide to 
the theory of NP-completeness; 1983.

	34.	 Garey MR, Johnson DS. Complexity results for multiprocessor scheduling 
under resource constraints. SIAM J Comput. 1975;4(4):397–411.

	35.	 Fernández-Baca D. The perfect phylogeny problem. In: Zu DZ, Cheng X, 
editors. Steiner trees in industries. Amsterdam: Kluwer Acedemic Publish‑
ers; 2000.

	36.	 Krapivsky PL, Redner S. Organization of growing random networks. Phys 
Rev E. 2001;63(6):066123.

	37.	 Govek K, Sikes C, Oesper L. A consensus approach to infer tumor evolu‑
tionary histories. In: Proceedings of the 2018 Acm International Confer‑
ence on Bioinformatics, Computational Biology, and Health Informatics, 
2018;63–72

	38.	 Teimouri H, Kolomeisky AB. Temporal order of mutations influences 
cancer initiation dynamics. bioRxiv. 2021;18(5):056002.

	39.	 Sprouffske K, Pepper JW, Maley CC. Accurate reconstruction of the 
temporal order of mutations in neoplastic progression. Cancer Prev Res. 
2011;4(7):1135–44.

	40.	 Guo J, Guo H, Wang Z. Inferring the temporal order of cancer gene muta‑
tions in individual tumor samples. PLoS ONE. 2014;9(2):89244.

	41.	 Khakabimamaghani S, Ding D, Snow O, Ester M. Uncovering the subtype-
specific temporal order of cancer pathway dysregulation. PLoS Comput 
Biol. 2019;15(11):1007451.

	42.	 Barnett J, Correia H, Johnson P, Laughlin M, Wilson K. Darwin meets graph 
theory on a strange planet: counting full n-ary trees with labeled leafs. 
Alabama J Math. 2010;35:16–23.

	43.	 Satas G, Zaccaria S, Mon G, Raphael BJ. Scarlet: single-cell tumor phylog‑
eny inference with copy-number constrained mutation losses. Cell Syst. 
2020;10(4):323–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Parsimonious Clone Tree Integration in cancer
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Problem statements
	Parsimonious Clone Integration
	Parsimonious Clone Tree Integration

	Combinatorial characterization and computational complexity
	Parsimonious Clone Integration
	Parsimonious Clone Tree Integration

	Methods
	Parsimonious Clone Integration
	Parsimonious Clone Tree Integration

	Results
	Simulations
	Metastatic prostate cancer

	Discussion
	Acknowledgements
	References




