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The immunological events leading to type 1 diabetes (T1D) are complex and

heterogeneous, underscoring the necessity to study rare cases to improve our

understanding. Here, we report the case of a 16-year-old patient who showed

glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D,

autoimmune thrombocytopenic purpura (AITP), and common variable

immunodeficiency (CVID) were diagnosed. The patient underwent low carb

diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20

monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis

to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis
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manifested 4 years after diagnosis and was managed with prolonged antibiotic

treatment. In the fifth year of monitoring, the patient progressed to insulin

dependency despite ZnT8A autoantibody resolution and IA-2A and GADA

autoantibody decline. The patient had low T1D genetic risk score (GRS =

0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8.

Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a

gene encoding B-cell activating factor receptor (BAFFR). Significant reduced

blood B-cell numbers and BAFFR levels were observed in line with a

dysregulation in BAFF–BAFFR signaling. The elevated frequency of PD-1+

dysfunctional Tfh cells composed predominantly by Th1 phenotype was

observed at disease onset and during follow-up. This case report describes a

patient progressing to T1D on a BAFFR-mediated immunodysregulatory

background, suggesting a role of BAFF–BAFFR signaling in islet-specific

tolerance and T1D progression.
KEYWORDS

type 1 diabetes (T1D), common variable immunodeficiency (CVID), BAFFR mutation,
islet autoimmunity, circulating T follicular helper cells (cTfh)
Introduction

Type 1 diabetes (T1D) is a disease of multifactorial origin

caused by the autoimmune destruction of insulin-producing

pancreatic b cells. Several immune players have been identified

as contributors to the disease immunopathogenesis, involving

both the innate and adaptive arms of the immune system (1–3).

T cells seem to play a dominant role during the disease

pathogenesis and are directly involved in the pancreatic b-cell
killing. The possible role of B cells and autoantibodies (AAbs) in

T1D remains elusive, which are thought to act mainly as

antigen-presenting cells. Islet-specific AAbs—such as glutamic

acid decarboxylase 65 (GAD65), insulin, the tyrosine

phosphatase–like autoantigen IA-2, or the ZnT8—are the most

reliable biomarkers for disease diagnosis and prediction (4, 5).

Today, T1D patients can be subdivided into three stages based
ne thrombocytopenic
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le immunodeficiency;
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on the presence of islet-specific AAbs and impaired glucose

tolerance: stage 1 T1D, with individuals positive for at least two

islet-specific AAbs and no metabolic dysregulation; stage 2 T1D,

with individuals who developed impaired glucose tolerance; and

stage 3 T1D, with individuals with multiple AAb-positive and

fasting hyperglycemia (clinical diabetes) (6, 7)

A poorly defined interaction between genetic and

environmental factors underlies T1D pathogenesis. HLA

accounts for the majority of T1D genetic risk, whereas single-

nucleotide polymorphisms (SNPs) in non-HLA genes, such as

INS, PTPN22, IL2RA, IFIH1, and CTLA4, are considered

additional contributing genetic factors (8, 9). Recently, several

T1D genetic risk scores (GRSs) have been developed based on

HLA and non-HLA T1D-risk genes (30-97 SNPs). These scores

can discriminate T1D from type 2 diabetes (T2D), monogenic

diabetes from T1D, and monogenic autoimmunity from early

onset T1D associated with poly-autoimmunity (10, 11).

Common variable immunodeficiency (CVID) is a

heterogenous disease classified as predominantly antibody

deficiency (12), with a broad variety of clinical spectrum,

characterized by low levels of immunoglobulins (Ig) and failure

to produce antigen-specific antibodies with a normal or low levels

of B cells and different involvement of cellular immunity. Reduced

B-cell counts, isotype-switched B cells (13, 14) and plasmablasts

(15) have been described in individuals affected by CVID. In

addition, several T-cell defects have been described that often

account for the failed B-cell helper support occurring in germinal

centers (GCs) (16–19). Patients with CVID often present

autoimmune manifestations, mainly autoimmune cytopenia and

inflammatory bowel disease (20). T1D in CVID has been
frontiersin.org
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described in a handful of reports, but the underlying mechanism

and genetic causes remain unknown (21). In this study, we report

a patient who at 16 years of age was diagnosed with stage 2 T1D

and CVID. Genetic analyses identified a monoallelic mutation in

the B-cell activating factor receptor (BAFFR). T1D GRS analysis

showed a reduced risk for T1D, suggesting that the identified

BAFFR mutation together with other factors, genetic, and

environmental determined the progression to T1D.
Case description

A healthy 16-year-old man with a Caucasian ethnic

background underwent a medical visit for a pre-participation

sport evaluation. As part of the checkup, urinalysis was

performed, resulting positive for glycosuria (99 mg/dl) but

negative for ketones. Biochemical analysis revealed the

presence of prediabetes (FPG 120 mg/dl, HbA1c 42 mmol/

mol) associated with mild thrombocytopenia (89,000/µl) and

microcytemia (MCV 78 fl) that was treated with iron

supplementation for 1.5 months. Of note, glycosuria (252 mg/

dl), not further addressed, and a platelet count at the lower limit

of normal (166,000/µl) were present at the age of 12 years,

according to his medical records. Stage 2 T1D was diagnosed by

the presence of three islet AAbs (IA-2, GADA, and ZnT8A),

dysglycemia (FPG 101 mg/dl, HbA1c 40 mmol/mol), glucose

intolerance (FPG 309 mg/dl at 2-h 75-g Oral Glucose Tolerance

Test (OGTT)), and a partially impaired insulin secretion (fasting

insulin and C-peptide: 15.45 mU/L and 1.85 ng/ml; 2-h 75-g

Oral Glucose Tolerance Test insulin and C-peptide: 47.52 mU/L

and 3.46 ng/ml). Family history included autoimmune

Hashimoto’s thyroiditis (treated with levothyroxine) (father),

anti-thyroid peroxidase antibodies (younger brother), and

T2DM (maternal grandmother). No signs of celiac disease,

atrophic gastritis, or autoimmune thyroid disease were found

in the patient. A low-carb diet was recommended with a

consequent decline in weight (> 8 kg in a 3-month period)

and blood glucose normalization. Concomitant to stage 2 T1D,

immune thrombocytopenia (ITP) (PLT 47,000/µl, anti-PLT

antibodies positive), and hypogammaglobulinemia (IgG: 323

mg/dl; IgM: 21 mg/dl; IgA: 48 mg/dl) were diagnosed (22).

Bone marrow biopsy excluded any lymphoproliferative diseases

confirming the ITP diagnosis. Microbiological analysis and EBV

serology were negative, except for low copies of HHV6 and

Parvovirus B19 in the bone marrow. Two months later, the

patient was hospitalized for severe immune thrombocytopenia

(platelets: 20,000/µl), which was treated with high-dose

intravenous immunoglobulin (IVIg) with a good response.

During hospitalization, hypogammaglobulinemia was

confirmed (IgG: 344 mg/dl; IgM: 33.10 mg/dl; IgA: 6.92 mg/

dl). Immunological investigations showed mild lymphopenia

with an increase in memory T-cell subsets and alteration in B-

cell maturation, with low memory B-cell frequencies, absent
Frontiers in Immunology 03
switched memory B cells, and low/absent antigen-specific T-cell

responses. In the same year, the patient had experienced

recurrent tonsillitis, but his past medical history was negative

for severe or recurrent infections, with the exception of

laryngospasm episodes in pre-scholar age. Consequently, after

excluding other secondary causes and considering the

persistence of hypogammaglobulinemia, a clinical diagnosis of

CVID was made and he started IVIg replacement therapy.

During a 5-year follow-up, he did not experience any ITP

relapses and his platelet count remained stable between 100,000

and 150,000/µl.

Two years after CVID and T1D stage 2 diagnosis, the patient

was admitted to the hospital for asymmetric axonal sensitive

polyneuropathy, probably triggered by CMV infection, which

was managed with high-dose IVIg, RTX, Pregabalin, and

Duloxetin. Steroids were not considered due to his

comorbidities (pre-clinical diabetes and hypertension).

Neurological improvement occurred with a mild persistence of

sensitive alterations.

Two years later, an atypical mycobacterial pulmonary

infection associated with generalized lymphadenopathy and

worsening splenomegaly was discovered and treated with long-

time pluri-antibiotic therapy.

The patient remained insulin free for 4 years after the initial

prediabetes diagnosis when the dysglycemia evolved into stage 3

T1D (at 21 years of age) marking the start of insulin therapy.

Despite receiving three doses of the anti–SARS-CoV-2

vaccine (the last dose in December 2021) and showing a good

humoral and cellular response (23), the patient was infected by

SARS-CoV-2 virus in April 2022 and experienced a

paucisymptomatic clinical course without the necessity of

additional therapies and viral clearance in 15 days. Currently,

the patient is on subcutaneous Ig replacement therapy (20 gr/28

days) and insulin Glargine 20 UI/day.
Timeline

The complete timeline from the time of diagnosis (07/2016)

to now is shown in Figure 1.
Genetic assessment

The index patient underwent genetic screening by whole

exome sequencing (WES). A monoallelic mutation in BAFFR

(H159Y) was identified and confirmed by Sanger sequencing.

The mother carried the wild-type allele, whereas the father

carried the same mutation. Additionally, T1D GRS was

calculated by typing 30 common HLA and non-HLA genetic

variants associated with T1D, as previously described (10). The

index patient did not have a T1D-risk HLA (X/X for DR3/DR4-

DQ8) and his T1D GRS score was 0.22817 (Figure 2A).
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Moreover, the monoallelic mutation in BAFFR was associated

with reduced gMFI BAFFR expression on the B cell, Tfh, and T

regulatory cell (Treg) surface as compared with HC. BAFFR

decrease was more pronounced in B cells (MFI reduction 82.1%)

than in T cells (reduction 15.4%, 18.9%, and 18.5% in Tfh, Treg,

and Tfr, respectively) (Figure 2B). Similar to the index patient,

the father expressed reduced levels of BAFFR on the surface of

his circulating B cells (Figure S1).
Immunological assessment

The diagnosis of CVID was confirmed by the patient’s

immunological profile. The patient showed mild lymphopenia
Frontiers in Immunology 04
with a global decrease and altered distribution of the B- and T-

cell compartment already at disease onset and during follow-up

as compared with age- and gender-matched healthy donors

(HC) (Table 1).

By assessing the expression of CXCR5 and FoxP3 among

CD3+CD4+ cells, the frequency of Circulating T follicular helper

cell (cTfh) (CXCR5+FoxP3-), Circulating T follicular regulatory

cell (cTfr) (CXCR5+FoxP3+), and cTreg (CXCR5
-FoxP3+) cells was

determined. While cTfr cell frequencies in the patient were within

the normal range, cTreg cell frequencies were within the lower

range at first but returned to average normal values in subsequent

FUs (CVID cTfr, 1-FU = 3.13%; 2-FU = 3.76%; 3-FU = 4.24%; 4-

FU = 2.66%; 5-FU = 2.44%; 6-FU = 0.63% vs. HC median, IQR =

1.62, 0.97–2.18, n = 80) (CVID cTreg, 1-FU = 2.67%; 2-FU =
A

B

FIGURE 1

Timeline of clinical events, therapeutic interventions, and diagnostic procedures. (A) Summary of major clinical manifestations and therapeutic
interventions. IVIG: intravenous immunoglobulins; SCIG: subcutaneous immunoglobulins; RTX: Rituximab. At each follow-up, an extensive
immune cell phenotyping was conducted. (B) Timeline of fasting blood glucose (FBG), 2-h blood glucose (BG2h), fasting C-peptide (CPEP), and
2-h C-peptide (CPEP2h), HOMA index, fasting insulin (FI) and 2-h insulin (I2h), glycohemoglobin (HbA1c), and platelet count (PLT) from April
2016 to August 2021.
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2.43%; 3-FU = 5.22%; 4-FU = 4.26%; 5-FU = 3.39%; 6-FU = 3.46%

vs. HC median, IQR = 4.4, 3.12–5.68) (Figures 2C, S2A, Table 1).

Treg cells (CD25
+CD127-/loFoxP3+) and FoxP3 levels (gMFI) in

the proband were reduced at disease (Figures 2G–I).

cTfh cells, on the other hand, were elevated at the onset but

declined in year 5 of FU (Table 1). Further analyses on cTfh cell

subset distribution and activation status identified a remarkable
Frontiers in Immunology 05
shift toward Tfh1 (CXCR3+CCR6-) cells at the expense of the

Tfh2 and Tfh17 subsets (CXCR3+CCR6- and CXCR3-CCR6+,

respectively) (Figure 2D) that was maintained throughout the 5-

year FU (Figure S2B, Table 1). Moreover, the frequency of PD-1+

cTfh cells was substantially higher and remained elevated over

time in comparison with HC (median, IQR = 21.30, 16.40–

25.30), whereas ICOS+ cTfh cell frequency remained higher
A B

D

E F

G

I

H

C

FIGURE 2

Genetic and immunological characteristics of a patient with CVID and stage 2 T1D. (A) Genetic testing identified low T1D GRS (0.22817, HLA: X/
X), and H159Y mutation in BAFFR inherited in a patrilineal fashion. The father was diagnosed with autoimmune thyroiditis, and the brother was
positive for anti-TPO autoantibody production. (B) Representative gating strategy to evaluate BAFFR distribution on B cells, Tfh, and Treg. White,
dark, and light gray slopes for control, HC, and CVID013, respectively. (C) FoxP3 and CXCR5 staining on CD3+CD4+ lymphocytes identifies Tfh
(CXCR5+FoxP3-), Tfr (CXCR5+FoxP3+), and Treg (CXCR5-FoxP3+) cells, and (D) CXCR3 and CCR6 staining on CD4+CXCR5+CD45RA-. The
following subsets were identified: cTfh1 (CXCR3+CCR6-), cTfh2 (CXCR3-CCR6-), and cTfh17 (CXCR3-CCR6+). (E) PD-1+ and ICOS+ expressing
cells among cTfh are increased over time compared to the HC group (PD-1+ median, IQR = 21.3%, 16.4–25.3, n = 65; ICOS+ median, IQR =
1.45, 0.91–2.32, n = 65). Solid dots and squares represent the index patient and the proband father, respectively. (F) CXCL13 was evaluated in
plasma by ELISA assay. Stable higher levels of this chemoattractant were detected over time in CVID patient when compared with the HC
(median, IQR = 47.68 pg/ml, 29.52–68.24; n = 65), represented by the continuous line within the light gray area. (G, H) Treg gating strategy
based on CD25 and CD127 expression, and FoxP3 expressing cells among CD25+CD127- Treg. (I) CD25

+CD127- Treg were reduced in the index
patient at the first follow-up (HC mean ± SD = 3.42% ± 0.51) and expressed lower levels of FoxP3 (mean HC FoxP3 ± SD = 88.7% ± 3.3; mean
HC FoxP3 MFI ± SD = 1080 ± 254.2).
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since disease onset (~4 times higher than the control, 6.15% vs.

HC median, IQR = 1.45%, 0.91–2.32) (Figure 2E, Table 1).

Additionally, higher levels of plasma CXCL13, a GC blood

biomarker, were observed during the 5-year FU (Table 1,

Figure 2F). The father had normal frequencies and subset

distribution of follicular T cells (Table 1).

The percentage of total CD19+ B cells was low during the

5-year follow-up (FU) (CVID B cells, 1-FU = 2%; 3-FU =
Frontiers in Immunology 06
1.19%; 4-FU = 1.77%; 5-FU = 0.5%; 6-FU = 2.1% vs. HC mean

± SD = 10.28 ± 3.74, n = 90). The frequency of B memory cells

(CD19+CD27+) was lower than HC (median, IQR = 17.0,

12.6–25.2). Potentially autoreactive B cells defined as

CD19+CD21lowCD38low B cells (Figure 3A) were present at

higher frequency in the index patient at diagnosis as

compared with HC (CVID013 = 11.1% vs. HC median, IQR

= 2.42%, 1.30–4.58) and increased over time (3-FU = 18.30%;
TABLE 1 Immunological phenotyping of B and T cells, autoantibodies titres, and analysis of cytokine production by FC.

1-FU 2-FU 3-FU 4-FU 5-FU 6-FU Father HC group

% B-cell phenotyping
B cells (CD19+) 2.00 – 1.19 1.77 0.50 2.1+ 5.40 (1.15) 10.28 (3.74)

B naïve (CD19+CD27-) 94.00 – 90.20 93.60 81.94 91.6+ 58.31 (6.76) 82.1 (73.0-87.3)

B memory (CD19+CD27+) 5.96 – 6.99 5.98 16.10 8.4+ 35.80 (8.0) 17.0 (12.6-25.2)

Class-switched memory B cells (CD27+ IgM- IgD-) – 7.69 2.70 – 1.3+ 73 (5.09) 46.46 (7.07)

IgM-memory B cells (CD27+ IgM+) – 7.89 7.21 – 7.1+ 11.15 (1.48) 20.16 (10.21)

CD38lowCD21low 11.10 – 18.30 38.00 30.50 26.3+ 9.84 (3.47) 2.42 (1.30-4.58)

Transitional (CD24+CD38+) 23.80 – 16.60 8.54 – 32.2+ 2.08 (1.92) 7.64 (4.08-10.7)

Breg (CD27+CD24+) – – – 6.0 5.4 – 40.2 (6.79) 36.3 (12.30)

% Autoantibodies

IAA 0.06 0 0* 0* 0 0 0.00 (0.00) 0-0.2336

GADA 14.78 2.61 2.66* 3.62* 3.23 1.23 0.02 (0.005) 0-0.8761

IA-2A 48.30 55.87 31.72* 18.89* 18.93 11.72 0.06 (0.015) 0-0.9793

ZnT8A 379.49 26.71 12.52* 3.57* 1.32 2.49 0.42 (0.25) 0-2.5091

% T-cell phenotyping

CD3+ 79.2 75.4 81.3 47.1 79.7 81.6 70.35 (5.06) 39.2 (8.3)

CD3+CD4+ 38.1 38.7 38.6 47.8 46.2 57.1 40.9 (5.45) 75.9 (11.8)

cTfh (CXCR5+FoxP3-) 39.20 34.20 18.60 30.40 34.40 7.56 6.4 (5.87) 10.85 (8.35-12.60)

cTfr (CXCR5+FoxP3+) 3.13 3.76 4.24 2.66 2.44 0.63 0.69 (0.63) 1.62 (0.97-2.18)

cTreg (CXCR5-FoxP3+) 2.67 2.43 5.22 4.26 3.39 3.46 7.65 (5.78) 4.4 (3.12-5.68)

Tfh1 (CXCR3+CCR6-) 63.90 53.90 58.60 62.10 75.40 52.00 33.83 (7.63) 26.75 (5.90)

Tfh2 (CXCR3-CCR6-) 19.40 32.40 34.10 26.70 17.10 25.80 28.93 (8.31) 36.47 (8.04)

Tfh17 (CXCR3-CCR6+) 8.29 7.83 4.64 5.05 2.65 8.22 27.33 (9.95) 26.06 (5.04)

PD1 (CD4+CXCR5+) 70.00 57.30 52.10 66.10 69.30 54.10 13.87 (4.75) 21.30 (16.40-25.30)

ICOS (CD4+CXCR5+) 6.15 5.12 4.11 1.83 1.41 4.22 0.39 (0.18) 1.45 (0.91-2.32)

CXCR3+PD1- (CD4+CXCR5+) 22.40 23.80 7.01 12.70 13.20 – 12.31 (13.22) 8.17 (5.1)

% Cytokine production FC-analysis

CXCR5+ IFN-g+ – – – 2.21 1.99 2.72 3.22 (1.21) 9.51 (10.88)

IL-17+ – – – 2.09 0.51 0.80 1.26 (1.04) 5.06 (6.18)

IL-21+ – – – 3.49 3.43 5.53 2.13 (0.87) 8.98 (12.07)

CXCR5- IFN-g+ – – – 10.20 13.50 25.80 11.01 (5.34) 3.69 (2.86)

IL-17+ – – – 0.92 0.21 1.34 1.32 (1.57) 1.14 (0.37)

IL-21+ – – – 6.17 15.10 20.07 2.8 (1.61) 3.32 (2.06)

ng/ml IgM and IgG production assay

CVID BM +
CVID cTfh

IgM 7.78 8.35 – – – – – 1.37 (0.84)

IgG 0.3 ND – – – – – 9.77 (3.76)

CVID BN +
CVID cTfh

IgM 1.1 0.81 – – ND – – 1.22 (1.05)

IgG ND ND – – ND – – 5.52 (3.68)
Available measurements for the index patient, for the father and for the HC pool (B and T cell phenotyping, HC n = 85; cytokine production FC-analysis, HC n = 65; IgM and IgG
production assay, HC n = 16; autoantibodies, HC = internal laboratory reference) are included in the table as mean (SD) or median (IQR). The detection of autoantibodies was performed as
previously described (24, 25). +Values were determined in June 2022; *titres have been determined in serum samples; ND = undetermined.
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4-FU = 38.00%; 5-FU = 30.50%; 6-FU = 26.30%) (Figure 3B,

Table 1). In contrast to the index patient, circulating B cell

frequency and subset distribution in the father were

normal (Table 1).
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To assess the functionality of B and Tfh cells, we performed in

vitro B-cell helper assay. FACS-sorted memory and naïve B cells

were co-cultured with cTfh cells in autologous (CVID B cells with

CVID Tfh cells) and heterologous settings (CVID B cells with HC
A B

D

E

F

G H

C

FIGURE 3

Functional analysis of B- and T-cell subsets. (A) Representative gating strategy for CD38lowCD21low autoreactive B cells, gated on CD19+ cells
and (B) their frequency over time. CD38lowCD21low cell percentage was higher compared with the HC median, IQR (2.42%, 1.3–4.58; n = 85),
increasing from 11.10% at the first follow-up up to 38.00% in 2020, and decreasing to 30.50% in the last monitoring. (C, D) Functional analysis of
IgM and IgG production. Sorted B memory or B naïve cells were co-cultured with Tfh cells (1:1 ratio) in autologous (solid dot) or heterologous
settings (CVID B cells with HC Tfh, solid square, or HC B cells with CVID Tfh, clear square), and the percentage of CD38+CD20- was analyzed
within CD19+CD4- cells after 1 week. The black continuous line is representative for the mean HC percentage value ± SD (66.32% ± 12.46, n =
16) represented by the light gray area within the two dashed lines. The production of IgM and IgG was evaluated in the supernatant (E, Table 1).
The white dots and squares are representative for the 1-FU and 2-FU, respectively, whereas the black dots represent the HC. (F, G) Evaluation of
IFN-g, IL-17, and IL-21 production in CD4+CXCR5+ cells after 2-h stimulation with PMA/Ionomycin. The HC and patient slopes are identified
with the light and dark gray, respectively, whereas the unstimulated control is represented by the dashed line. IFN-g and IL-17 production was
lower compared with the HC (IFN-g mean ± SD = 16.66% ± 6.84; IL-17 mean ± SD = 8.35% ± 6.63; n = 65), whereas IL-21 production was
lower than HC mean and comprised within the SD (IL-21 mean ± SD = 8.74% ± 4.30; n = 65). (H) IFN-g, IL-17, and IL-21 production in
CD4+CXCR5- cells after 2-h stimulation with PMA/Ionomycin. IFN-g and IL-21 production was higher compared with the HC (IFN-g mean ±
SD = 3.69% ± 2.86; IL-21 mean ± SD = 3.32% ± 2.06; n = 65), whereas IL-17 production was comparable with HC (IL-17 mean ± SD = 1.14% ±
0.37; n = 65). .
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Tfh cells or vice versa) and the percentage of CD20-CD38+

plasmablasts together with IgM and IgG levels were evaluated

after a week (Figures 3C–E). Due to technical constraints, we

were able to perform the assay at three FU. The percentage of

plasmablast differentiating from memory B cells in the presence of

autologous Tfh cells was lower with respect to HC at diagnosis but

improved in 2-FU (Figure 3D, left panel). Patient Tfh cells were able

to induce the production of IgM by autologous B memory cells at

levels that were higher than the control co-cultures, (1-FU = 7.78ng/

ml; 2-FU = 8.35ng/ml vs. HC mean ± SD = 1.37ng/ml ± 0.84, n =

18). On the other hand, IgM production by B naïve cells was similar

to HC (1-FU = 1.1ng/ml; 2-FU = 0.80ng/ml vs. HC mean ± SD =

1.22 ng/ml ± 1.05, n = 16). Tfh cells co-cultured either with

autologous or heterologous B naïve cells were unable to induce

class switching and IgG production in vitro (Figures 3D, E).

Tfh (CD4+CXCR5+) and non-Tfh (CD4+CXCR5-) cell

functional status was also evaluated in vitro by intracellular

cytokine profile. Total PBMCs were activated with PMA/

Ionomycin and the expression of interferon-g (IFN-g),
interleukin-17 (IL-17), and IL-21 was evaluated by flow

cytometry (FC) (Figures 3F, G). Within the CXCR5+

compartment, IFN-g and IL-17 producing cells were fewer

compared with HC (Table 1). Also, IL-21 production was

lower than HC (CVID013 IL-21 range = 3.43% - 5.53% vs.

HC IL-21 mean ± SD = 8.74% ± 4.30; n = 65). On the contrary,

higher frequencies of IFN-g and IL-21 producing cells were

observed within the CXCR5- compartment (Table 1, Figure 3H).

Discussion

This case report describes a patient diagnosed with ITP,

CVID, and T1D with a monoallelic mutation in BAFFR

(H159Y) inherited from the father. Two years after CVID and

T1D stage 2 diagnosis, RTX was administered to treat peripheral

polyneuropathy with a potentially positive impact on diabetes

progression. Additional diet adjustment (hypoglycemic/

ketogenic) led to an 8-kg weight loss that possibly impacted the

disease course. Eventually, the patient progressed to insulin

dependency, despite a decline in islet AAbs levels. The patient

displayed the typical immunological signs of CVID, that is,

reduction in circulating B cells, switched memory B cells, and

an increase in autoreactive CD21lowCD38low B cells. B cell counts

remained low during a 5-year FU. The patient was positive for

SARS-CoV-2 antibodies prior to infection and vaccination,

probably secondary to the presence of these antibodies in IVIg.

After receiving three vaccine doses and natural SARS-CoV-2

infection, his anti–SARS-CoV-2 antibodies remained detectable.

Generally, CVID patients, especially those with autoimmunity,

have variable alterations in humoral responses against vaccines,

including against SARS-CoV-2, that could account for a low

specific response to some infections and vaccination (23).

Interestingly, B naïve and memory subset frequencies increased

over time but remained reduced and even declined in absolute
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numbers. When cultured in vitro with autologous and

heterologous Tfh cells derived from HC, memory B cells were

able to produce IgM, whereas IgG production was compromised,

suggesting dysfunctional B and/or Tfh cells.

cTfh cells were present at elevated frequencies during the

first 4 years of FU and produced reduced amounts of IFN-g and
IL-21 when challenged in vitro. cTfh cells showed a shift toward

a Tfh1 phenotype accompanied by an increase in activation

markers PD-1 and ICOS. cTfh cell activation status was reflected

in the blood where elevated plasmatic concentrations of CXCL13

were found (26). Interestingly, IL-21 production by CXCR5-

CD4+ cells was highly elevated when compared with HC. Given

the connection between IL-21 production and T1D (27),

elevated IL-21 production by CXCR5-CD4+ T cells could have

influenced T1D development in the index patient.

BAFFR is essential for B-cell development, and reduced

BAFFR expression or signaling, as in BAFFR deficiency, leads to

decreased B cell survival and hypogammaglobulinemia (28).

BAFFR can be expressed on the surface of activated T cells

including Tregs albeit at low levels (29–32). By re-analyzing our

previously published RNA-seq data in sorted Tfh cells from the

index patient (CVID013) (19), BAFFRmRNA levels were elevated

as compared with controls (Figure S3). However, at a protein level,

Tfh cells expressed slightly reduced BAFFR levels on their cell

surface. The BAFFR H159Y mutation identified in the patient has

been previously associated not only with autoimmune diseases,

such as systemic lupus erythematosus, multiple sclerosis, and

Sjogren’s syndrome, but also in non-Hodgkin’s lymphoma (33).

It is currently unknown how this variant affects protein trafficking,

signaling, and degradation. Previous studies have shown that it

increases TRAF2, TRAF3, and TRAF6 recruitment to BAFFR,

potentiating NF-kB1 and NF-kB2 activity and immunoglobulin

production in B cells (28, 33–38). According to our RNA-seq data,

BAFFR-mediated dysregulation affected Tfh cell cycle, T-cell

activation, and proliferation pathways, and altered the

expression of genes involved in signal transduction, apoptosis,

and Tfh identity (i.e., BCL-6) (Figures S4–S6). On the other hand,

the UV response pathway was down-regulated including

pathways involved in apoptosis, cell cycle, proliferation, and

immune functions (promoting proliferation) (Figures S4–S7)

(19). Further analyses are required to determine the functional

role of H159Y in human Tfh cells and B cells and their

contribution to CVID and T1D development.

The H159Y variant has been previously described in

association with another polymorphism, P21R, which has been

described in some patients with CVID (37). These patients

displayed lower B cell numbers due to reduced BAFFR

expression levels. Possibly, other genetic variants in BAFFR or in

other genes related to this pathway are present and contributed to

the clinical course of CVID and T1D in the index patient. Of note,

the patient’s father is affected by autoimmune thyroiditis and has

no T1D nor CVID despite having the same BAFFR mutation and

reduced surface BAFFR levels on his B cells. Thus, incomplete
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disease penetrance might underlie the discrepancies between father

and son, similarly to previous CVID reports where family

members carry the same heterozygous mutation (34).

Given the absence of a T1D-HLA risk, alterations in BAFFR

and humoral dysregulation might have led to T1D. In contrast to

other autoimmune diseases, for example, SLE, where BAFF–BAFFR

signalling has been extensively studied, limited studies have been

conducted in T1D. In one of such studies, reduced BAFFR levels on

circulating B cells were observed in patients with longstanding T1D

(39). Given the 6-year time window from the time of stage 2 T1D to

stage 2 T1D diagnosis, we speculate that BAFFR humoral

dysregulation contributed to T1D with slow kinetics or, perhaps,

RTX and IVIg therapy delayed the disease onset.

The effect of IVIg therapy in B cells seems to be rather complex

and not well understood (40), and there is not enough evidence

supporting a beneficial role of IVIg in T1D progression. In the index

patient, the treatment did not alter circulating B-cell frequency over

the 6 years follow-up and did not affect B-cell ability to stimulate

IgM production in vitro. It is possible that the alterations in B-cell

subset composition were partly mediated by IVIg and could have

affected T1D progression, possibly by AAb dilution or by affecting

autoreactive B-cell frequency (41). Tfh were able to stimulate the

production of IgM but no IgG in B-cell co-cultures in vitro;

however, we did not explore the possibility that the patient had

less class-switched IgG+ memory B cells explaining our in vitro B

cell help findings. Additional experiments with sorted IgM+ vs. IgM-

memory B cells will be necessary to clarify this point.

Belimumab, the human monoclonal antibody that blocks

BAFF, is currently employed for the treatment of persistently

active systemic lupus erythematosus (33) BAFFR blockade in

murine models of T1D was also shown to protect from disease

development, a mechanism that involved Breg induction (42).

RTX depletes B cells and was shown to preserve C-peptide levels

in patients with new-onset T1D (43). The index patient received

RTX treatment 2 years after stage 2 T1D diagnosis and 3 years

later; after partial B-cell reconstitution, he progressed to insulin-

dependent T1D. In the NOD model of T1D, no synergy between

RTX and anti-BAFFRmAb treatment was seen as RTX eliminated

anti-BAFFR–induced Bregs (42). It remains unknown the effect of

RTX on Bregs in the index patient, but possibly RTX did not

aggravate disease progression but was rather beneficial.

Despite several weaknesses emanating from the study of a

single case and the lack of studies of BAFFR signaling, our data

suggest a possible involvement of the BAFFR H159Y variant in

T1D pathogenesis and suggest that the BAFF/BAFFR axis might

be a target of interest for the pharmacological modulation of T1D.
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