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ABSTRACT: Selection and application of protein inference algorithms can have a
significant impact on the data output from tandem mass spectrometry (MS/MS)
experiments. However, this critical step is often taken for granted, with many studies simply
utilizing the inference method embedded within the end-to-end software pipeline employed
for analysis without consideration of the particular algorithm’s suitability for the experiment
at hand or its effects on the resulting data. Although many individual inference algorithms
have been demonstrated, few unified tools are available that allow the researcher to quickly
apply a variety of different inference algorithms to meet the needs of their analysis, are
agnostic of other tools in the analysis pipeline, and are easy to use for the bench biologist.
PyProteinInference provides a comprehensive suite of tools that enable researchers to apply
different inference algorithms and compute protein-level set-based false discovery rates
(FDR) from MS/MS data through a unified interface. Here, we describe the software and its
application to a traditional protein inference benchmarking data set and to a K562 whole-cell
lysate to demonstrate its utility in facilitating conclusions about underlying biological mechanisms in proteomic data.
KEYWORDS: Protein Inference, Proteomics, Mass Spectrometry, Python

■ INTRODUCTION
Advances in tandem mass spectrometry (MS/MS) for
proteome-level research have driven many novel insights in
basic biology and disease.1 In a typical bottom-up mass-
spectrometry-based proteomics experiment, the protein
component of interest is first proteolytically digested into
constituent peptides for easier analysis by mass spectrometry.
This step produces peptides that are more amenable than
intact proteins to high-throughput analysis; however, it comes
at a cost, severing the relationship between the peptide and its
original protein. As this linkage is no longer maintained, it
must instead be inferred computationally after the collected
mass spectra are matched to their generative peptides using
popular algorithms such as MSFragger,2 DIA-NN3 or Comet.4

This process of protein inference attempts to reassemble
peptides into a list of proteins thought to be present in a
sample. While peptide-spectral matching approaches are well
established and rely on data provided by ion masses generated
during peptide fragmentation, the digestion of proteins into
peptides during sample processing leaves behind scant
evidence that can be used to determine the original
relationships necessary for data interpretation. Thus, despite
being a well-described problem for over 20 years,5,6 protein
inference is still a challenging area of active research.

Multiple algorithms to perform protein inference have been
developed in response to this challenge, including Protein
Prophet,7 Fido,8 PIA,9 and Percolator Protein Inference.10

These tools typically provide mutually exclusive, widely varying
approaches to inference and scoring which are also data set-
dependent. Different combinations of factors, including
sequence overlap or others which may not be predictable a
priori, greatly alter the sensitivity of the results by influencing
how peptides are mapped and which proteins are ultimately
reported. In addition to multiple inference assignment
methods, differences in protein scoring approaches can also
lead to differences in the results.10 While multiple comparisons
between methods have been reported,11−13 there is no clear
consensus on a singular approach with the best performance, as
ultimately the choice of algorithm is not simply to maximize
the number of proteins identified or to produce a more
conservative result but dependent upon the aims of the
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hypothesis being studied. For example, an approach selected
for a global profiling experiment may not be appropriate for a
focused protein−protein interaction study.14 The ability to
quickly apply and compare multiple protein inference
approaches can be critical to understand mechanistic relation-
ships, especially in the context of experiments where sequence
similarity of potential biological drivers could obscure results
and a thorough consideration of the peptide evidence present
for each protein is necessary.

For those not well-versed in the nuanced difference between
approaches, this can lead to the use of a “one size fits all”
approach of applying default methods included alongside
search algorithms, without consideration for their effects on
the resulting data and its suitability to answer the biological
questions raised. Beyond scientific considerations, the facile
usage and comparison of different methods can be difficult due
to varying requirements for installation, input, configuration,
and output of multiple algorithms, making comparisons
between different approaches time-consuming and beyond
the reach of many biologists.

To address this need, we implemented pyProteinInference, a
standalone, lightweight software tool to easily apply multiple
protein inference algorithms and associated protein level set-
based false discovery rate determinations dissociated from any
particular proteomic pipeline or analysis suite yet widely
compatible with various proteomic data formats. The software
has been implemented as a cross-platform package written in
Python that provides a streamlined, easy-to-use graphical user
interface to apply multiple protein inference algorithms and
can be run on any modern computing system, from individual
workstations to high-performance cloud computing environ-
ments. The application does not require the installation of any
other software or platforms, is permissively licensed for
commercial and noncommercial use, accepts common input
formats, and presents a consistent output, with the aim of
assisting the biologist in matching the appropriate inference
approach with their data set. The application can also be run as
a standalone command line tool for easy integration into larger
modular analysis pipelines, using common tools like
Cromwell15 or NextFlow.16 Here, we introduce the open-
source software and present it in the context of both a
benchmarking data set and whole cell lysate analysis, which is
representative of many proteome-wide analysis experiments,
utilizing both to highlight the application of the algorithm and
to illustrate the differences in resulting protein sets generated
from the different algorithms and summarization methods, and
considerations for their use.

■ EXPERIMENTAL PROCEDURES

Implementation of pyProteinInference

PyProteinInference utilizes a standardized workflow (Scheme
1) to quickly apply multiple protein inference methods,
contained in an easily installed Python package or binary
executable from GitHub at https://github.com/thinkle12/
pyproteininference, where the application source code, user,
and developer documentation are also available. The code is
free for commercial and noncommercial usage under the
permissive Apache 2.0 license and has no external depend-
encies other than the internal use of several Python libraries
within the code. The library supports most common input
formats including Percolator-generated tab-separated values
output17 and support for the multiple XML-based formats,18

including idXML, mzIdentML (mzID), and pepXML, as well
as accepting generic tabular input. The graphical user interface
provides a form-based configuration of multiple options and
allows selection of the inference approach, scoring approach,
input results and optional fasta database files, output file, and
execution of the program. Options are documented within the
program and within the user documentation on GitHub.
Configuration can also be provided via a YAML file, and the
algorithm can be called from the command line, ideal for use as
part of larger, automated workflows.

PyProteinInference can perform four different protein
inference methods including parsimony,19 inclusion, exclu-
sion,13 and peptide-centric.20 For each method, input is first
ingested through an XML-based file (including pepXML,
mzIdentML, and idXML) or one or more tab-delimited files;
these tab-delimited files can be in Percolator result format
(including support for combined or separate target-decoy
searches). PyProteinInference also has internal support for
other custom tab-delimited formats. An optional fasta file
containing the sequence database used for the search can be
supplied and can be used to provide alternative protein
mappings if they were not supplied by the search engine or
PSM filtering algorithm (or in addition to the mappings
provided in the results). If multiple PSMs are provided for the
same spectrum, the top-ranked hit is chosen based on the user-
selected score (defaulting to posterior error probability). PSMs
can then be filtered by any of the posterior error probability, q-
value, minimum peptide length, or any user-supplied score.
Inference algorithms were reimplemented de novo from their
original descriptions19,20 within Python. PyProteinInference
recalculates protein-level false discovery rates based upon a
variety of protein set scoring transformations of individual
peptide scores (e.g., posterior error probability, q-value, or any
custom score): multiplicative log, best peptide per protein, top
two combined (multiplicative log of the top two PSM scores
per protein), geometric mean, iterative down weighted log,
down weighted multiplicative log, and simple additive. Ranked

Scheme 1. PyProteinInference Workflow
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scores are used to derive protein-level set-based false discovery
rates through an iterative approach. Protein sets are reported
according to the method used: inclusion sets include all
possible mappings, exclusion sets consist of the single unique
mapping, parsimony reports a group lead, and peptide-centric
reports back groups as defined by its approach. More detailed
information including all parameter options and more in-depth
inference algorithm descriptions can be found in the package
documentation.

PyProteinInference can be installed as a package for software
developer use using standard Python methods (pip via pyPI)
or via a standalone binary hosted on GitHub. It runs on any
modern Windows, Linux or Mac system with 8 GB of memory;
memory requirements scale with the size of the protein
database (if supplied) and the number of PSMs and have been
tested with over 200,000 filtered PSMs and over 50 instrument
analyses. Source code and package documentation is available
at: https://github.com/thinkle12/pyproteininference.
Validation of pyProteinInference Algorithms Using
Protein Epitope Signature Tags (PrESTs)

To validate the performance of the algorithmic implementa-
tions within pyProteinInference, the benchmarking PrEST data
set reported by The et al.13 was downloaded from PRIDE
(PXD008425; https://proteomecentral.proteomexchange.org/
cgi/GetDataset?ID=PXD008425). Triplicate raw data files for
each mixture (A, B, A+B) were converted to mzML and PSMs
were assigned using Comet (v2023.1)4 using a concatenated
target-decoy (generated from reversed target sequences)
database consisting of the union of the protein fragments
from mixture A, mixture B, along with 1000 representative
entrapment sequences as in the original publication. The
Comet search used a peptide mass tolerance of 20 ppm, a
fragment bin tolerance of 1.0005 Da, a fragment bin offset of
0.4 Da, and tryptic enzyme specificity with up to 2 missed
cleavages. For modifications, a static cysteine carbamidomethyl
(+57.02) modification and variable methionine oxidation
(+15.99) modification were used. PSM data was then filtered
at the peptide level only using Percolator (v3.1.0) via the
OpenMS PercolatorAdaptor18 with target-decoy competition
and q-value scoring, test and training peptide-level FDRs of
0.01, and up to 10 iterations, which was then used as input to
pyProteinInference (v1.1.1). Results were generated utilizing
four inference options (inclusion, exclusion, parsimony, and
peptide-centric) with posterior error probability as the PSM
score, with best-peptide-per-protein as the protein score, and
all PSMs from the Percolator results (Table S1). PrEST
numbers were generated for the “A” PrEST set as well as the
“A+B” PrEST set, as previously described. Entrapment FDR
statistics at a 5% EFDR and comparative inference plots were
generated using a python script (https://github.com/
thinkle12/pyProteinInferenceReAnalysis/blob/main/prest/
proteoform-standard/generate_prest_report.py) slightly modi-
fied f rom the or ig ina l a t h t tps ://g i thub . com/
statisticalbiotechnology/proteoform-standard to compare
PrEST protein sets generated with pyProteinInference
algorithms to protein sets previously reported using the best-
peptide-per-group scoring method.
Validation of pyProteinInference Algorithms Using K562
Whole Cell Lysate

For algorithm validation of pyProteinInference, 0.5 μg of K562
whole cell lysate (Promega, Madison WI; Catalog #V6951 was
loaded into a 25 cm × 75 μm ID, 1.6 μm C18 IonOpticks

Aurora Series column (IonOpticks, AUR2-25075C18A) on a
Thermo UltiMate 3000 high-performance liquid chromatog-
raphy (HPLC) system (Thermo Fisher Scientific) at a flow
rate of 400 nl min−1. Peptides were separated with a 45 min
gradient of 2% to 35% buffer B (98% ACN, 2% water, and
0.1% FA) at a flow rate of 300 nl min−1. The gradient was then
raised to 75% buffer B for 5 min and to 90% buffer B for 4 min
at the same flow rate before final equilibration with 98% buffer
A (98% water, 2% ACN and 0.1% FA) and 2% buffer B for 10
min at a flow rate of 400 nl min−1. Peptide mass spectra were
acquired using an Orbitrap Fusion Lumos (Thermo Fisher
Scientific) with an MS1 Orbitrap resolution of 240,000 and
MS/MS fragmentation of the precursor ions by collision-
induced dissociation (CID), followed by spectra acquisition at
an MS2 Orbitrap resolution of 15,000. PSMs were assigned
with Comet (v2023.1)4 as described above, however, with the
use of the concatenated target-decoy (generated from reversed
target sequences) database of human proteins from the
UniProt Homo sapiens reference proteome (UP5640) consist-
ing of SwissProt, TrEMBL, and matching varsplic isoform
sequences along with common contaminants (release
2024_05; consisting of 20,434 SwissProt, 22,088 isoform,
62,441 TrEMBL and 75 contaminant entries for 105,038 target
sequences in total). The Comet search used a peptide mass
tolerance of 20 ppm, a fragment bin tolerance of 1.0005 Da, a
fragment bin offset of 0.4 Da, and tryptic enzyme specificity
with up to 2 missed cleavages. For modifications, a static
cysteine carbamidomethyl (+57.02) modification and variable
methionine oxidation (+15.99) modification were used. PSM
data was then filtered at the peptide level only using Percolator
(v3.1.0) via the OpenMS PercolatorAdaptor18 with target-
decoy competition and q-value scoring, test and training
peptide-level FDRs of 0.01, and up to 10 iterations, which was
then used as input to pyProteinInference (v1.1.1).

PyProteinInference results were generated utilizing three
inference options for which comparator software was available
(inclusion, exclusion, and parsimony) with the posterior error
probability as the PSM score and all PSMs from the Percolator
results (Table S2). For method validation, inclusion results
were obtained from PIA’s9 (v1.4.5) “report all” method along
with parsimony results from its Occam’s Razor algorithm9

(accessed from within KNIME v4.5.3), while exclusion results
were generated using Percolator Protein Inference (v3.07.1)10

(Table S3).
The raw data file, fasta database, search result files and

pyProteinInference inputs and outputs for the K562 data set
described in the text above can be found in the UCSD
MassIVE repository at https://doi.org/doi:10.25345/
C5KW57N8X with accession number MSV000089698, along
with PrEST search results generated for this analysis.

■ RESULTS AND DISCUSSION

Protein Inference Method Comparison to Existing
Benchmarks

Each protein inference approach coalesces peptide-level data
into a report of proteins or protein groups (in addition to
peptide mappings) via different algorithms, influencing which
proteins are output in final reports and providing differing
“best guesses” that approximate the true protein component of
the original sample (Figure S1). Exclusion provides the most
conservative estimate, excluding all nonglobally unique
peptides from further analysis and ensuring that each protein
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has at least one distinguishable peptide to support its presence.
Parsimony maps all of the peptides to a minimal set of proteins
able to fully explain the results, without discarding any peptide
data; peptide-centric assigns peptides to all possible proteins
and then reduces redundancy by coalescing peptides into
groups of proteins that map to the exact same set of peptides.
These two methods differ in that parsimony minimizes the
number of proteins reported, while the peptide-centric
approach creates groups of peptides which match to one or
more of the same proteins but cannot distinguish between
them. The most permissive method, inclusion, assigns peptides
to all possible proteins without regard to redundancy. In
addition to multiple inference assignment methods, differences
in protein scoring approaches can also lead to differences in the
results.10 Thus, pyProteinInference implements an exhaustive
set of seven protein scoring algorithms including common
approaches such as multiplicative log, best peptide per protein,
iterative down weighted log, down weighted multiplicative log,
top two combined, geometric mean, and simple additive. While
these methods are not a comprehensive catalog of all of the
inference methods reported in the literature, they were chosen
due to their diversity of representation.

To validate the performance of the inference algorithms
implemented within pyProteinInference and to highlight the
differences in outcomes between the different protein inference
methods, we compared the number of identified proteins at
specified protein false discovery rates (FDR) between each
protein inference method integrated into pyProteinInference
using two different methodologies: a comparison to published
benchmarks of clean-room implementations of the methods
using recombinant protein fragments (PrESTs)13 and to real-
world implementations of algorithms within popular stand-
alone tools in the context of a whole-cell K562 lysate
mimicking a common proteome-wide analysis experiment.

To test the performance and validity of the protein inference
methods integrated into pyProteinInference, we compared the
number of significant proteins identified at a 5% entrapment
false discovery rate from pyProteinInference for all four
methods (parsimony, inclusion, exclusion, and peptide-centric
using a best-peptide-per-protein score) to the PrEST results
(sets “A” and “A+B”) generated in Table 1 of The et al.13

(Table 1, Figure S2). PyProteinInference shows strong
concordance with the previously published benchmarks,
differing by less than 1.68% in all methods except for
parsimony for the A set, where the difference was
approximately 4.19%. Some variance may be expected due to

reanalysis of the raw benchmark data with different versions of
search and filtering algorithms than in the original study.

To compare the performance of pyProteinInference as a
unified alternative for popular implementations of the available
algorithms, we analyzed a whole-cell lysate K562 data set with
pyProteinInference alongside results from PIA9 and Percolator
Protein Inference.10 Examining the individual methods, we see
that inclusion identifies the most proteins in the K562 data set
(19,026) followed by peptide-centric (14,864), parsimony
(4,142), and finally exclusion (1,056), which identifies the
fewest proteins at a 1% FDR. Each method identifies
measurably different numbers of proteins at an identical
FDR. As expected, we observed the most restrictive method to
be exclusion followed by parsimony, peptide-centric, and
finally inclusion, being the least restrictive method. While the
different methods may have considerable similarity in the
number of proteins reported overall, they are not identical. Full
overlap of proteins between the different inference methods
can be found in the UpSet plot in Figure 1. These differences
are not unexpected given the different ways in which each
method maps peptides to proteins and leads to different
significant proteins (at a 1% FDR) being identified depending
on the protein inference method used, especially in the case of
highly similar proteins (such as isoforms or computationally
annotated sequences from TrEMBL). These differences
highlight the necessity of choosing an appropriate inference
method tailored for the system under study, which should not
depend on maximizing the number of proteins identified but
rather on validating the biological hypothesis being tested.
More stringent methods such as exclusion and parsimony can
produce higher overall specificity necessary for validating
specific mechanistic models with small, nonredundant data-
bases, while the more permissive results generated within the
peptide-centric approach may be more appropriate for
screening-based approaches; inclusion methods, while not
generally suitable as a representation of the likely set of
proteins identified, may still be useful to understand the
mapping of individual PSMs to different proteoforms, critical
for the study of specific protein interactions. Given the
differences in the number of proteins identified between
different inference methods and the measurable set differences
between protein inference methods, the flexibility of employing
alternative protein inference approaches beyond those bundled
with other toolsets is readily apparent.

To compare the implementations of inference approaches in
pyProteinInference compared to corresponding published
tools, FDR correlation plots of the K562 data set were
generated. FDR correlation plots (Figure S3A−C) show our
implementations to be in agreement with published algorithms.
Spearman correlations for FDR values up to 0.20 (20%) across
proteins were computed between data generated from the
pyProteinInference inference methods and the data generated
from the comparator published protein inference tools and
were approximately 0.99 for each comparison. We also
compared the overlap of proteins identified in our results
against those obtained from previously published tools at a 1%
protein FDR (Figure S3D−F), a commonly applied protein
FDR in many proteomic experiments. Percent overlap between
pyProteinInference and the comparator algorithms exceeded
99% across all comparisons at a 1% FDR. All algorithms in
pyProteinInference performed virtually identically to imple-
mentations currently available; the minor differences observed
between pyProteinInference and other implementations may

Table 1. Results of PrEST Benchmark Analysis Showing the
Number of PrESTs Identified at a 5% Entrapment FDR
from pyProteinInference Results and the Results Generated
by The et al.13

Inference
Principle

The et
al.

2019 −
A

The et
al. 2019
− A+B

pyProteinInference
− A

pyProteinInference
− A + B

Anticipated #
PrESTs

191 ×
1.05
= 201

382 ×
1.05 =
401

191 × 1.05 = 201 382 × 1.05 = 401

Inclusion 0 395 0 395
Exclusion 185 355 186 361
Parsimony 174 365 167 368
Peptide
Centric

NA NA 190 337
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be attributed to differences in filtering (e.g., based on
minimum score or peptide length) in addition to the stochastic
nature of some aspects of the algorithms themselves (i.e.,
choosing randomly between two assignments of equal weight).

Beyond the implementation of the most popular protein
inference algorithms within a single tool, the overall aim of
pyProteinInference is to make these methods easily accessible
to bench biologists, computational scientists, and scientific
software developers alike. The tool can be downloaded and run
as a standalone executable program with a graphical user
interface for ease of use and can also be run from the command
line or via Docker container for easy incorporation into large-
scale analysis pipelines. Finally, as a Python package,
pyProteinInference can be used as a library to enable inference
approaches as part of other scientific software.

■ CONCLUSIONS
PyProteinInference is a comprehensive software package that
implements multiple inference methods for tandem MS/MS
data in a single interface, for biologists and computational
analysts alike. By providing a single unified set of tools for
inference analysis and FDR summarization methods, pyPro-
teinInference provides an easy-to-use standalone software set
that can be used in conjunction with a variety of search
methods, including both data-dependent and data-independent
approaches. By following the Unix Philosophy of minimalist,
modular development,21 it requires no additional dependencies
or larger frameworks to be installed, making it a portable and
flexible approach that can be run on a single desktop or as part
of automated analysis pipelines. This makes it stand apart from
other software tools which may be tied to specific data formats,
including vendor provided software such as Proteome
Discoverer (ThermoFisher Scientific, Waltham, Massachu-
setts), difficult for the average user to install and configure, or

incorporate inference into larger application suites for
reanalysis of data or integration of multiple search results
(e.g., PeptideShaker,22 PIA9). By providing a powerful,
integrated tool with a low barrier to entry, pyProteinInference
helps researchers maximize understanding of their proteomics
data sets and their application to interrogate both biology and
disease.

■ ASSOCIATED CONTENT
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PyProteinInference can be installed using pip. Source code is
available at: https://github.com/thinkle12/pyproteininference
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Figure 1. Upset plot showing the overlap of identified proteins at a 1% protein false discovery rate (FDR) from the K562 whole cell lysate data set.
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the X axis. Peptide-centric protein groups are expanded out to individual proteins to facilitate comparisons to other methods that only output
protein group leads; individual methods show total counts for comparison purposes (not only counts unique to the method).
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