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SUMMARY

Patient heterogeneity precludes cancer treatment and drug development; hence,
development of methods for finding prognostic markers for individual treatment
is urgently required. Here, we present Pasmopy (Patient-Specific Modeling in
Python), a computational framework for stratification of patients using in silico
signaling dynamics. Pasmopy converts texts and sentences on biochemical systems
into an executable mathematical model. Using this framework, we built a model of
the ErbB receptor signaling network, trained in cultured cell lines, and performed
in silico simulationof377patientswithbreastcancerusingTheCancerGenomeAtlas
(TCGA) transcriptome datasets. The temporal dynamics of Akt, extracellular signal-
regulatedkinase (ERK), andc-Myc ineachpatientwereable toaccuratelypredict the
difference in prognosis and sensitivity to kinase inhibitors in triple-negative breast
cancer (TNBC). Our model applies to any type of signaling network and facilitates
the network-based use of prognostic markers and prediction of drug response.

INTRODUCTION

Cancer is a heterogeneous disease in terms of mutation signatures, gene expression profiles, and response

to drug treatments (Dagogo-Jack and Shaw, 2018). Innovations in sequencing, genome-wide measure-

ments of mutations and transcriptomics profiles (Gusev et al., 2016; Ozaki et al., 2002) have brought

more attention to inter-patient heterogeneity. Accordingly, different types of data-driven algorithms,

such as machine learning methods (Kourou et al., 2015; Van’t Veer et al., 2002), have been developed to

identify correlations between these gene signatures and clinical outcomes. Despite these efforts, the

molecular mechanisms by which different genomic and transcriptomic profiles predict distinct patient-spe-

cific prognostic outcomes remain poorly understood.

Mechanistic descriptions of biological network using ordinary differential equations (ODEs) is considered one of

the promising approaches to uncover the regulatorymechanisms in biological systems (Clarke and Fisher, 2020;

Kholodenko, 2006). Several attempts have focusedonpan-cancer signaling networks to explore themechanisms

underlying heterogeneous responses in cancer (Fröhlich et al., 2018; Hass et al., 2017), by combiningmechanistic

modeling with transcriptome profiles obtained from the cancer cell lines (Barretina et al., 2012). In these studies,

experimental data on signaling activities, cell growth, anddrug response frommore than 100 cell lineswere used

for model prediction, and training the model with the datasets allowed it to accurately predict cell-specific drug

response from theuntraineddata (Fröhlich et al., 2018;Hass et al., 2017). Accordingly, these studies using cell line

profiles suggest the potential of ‘‘patient-specific models’’ (Saez-Rodriguez and Blüthgen, 2020) that can deter-

mine personalized prognosis and drug response using the patient’s signaling and transcriptome profiles. How-

ever, there are several challenges toovercome.Although clinical transcriptomedataareavailable frompublic da-

tabases, obtaining signaling activity from each patient is not feasible due to the difficulty of culturing cells from

cancer tissues (Inoue et al., 2017; Whittle et al., 2015; Yoshida, 2020). Additionally, the drug responses predicted

by patient-specific models cannot be immediately tested in living patients. In addition, as another fundamental

issue,mathematicalmodelingusually requires specificmathematical expertiseof users. Tobeable toapplymath-

ematicalmodeling to patient data analysis, we need a simpler, readable format tool thatmany biologists can use

for cancer classification.

To resolve these problems, we developed a computational framework called Pasmopy (Patient-Specific

Modeling in Python). Pasmopy enables the conversion of text describing biochemical reactions (such as
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association, phosphorylation, and degradation) in signaling networks into ordinary differential equation

(ODE) models, without mathematical knowledge of users. It also offers several biologist-friendly functions,

such as parameterization of patient models against the learning datasets obtained from cultured cell lines,

individualization of mechanistic models by incorporating cell-line- or patient-specific gene expression

data, prediction of patient prognosis based on simulation outputs, the ability to investigate the molecular

mechanisms underlying patient outcomes, and the ability to identify potential drug targets for individual

patients.

Using this tool, we developed a personalized model of ErbB receptor signaling network. The model in-

cludes a series of biochemical reactions involved in ErbB receptor activation and c-Myc induction (Arteaga

and Engelman, 2014; Xu et al., 2010). By combining 377 individual patient transcriptome datasets obtained

from The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) and personalized models, we succeeded in

classifying patients with triple-negative breast cancer (TNBC) into poor and better prognosis groups,

based solely on in silico Akt, extracellular signal-regulated kinase (ERK), and c-Myc dynamics of each

patient. Our models suggested that these subclusters can be classified by a simple metric: the epidermal

growth factor receptor (EGFR / ErbB1) expression ratio to other ErbB receptor families. Further analysis of

the models implied that patients with poorer prognoses are more resistant to treatments targeting the

EGFR. We also confirmed that the same model could stratify patients with colon cancer (Muzny et al.,

2012) based on predicted in silico signaling dynamics, indicating that these two cancers share common

regulatory mechanisms in the signaling network that determine prognosis.

RESULTS

Development of Pasmopy: a scalable computational toolkit for patient-specific modeling

The dynamics of signaling pathways play key roles in determining cell fate and cancer progression (Purvis

and Lahav, 2013). Therefore, the experimental analysis of patient response data is primarily required for

development of drugs targeting these pathways (Zhong et al., 2021). However, analyzing signaling

dynamics using the patient tissues is generally difficult even using advanced techniques such as the

patient-derived xenograft (PDX) model. This is due to the limitations of the current PDX models, including

the inability to reconstitute human immune cell systems, low success rates, and a high cost to establish cell

lines and maintain the original cell properties (Inoue et al., 2017; Whittle et al., 2015; Yoshida, 2020). To

tackle this problem, we developed Pasmopy, a scalable toolkit for in silico patient-specific mathematical

modeling (Figure 1). Pasmopy offers the following unique features: (i) construction of mechanistic models

from texts and sentences of gene regulatory network without a knowledge of mathematical modeling

(Figure 2A), (ii) personalization of the model using transcriptome data of each patient, (iii) prediction of

patient outcome based on in silico signaling dynamics, e.g., amplitude, duration, and area under the curve

(AUC), and (iv) sensitivity analysis for prediction of potential drug targets. Pasmopy currently contains a list

of 14 reaction rules on gene regulation and biochemical reactions, including binding, dissociation,

phosphorylation, transcription, translation, synthesis, degradation, and translocation, which can be

automatically converted into kinetic equations (Figure 2B). New terminology of a reaction rule can also

be added by users. Pasmopy is compatible with a Python framework for Modeling and Analysis of Signaling

Systems (BioMASS) (Imoto et al., 2020), which allows parameterization and network analysis of large scale

biological models, and more specialized for personalized modeling.

In this study, we constructed a mathematical model of ErbB receptor signaling network (Birtwistle et al.,

2007) and c-Myc induction (Lee et al., 2008) using this tool (Figure 2C). The model includes activation

and dimerization of four ErbB receptors (ErbB1 / EGFR, ErbB2, ErbB3, and ErbB4), Ras-ERK cascade,

and the Akt-PI3K pathway, which was adapted from the model of Birtwistle et al. (Birtwistle et al., 2007)

and integrated the process of c-Myc induction and stabilization by ERK and Akt signals, which was newly

constructed for this study. The resulting model has 319 rate equations, 228 species, and 648 parameters.

Of the 648 parameters such as kinetic constants and weighting factors, 220 were estimated from

phospho-proteins time-course data obtained from four breast cancer cell lines stimulated with epidermal

growth factor (EGF) or heregulin (HRG) for up to 120 min (see below and STAR methods section).

Using transcriptomic data to personalize the mechanistic model

Modeling biological systems usually requires initial abundances of chemical species in the model and

kinetic parameters of the reaction. To determine the kinetic parameters of patient-specific models, we first

assumed that the reaction parameters are unique to the molecular species involved in a reaction event and
2 iScience 25, 103944, March 18, 2022



Figure 1. Overview of the workflow

A workflow for identifying cancer prognostic factors based on signaling dynamics from mechanistic modeling. A text file describing the biochemical

reactions is converted into an executable model (1. Construction). The model parameters are trained on phospho-protein time-course data obtained from

growth factor-stimulated cultured cell lines (2. Parameterization). The model is personalized by incorporating individual gene expression profiles (3.

Personalization). The patients are classified based on in silico signaling responses from personalized simulations. In this study, the patient group with triple-

negative breast cancer (TNBC) was further analyzed (bottom, right to left). Based on the examination of signaling properties, the patients with TNBC were

classified into two subclusters by ErbB receptor expression ratios. Sensitivity analysis indicated that patients with higher EGFR expression ratios were less

sensitive to EGFR inhibitors. This hypothesis was validated using drug-response data obtained from cancer cell lines.
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remain the same even if genemutations are present in the species. Instead, we assumed that such genomic

mutations are reflected in the gene expression signatures. This assumption is empirically supported by

expression quantitative trait loci (eQTLs) (Nica and Dermitzakis, 2013) analysis and transcriptome-wide

association studies (TWAS) (Gusev et al., 2016) that links genomic mutations to gene expression signatures.

Accordingly, unknown parameters of the model, that are common to all patients and cultured cell lines,

were obtained by fitting the model to the phospho-protein time-course data obtained from the cultured

cell lines.

In brief, the ErbB network model was trained against the growth factor-stimulated time-course datasets of

phosphorylated Akt, ERK, and c-Myc obtained fromMCF-7, BT-474, SK-BR-3, andMDA-MB-231 cancer cell

lines (which represent four breast cancer subtypes: Luminal A, Luminal B, HER2+, and triple-negative,

respectively) along with their corresponding the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,

2012) transcriptome data, which are used for determining nonzero initial conditions (protein levels of the

species) in the model (see below and gene list in Table S1) (Figure 2D). By minimizing the objective

function, i.e., the residual sum of squares between simulation and experimental measurements, 30 good

fitting parameter sets were obtained that reproduced experimental observations in these four breast

cancer cell lines (Figure 2E). These 30 parameters were also used as kinetic parameters for the patient

model.

To personalize the model, individual TCGA transcriptome data were analyzed and used to infer the initial

amount of nonzero species or maximal transcription rate for each patient model. Because we use the

cultured cell line data to estimate the parameters of the model, we need to normalize the patient’s
iScience 25, 103944, March 18, 2022 3
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Figure 2. Construction and parameterization of the mechanistic model

(A) The strategy for implementing ordinary differential equations (ODEs) from the text descriptions of the biological events.

(B) Representative biological events and words that can be converted into rate equations and ODEs.

(C) Cancer signaling network and its conversion into an ODE model in this study.

(D) The model parameter was trained on time-series Akt, ERK, and c-Myc phosphorylation levels obtained from four breast cancer cell lines: MCF-7, BT-474,

SK-BR-3, and MDA-MB-231 stimulated with growth factors. The points (blue squares, EGF; orange triangles, HRG) denote experimental data, solid lines

denote simulations, and shaded areas denote SD. For all panels, error bars denote SE for three independent experiments. (E) Objective function traces from

30 optimization runs.
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transcriptome data to the data obtained from cultured cell lines for patient modeling. First, transcrip-

tome profiles of 413 patients with breast cancer and 51 breast cancer cell lines were obtained from

TCGA (Weinstein et al., 2013) and CCLE (Barretina et al., 2012), respectively, and their batch effects

were removed using ComBat-seq (Zhang et al., 2020) (Figure S1). By performing this step, cell line

transcriptomes could be merged with the patient transcriptomes and the parameters estimated from

phospho-protein cell line data could also be used as patient parameters. Several samples were removed

due to low total read counts of the sequence data (see STAR methods and Figure S1B), finally resulting in

377 patient data for modeling (Table 1). To make the models patient-specific, the clinical transcriptomic

data for 38 genes (see gene list in Table S1) were incorporated as the maximum transcription rate or the

initial number of nonzero species in the model (see STAR methods). If the initial value of a model species

is zero and its expression was induced by upstream signals, e.g., c-myc mRNA or dusp mRNA, maximal

transcription rate was estimated from its own mRNA level. Unless otherwise stated, transcriptome data

were used as the mRNA level to estimate the translated protein level. In this way, we computationally

predicted the protein levels from their corresponding mRNA levels in TCGA. We confirmed that our

simulated protein levels were reasonably consistent with the experimentally measured protein levels

of four breast cancer subtypes in the Library of Integrated Network-based Cellular Signatures (LINCS)

database (Niepel et al., 2013) (Figure S2).
Stratification of patients with TNBC based on signaling dynamics

After determining the model parameters, we performed numerical simulations to predict how each patient

would respond to EGF and HRG stimulation in silico. We performed simulations for 377 patients, and

extracted quantitative information, such as amplitude, duration, drop rate, and the cumulative response

(see STAR methods for their definition), from the in silico dynamics of Akt, ERK, and c-Myc activation in

each patient. This was followed by clustering of each patient based on dynamic features (Figure S3).

Among these characteristics, we used amplitude, i.e., the maximum activation level for the classification

of patients with breast cancer. Even though this dynamic feature cannot distinguish Luminal A and Luminal

B subtypes, it could distinguish TNBC from other subtypes (Figure 3A). Notably, our network-based

classifier divided the patients with TNBC into two clusters: cluster one and two for patients with poor

and better prognoses, respectively (Figures 3B and 3C). A classical PAM50 classification method (Jiang

et al., 2016; Koboldt et al., 2012; Nielsen et al., 2010), which is based on the expression signatures of 50

genes, was suitable for subtype classification but not for the prediction of TNBC prognosis (Figures S4A

and S4B).

To identify crucial genes for distinguishing clusters 1 and 2, we checked 253 differentially expressed

transcripts (see STAR methods for the criteria of gene selection). However, there was no clear trend

between these two clusters (Figure S5). From this result, we concluded that dynamical modeling is

more suitable for the stratification of patients with TNBC rather than the standard gene expression

profiles, and in silico signaling dynamics of ErbB signaling network can be utilized as a prognostic marker

for TNBC.
Table 1. The criteria used for pre-processing TCGA-BRCA/CCLE-BREAST and TCGA-COAD/CCLE-BREAST samples

TCGA/CCLE

TCGA: Upper

age limit TCGA: Stages of cancer Total read counts

BRCA/BREAST 59 Stage I, Stage IA, Stage IB,

Stage II, Stage IIA, Stage IIB

Lower: 40,000,000

Upper: 140,000,000

COAD/BREAST 79 Stage I, Stage IA, Stage IB,

Stage II, Stage IIA, Stage IIB

Lower: 10,000,000

Upper: 160,000,000

iScience 25, 103944, March 18, 2022 5
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Figure 3. Stratification of patients with triple-negative breast cancer (TNBC) based on ErbB signaling dynamics

(A) The patients are classified based on personalized simulations. The prognostic score for patients who deceased within n-1 to n years are donated by n, and

patients who were alive after 20 years are denoted in yellow. The representative signal response characteristics were extracted from the topmost portion of

each cluster. The blue and orange solid lines denote simulations with EGF and HRG stimulation, respectively. Shaded areas denote SD.

(B and C) Kaplan-Meier survival curves of all patients for all clusters (B) and of patients with the basal-like subtype for clusters 1 and 2 (C).
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Furthermore, we performed undersampling and clustering analysis of the patients to determine the least

number of samples required for stratification of TNBC. Initially, the number of patients was set to 30, with an

increment of 20 in each step. We found that as the number exceeded 110, the patients with TNBC were

classified into two clusters with differences in their prognosis being statistically significant (p < 0.05)

(Figure S6). This shows the efficacy of this analytical method to classify patients with TNBC using relatively

small number of samples.

Identification of the mechanisms affecting patient prognosis

Our clustering results showed that patients with TNBC displaying poor prognoses were associated with

lower Akt, ERK, and c-Myc activities under HRG stimulation. Together with our model structure, we

hypothesized that the signaling activity of HRG receptors (ErbB3, ErbB4, and their heterodimerization

partner ErbB2) in this patient group could not efficiently transmit the downstream signal due to competitive

interference from higher levels of EGFR. Consistent with this hypothesis, further analysis showed that the

expression ratios of EGFR to the ErbB2, 3, and 4 receptors were higher in the poor prognosis group (Fig-

ure 4A). This result was also supported by the protein abundances predicted from our models (Figure S7).

To further investigate the mechanisms that distinguish prognosis, we randomly sampled patients from

each group and performed a sensitivity analysis, which examined how perturbations to the initial conditions

(inferred from gene expression level) of the model species affected the c-Myc activity (model output). The

result indicated that higher EGFR expression is associated with lower sensitivity to the EGFR inhibitors (Fig-

ure 4B). To test this hypothesis, we usedCCLE drug response data (Barretina et al., 2012) for validation anal-

ysis. First, similar to patient-specific models, cell-line-specific models were constructed using their gene

expression values and classified based on their dynamic features (Figure S8). Available breast cancer cell

line data (n = 2 for both clusters 1 and 2) were not enough to satisfy the statistical tests. However, breast

cancer cell lines in cluster 1 (relative EGFR expression level: high) seemed less sensitive to EGFR inhibitors

than cluster 2 (relative EGFR expression level: low). To further validate this, we collected all types of cancer

cell lines (n = 229) from CCLE, classified them in terms of ErbB receptor expression ratio, and analyzed drug

sensitivity (Figure 4C). Drug efficacy and potency were quantified by the ‘‘activity area,’’ which was the area

over the dose-response curve (Barretina et al., 2012). We found that cell lines with higher EGFR expression

levels showed significantly lower sensitivity to EGFR inhibitors (erlotinib and lapatinib). There was no

statistical significance for other inhibitors, such as MEK inhibitors (selumetinib and PD-0325901)

(Figure 4D).

Applying model-based stratification to other types of cancer

We next tried if the same ErbB network model can stratify patients with different types of cancers. We

selected colon cancer (Muzny et al., 2012), in which EGFR inhibitors are clinically used (Xie et al., 2020). After

individualization of the ErbB network models by adding 189 individual transcriptomic datasets provided in

TCGA database (TCGA-COAD), the models successfully classified their prognoses according to the arg-

max (the time at which the signal intensity reached the maximum) of c-Myc dynamics (Figures 5A–5C). Pa-

tients in cluster 4 showed poorer prognosis than other clusters even though their signaling dynamics were

similar to those in cluster 3. To predict the mechanistic cause of the difference between clusters 3 and 4, we

performed sensitivity analysis on time-integrated c-Myc response. The results of this analysis implied that in

silico patients in cluster 4 showed lower sensitivity in EGFR (ErbB1) than those in cluster 3 (Figure 5), indi-

cating that patients in this cluster may be more resistant to anti-EGFR treatments. In fact, a recent study

found a significant correlation between c-MYC expression and anti-EGFR antibody resistance in metastatic

colorectal cancer (Strippoli et al., 2020). Thus, our mathematical analysis potentially provides a mechanistic

insight to explain the anti-EGFR therapy response of each patient.

DISCUSSION

Identifying the prognostic factors and potential therapeutic drugs for individual patients is crucial for

development of personalized medicine. Recent studies indicate that the temporal dynamics of signaling

activities and transcription factors are critical for cell fate determination (Johnson and Toettcher, 2019;
iScience 25, 103944, March 18, 2022 7
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Figure 4. ErbB receptor expression ratios are critical for determining drug sensitivity

(A and B) Scatterplots of the epidermal growth factor receptor (EGFR) expression ratios to the sum of other ErbB receptor families: ERBB2, ERBB3, and

ERBB4. Each dot represents one patient. (A) Purple and orange dots denote individual patients in clusters 1 and 2, respectively. (B) The corresponding

response scores: the sum of the maximum level of three observables (pERK, pAkt, and pc-Myc) in response to HRG stimulation. Higher scores indicate a

lower maximum level when stimulated with EGF.

(C) Boxplots showing the ErbB receptor expression ratios in patients from clusters 1 and 2. The p value was calculated using the Brunner-Munzel test.

(D) Sensitivity analysis of c-Myc activation on representative in silico patients with TNBC with high (upper panel) and low (lower panel) EGFR expression

ratios.

(E) The EGFR expression ratios to the sum of other ErbB receptor families in the cell lines provided in the CCLE. Based on the ratio, cell lines are classified into

three groups, namely, ‘‘high’’: top 30, ‘‘low’’: bottom 30, and ‘‘middle’’: the other 169 cell lines.

(F) Analysis of response profiles against anticancer drugs (MEK inhibitors: selumetinib, PD-0325901; EGFR inhibitors: erlotinib, lapatinib). The solid lines and

shaded areas in dose-response curves denote the average and SD of relative viability of 30 cell lines in each cluster, respectively. The efficacy and potency of

a drug are simultaneously quantified based on the ‘‘activity area’’ and the p values were calculated using the Brunner-Munzel test with a significance level of

0.05.
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Manning et al., 2019; Purvis et al., 2012; Sasagawa et al., 2005). Fey et al. also indicated that JNK signaling

metrics can be used as prognostic factors for neuroblastoma (Fey et al., 2015).

Therefore, we hypothesized that signaling dynamics in individual patients with cancer can be used for

classification and prediction of the prognosis and drug responses. To this end, we developed a scalable

computational framework, Pasmopy, for patient-specific modeling and classification of cancers based on

signaling dynamics. Besides developing these unique classification features, we used this framework to

construct mechanistic models from texts describing biochemical reactions instead of formulating mathe-

matical equations. In this study, we developed a model of ErbB receptor signaling network from text as

a proof of concept. This method of building models will facilitate future studies investigating underlying

mechanisms of various biological processes.

Notably, we found that the selected gene panels used in our current ErbB model (Table S1) were not

capable of classifying TNBC prognosis (Figures S9A and S9B), and they were not sufficient to identify

the molecular mechanism (e.g., EGFR/ErbBs ratio) or drug response. EGFR overexpression has been

reported in up to 78% of patients with TNBC (Park et al., 2014). We randomly sampled ‘‘in silico patients’’

and performed sensitivity analyses, which surprisingly suggested that patients with higher EGFR expres-

sion ratios were less sensitive to EGFR inhibition. To test this model-based prediction, we used publicly

available cell-line data and confirmed that cancer cell lines with higher EGFR expression ratios were less

sensitive to anticancer drugs targeting EGFR, such as erlotinib and lapatinib. Thus, this framework not

only allows us to classify patients but also provides potential mechanistic insight into the regulation of

signaling pathways and drug resistance.

Another advantage of our method is that it enables the computational analysis with a small number of data

inputs. In this study, the model parameter was trained against experimental data consisting of four cell

lines, three observables, two growth factors, and eight time-points. The number of our training datasets

was much smaller than the one used in the earlier work (Fröhlich et al., 2018), in which datasets from 120

cell lines treated with seven different drugs and up to nine concentrations of each were used to predict

anticancer drug response in different cell lines. We confirmed that the model-predicted sensitive reactions

in the ErbB network are highly conserved across 30 independent parameter sets. This indicates that

parameter identifiability obtained from our modeling approach does not significantly affect the uncertainty

of the model output.

Themodels were personalized for each patient by incorporating individual gene expression data. Although

similar approaches have been used in previous studies for JNK signaling (Fey et al., 2015) and HGF/Met

signaling pathway to stratify patients with neuroblastoma (Jafarnejad et al., 2019), they needed to rescale

the protein levels based on the fold changes in their mRNA levels in the tumor and healthy tissue. However,

this scaling method narrows the potential use of mRNA information. We extended this method and used

transcriptome data to infer the maximal translation rate of the corresponding proteins. This method allows

us to develop larger models from genome-wide transcriptome datasets.

Finally, we hypothesized that the critical molecular mechanism governing cancer prognosis might be

shared, at least in part, by different types of cancers. This would explain why the same model (i.e., short

term ErbB signaling dynamics within 120 min) can be used to classify patient prognosis in both breast
iScience 25, 103944, March 18, 2022 9
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Figure 5. Applying model-based patient stratification to colon cancer

(A) A total of 189 patients were classified based on personalized simulations. The representative pc-Myc dynamics were extracted from the topmost portion

of each cluster. The blue and orange solid lines denote simulations with EGF and HRG stimulation, respectively. Shaded areas denote SD. The metric

‘‘argmax’’ denotes the time at which the simulated signal intensity reached the maximum.

(B) Kaplan-Meier survival curves of all patients for all clusters.

(C) Boxplots showing individual argmax values in each cluster.

(D) Sensitivity analysis on the time-integrated response of EGF-induced pc-Myc for randomly sampled in silico patients in clusters 3 and 4.
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and colon cancers. Therefore, our study suggests that modeling approaches can be used to investigate the

specificity and commonality of different types of cancer and evaluation of drug repositioning. In this study,

we did not consider somatic mutations in the model. To support this, there was no clear trend on mutation

types, at least for two TNBC clusters (Figure S10). However, gene mutations are tightly linked with

treatment strategies in some types of cancer such as lung cancer (Collisson et al., 2014). Therefore,

parameterization of mutational information to adapt the model to a wide range of cancer types can be

done in future.

Limitations of the study

This study focuses on the classification of patients with cancer based on the dynamics of ErbB receptor signaling

pathways.However,wecannot exclude thepossibility of other signalingpathwaysbeing involved in it.Our frame-

workwill be able to address these issues by expanding the network to include other receptors and players of cell

cycle regulation, apoptotic pathways, or metabolic pathways. In the current study, we used the TCGA andCCLE

datasets after normalization of TPM value of the transcripts. Therefore, users need to reconsider data normaliza-

tion method when other methods such as microarrays or qRT-PCR are used.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-c-Myc (phospho S62) abcam Cat#ab51156

RRID:AB_869189

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technology Cat#7074S

RRID:AB_2099233

Chemicals, peptides, and recombinant proteins

DMEM (High Glucose) Nacalai Tesque Cat#08458-16

Fetal Bovine Serum Sigma-Aldrich Cat#F7524

Penicillin-streptomycin Nacalai Tesque Cat#09367-34

Deposited data

CCLE drug-response data Barretina et al., 2012 https://sites.broadinstitute.org/ccle/

CCLE RNAseq gene expression data

(read counts)

Barretina et al., 2012 https://sites.broadinstitute.org/ccle/

TCGA-BRCA gene expression data

(HTseq-Counts)

NIH GDC data portal https://portal.gdc.cancer.gov/

TCGA-COAD gene expression data

(HTseq-Counts)

NIH GDC data portal https://portal.gdc.cancer.gov/

TCGA-BRCA Somatic mutation

data – MuTect2

NIH GDC data portal https://portal.gdc.cancer.gov/

LINCS: Basal profile of receptor

tyrosine kinase signaling network

measured by ELISA

Niepel et al., 2013 https://lincs.hms.harvard.edu/niepel_

scisignal_2013/

HMS Dataset #20137

Experimental models: Cell lines

Human: MCF7 ATCC Cat#HTB-22; RRID:CVCL_0031

Human: BT-474 ATCC Cat#HTB-20

RRID:CVCL_0179

Human: SK-BR-3 ATCC Cat#HTB-30

RRID:CVCL_0033

Human: MDA-MB-231 ATCC Cat#CRM-HTB-26

RRID:CVCL_0062

Software and algorithms

Python 3.7.2 Python Software Foundation https://www.python.org

pasmopy v0.1.0 This paper https://github.com/pasmopy/pasmopy

biomass v0.5.2 Imoto et al., 2020 https://github.com/biomass-dev/biomass

numpy v1.19.2 Van Der Walt et al., 2011 https://numpy.org

scipy v1.6.2 Virtanen et al., 2020 https://scipy.org

pandas v1.2.4 pandas – Python Data Analysis Library https://pandas.pydata.org

seaborn v0.11.2 Waskom, 2021 https://seaborn.pydata.org

Julia 1.6.2 The Julia Programming Language https://julialang.org

BioMASS.jl v0.5.0 Imoto et al., 2020 https://github.com/biomass-dev/BioMASS.jl

R 4.0.2 The R Foundation https://www.r-project.org

TCGAbiolinks v2.18.0 Colaprico et al., 2016 https://bioconductor.org/packages/TCGAbiolinks/

sva v3.38.0 Zhang et al., 2020 https://bioconductor.org/packages/sva/

biomaRt v2.46.3 Durinck et al., 2009 https://bioconductor.org/packages/biomaRt/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Mariko Okada (mokada@protein.osaka-u.ac.jp).
Materials availability

This study did not generate new unique regents.

Data and code availability

d All code for model development, parameter estimation, simulations, and analyses are available at

https://github.com/pasmopy/breast_cancer. The Pasmopy core library can be found at https://github.

com/pasmopy/pasmopy.

d Pasmopy requires Python 3.7 or newer versions to run and can be installed from its source by download-

ing the code directly from the above GitHub link, or can be installed using the pip package install man-

ager with the following command:

d $ pip install pasmopy
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cell culture

MCF-7, BT-474, SK-BR-3, and MDA-MB-231 cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10 % fetal bovine serum (FBS).
METHOD DETAILS

Model development

The model used in this study is based on a systems of ODEs. Most of rate equations in the model were

derived by means of law of mass action. We applied the Michaelis-Menten equation and the Hill equation

for reactions describing (de)phosphorylation and transcription, respectively. The upstream signaling

network model included ErbB receptor activation, Ras-ERK cascade, and the Akt-PI3K pathway, which

was adapted from the model of Birtwistle et al. (Birtwistle et al., 2007) and integrated the process of c-

Myc regulation, which was newly constructed for this study. The resulting model has 319 rate equations,

228 species, and 648 parameters. In the original model, it was assumed that the route of membrane recruit-

ment does not affect the function of proteins and a ‘‘membrane-localized state’’ was introduced to reduce

the complexity of membrane recruitment. We did not use this expression but imposed parameter value

constraints. In the rate equation, we assumed that the kinetic parameter describing the binding of down-

stream proteins to an adaptor protein, e.g., Grb2 and Gab1, is identical regardless of how the adaptor pro-

tein is recruited to the membrane. To study how the upstream ERK and Akt activity control c-Myc induction

and activation, we added the process of c-Myc regulation so that ERK and Akt could activate and stabilize c-

Myc, respectively (Lee et al., 2008). The text file used in building this model is available at https://github.

com/pasmopy/breast_cancer/blob/master/models/erbb_network.txt.
Training datasets

We used time-series data on phosphorylated Akt, ERK, and c-Myc stimulated with EGF and HRG (eight

time-points, up to 120 min) obtained from four breast cancer cell lines (MCF-7, BT-474, SK-BR-3, and

MDA-MB-231). The datasets on phosphorylated Akt and ERK were obtained from a previous study (Imoto

et al., 2020). The time-course data of phosphorylated c-Myc were obtained in the current study (Fig-

ure S11). Before treatment with 10 nM EGF or HRG, the cells were synchronized by serum starvation

for 16 h. The cells were lysed with BioPlex Lysis buffer (Bio-Rad Laboratories, Hercules, CA, USA), cell

lysates were cleared by centrifugation (13,000 rpm, 15 min, 4 �C), and the total protein concentration

in the supernatants was determined using a protein assay reagent (Bio-Rad Laboratories, Hercules,

CA, USA). For Western blotting, anti-phospho-c-Myc (S62, ab51156) was purchased from Abcam (Cam-

bridge, MA, USA). We adopted the transfer and normalization methods described in previous studies

(Degasperi et al., 2014; Kiyatkin and Aksamitiene, 2009) to minimize transfer errors and variability be-

tween the blots.
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Parameter estimation

Of the 648 parameters such as kinetic constants and weighting factors, 220 were trained against the time

series phospho-protein data and cell-line-specific transcriptomic data obtained from the CCLE (Barretina

et al., 2012). Gene expression level information was used to individualize themaximal transcription rate and

nonzero initial conditions in each cell line. We used BioMASS.jl (ver. 0.5.0), which provides a Julia (ver. 1.6.0)

interface to the BioMASS parameter estimation. The parameters were trained using a global parameter

estimation method called Differential Evolution (DE) (Storn and Price, 1997) that minimizes the residual

sum of squares between experimental measurements and simulations. The optimization was stopped after

the objective function value dropped below 6.0. Using BioMASS.jl, the results for all 30 independent

parameter estimation runs were saved in the .dat format. For the original biomass framework in Python

to recognize and read the optimized parameters, these results were converted into the standard binary

file format in numpy (Van Der Walt et al., 2011).
Individualization of the mechanistic model

The gene expression profiles for each cell line or patient were incorporated through the followingmethods:

(i) When the initial amount of a species is zero and induced by upstream signals, e.g., duspmRNA and

c-myc mRNA:

The rate equation on transcription, v, is described by the Hill equation in our model:

v =
V$½TF�n
Kn + ½TF�n (Equation 1)

Where V is themaximal transcription rate, K is the concentration of transcription factor ([TF]) producing 50%

maximal response, and n is the Hill coefficient. In this case, the transcriptomic data was incorporated as the

maximal transcription rate, V, using the following equation:

V =
X
i

ai$xi (Equation 2)

Where x and a are the transcripts per million (TPM) value (relative log expression (RLE) normalized and

post-ComBat) and the corresponding weighting factor for a gene to estimate transcription rate,

respectively.

(ii) When the initial condition is not zero:

The transcriptomic data is used to estimate the initial value of protein, y0 via:

y0 =
X
i

bi$xi (Equation 3)

Where b is the weighting factor to estimate the initial amounts of model protein species.

In both cases, the weighting factors were estimated during model parameterization.
Data processing in transcriptomic data integration

The criteria for sample selection in the stratification of TCGA-BRCA and TCGA-COAD, i.e., upper age

limits, stages of cancer, and the range of patients’ total read counts, are described in Table 1.

TCGA-BRCA and TCGA-COAD RNA-seq samples were downloaded using R TCGAbiolinks (Colaprico

et al., 2016) version 2.18.0. The gene expression tables of HTSeq-based count retrieval were handled by

TCGAbiolinks: GDCquery command. This repository contained 1222 RNA-seq samples that have been

uniformly processed from row data. First, samples donated from patients over an upper age limit, patients

entering late stages of cancer, noncancerous solid tissue, and duplicated samples were filtered from the

data table.

The CCLE RNA-seq count matrix was downloaded from https://data.broadinstitute.org/ccle/CCLE_

RNAseq_genes_counts_20180929.gct.gz, and samples other than those obtained from breast cancer
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cell-lines were excluded from the data table. After merging these two matrices by ensemble gene ID, we

executed the R ComBat-seq program (Zhang et al., 2020) to adjust batch effects between the two datasets

(Yu et al., 2019). Because the total read counts among samples varied widely, samples with total reads less

than the lower bound (TCGA-BRCA/CCLE-BREAST: 40,000,000, TCGA-COAD/CCLE-BREAST: 10,000,000)

or greater than the upper bound (TCGA-BRCA/CCLE-BREAST: 140,000,000, TCGA-COAD/CCLE-BREAST:

160,000,000) among the adjusted datasets (Figure S1B) were excluded. After normalization of the library

size using the RLE method (Robinson and Oshlack, 2010), the count matrix was normalized using the

TPM method. The gene lengths used in the TPM calculation (Wagner et al., 2012) were the differences

between the start and end positions of each gene on the chromosomes retrieved from the R biomaRt

package (Durinck et al., 2009) version 2.46.3.

To predict the ErbB signaling dynamics of the TCGA-COAD samples, we reused the parameter sets

optimized in the breast cancer model (TCGA-BRCA). Since the normalized TPM values of 38 genes in

four cell lines (MCF-7, BT-474, SK-BR-3, and MDA-MB-231) in the TCGA-BRCA: CCLE-BREAST matrix, X,

are different from those in the TCGA-COAD: CCLE-BREAST matrix, Y, the values were transformed by

multiplying a scaling factor, Fi, for ith gene to reproduce the experimental observations in the four breast

cancer cell lines. Fi is calculated using the following equation:

Fi =
max

i
Xi; fMCF7; BT474; SKBR3; MADMB231g

max
i

Yi; fMCF7; BT474; SKBR3; MADMB231g
(Equation 4)

Clustering breast cancer patients with gene expression level

After removing genes with zero expression levels in more than half of the samples from the log2-trans-

formed matrix, the p-values between the cluster 1 and cluster 2 samples were calculated using Student’s

t-test. The q-values (FDR threshold: 0.05) were estimated from the p-values with the R-value package

(ver 2.22.0), and genes with a value less than 0.05 were designated as differentially expressed genes

(DEGs). For clustering based on gene expression, the expression levels of all genes were log2-transformed

and then clustered by the expression level of a given gene (genes in the model, PAM50 genes, DEGs) using

the k-medoids method.
Gene mutation analysis

Mutation Annotation Format (MAF) file used to store somatic mutations per sample were summarized,

analyzed, and visualized using the maftools Bioconductor package. The GDCquery_Maf() command of

TCGAbiolinks was used to obtain the MAF file of TCGA-BRCA detected by the MuTect2 pipeline (Cibulskis

et al., 2013). After extracting the patient information used for our clustering, we used the oncoplot()

command to plot the mutations of the genes used in the model.
Extraction of response characteristics

Pasmopy provides the following response characteristics to classify personalized simulations: ‘‘max,’’

‘‘AUC,’’ and ‘‘droprate.’’ Themaximum and time-integrated responses are calculated using the numpy.max

and scipy.integrate.simpson functions, respectively. The rate of decline (‘‘droprate’’), r, is defined as

follows:

r = � ðAend � AmaxÞ
ðTend � TmaxÞ (Equation 5)

Where Tend and Tmax are simulation end time (120 min) and time to reach maximum level, respectively. Tmax

was calculated with the numpy.argmax function. Aend and Amax denote the normalized simulated values at

120 min and Tmax, respectively.

We applied the maximum value of simulated dynamics for both EGF and HRG stimulation to classify

samples. After calculating the standard score (z-score) of each feature, the patients were classified based

on the Euclidean distance of each patient using the k-medoids method. The prognostic score of each

patient was given as n, where n is the score of patients who deceased within n-1 to n years, and 20 is the

score of patients who were alive.
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Sensitivity analysis

The sensitivity coefficients Sy were calculated using the following equation:

Sy = v ln M
.
v ln yj (Equation 6)

Where M is the signaling metric, i.e., the maximum level of phosphorylated c-Myc with EGF stimulation,

and yj is each nonzero species in the mechanistic model (Schoeberl et al., 2009). The sensitivity coefficients

were calculated using finite difference approximations with 1 % changes in the initial conditions. To

calculate sensitivity coefficients, we used the PatientModelAnalyses class in Pasmopy version 0.1.0 with

the biomass_kws={‘‘metric’’: ‘‘maximum’’, ‘‘style’’: ‘‘heatmap’’} options.

In this study, the maximum value of EGF-induced c-Myc activation during the observation time from 0 min

to 120 min was collected for the following analysis.
Drug response data analysis

Thedrug response andgeneexpressiondata from theCCLEweredownloaded fromhttps://data.broadinstitute.

org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv and https://

data.broadinstitute.org/ccle/CCLE_RNAseq_genes_counts_20180929.gct.gz, respectively. First,RNA-seqcount

datasets from theCCLEwerenormalizedusing theTPMmethodafter the library sizeof all sampleswasconverted

with the RLE method. To study the effect of EGFR inhibitors on cancer cells, we used cell lines with high EGFR

expression ratios relative to other ErbB receptor families (ErbB2, ErbB3, and ErbB4) by setting the minimum

EGFR expression level to the median of all cell lines. Next, we divided the cell lines into three groups: (i) high

(top 30 EGFR expression ratios), (ii) low (bottom 30), and (iii) middle (the other 169 cell lines). The efficacy and

potency of a drug were simultaneously quantified by the ‘‘activity area’’ (Barretina et al., 2012), whose values

were extracted from the column: ‘‘ActArea’’ in the drug response data. We used pandas v1.2.4 for loading

data, scipy (Virtanen et al., 2020) v1.6.2 for the statistical test, and seaborn (Waskom, 2021) v0.11.2 for data

visualization.
QUANTIFICATION AND STATISTICAL ANALYSIS

The p-values were calculated using the Brunner-Munzel test with a significance level of 0.05 using

scipy.stats.brunnermunzel() and brunnermunzel() in Python and R, respectively. Details of the statistical

methods can be found in the figure legends. The p-values in the survival curve were calculated using

the log-rank test with a significance level of 0.05 using survival package version.3.2.13 in R.
18 iScience 25, 103944, March 18, 2022

https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv
https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv
https://data.broadinstitute.org/ccle/CCLE_RNAseq_genes_counts_20180929.gct.gz
https://data.broadinstitute.org/ccle/CCLE_RNAseq_genes_counts_20180929.gct.gz

	A text-based computational framework for patient -specific modeling for classification of cancers
	Introduction
	Results
	Development of Pasmopy: a scalable computational toolkit for patient-specific modeling
	Using transcriptomic data to personalize the mechanistic model
	Stratification of patients with TNBC based on signaling dynamics
	Identification of the mechanisms affecting patient prognosis
	Applying model-based stratification to other types of cancer

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental models and subject details
	Cell culture

	Method details
	Model development
	Training datasets
	Parameter estimation
	Individualization of the mechanistic model
	Data processing in transcriptomic data integration
	Clustering breast cancer patients with gene expression level
	Gene mutation analysis
	Extraction of response characteristics
	Sensitivity analysis
	Drug response data analysis

	Quantification and statistical analysis



