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Abstract: Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first
century due to its high mortality rates caused mainly due to its complications; therefore, the early
identification of such complications becomes a race against time to establish a prompt diagnosis.
The research of complications of DM over the years has allowed the development of numerous
alternatives for diagnosis. Among these emerge the quantification of advanced glycation end
products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related
to the induction of different stress-associated cellular responses and proinflammatory mechanisms
involved in the progression of chronic complications of DM. Additionally, the investigation for
more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool,
termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular
mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the
newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of
developing DM chronic complications.

Keywords: advanced glycation end products; diabetes mellitus; chronic complications; skin
fluorescence

1. Introduction

Diabetes Mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia
due to absent or inadequate insulin secretion, combining with defective action on target
tissues, depending on the type of diabetes [1]. DM has many categories; however, the
main subtypes are type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM),
and gestational diabetes mellitus [2]. Diabetes is currently considered one of the largest
epidemics of the twenty-first century. In 2015, according to the International Diabetes
Federation (IDF), 415 million people worldwide were estimated to have diabetes, and there
were approximately 5 million deaths attributable to diabetes, which is estimated as a death
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every 6 s [3]. However, it is to emphasize that the leading cause of death is not diabetes per
se but DM-derived complications that lead to systemic dysfunction [4].

As a result, the prompt identification of DM-associated complications has become
significantly relevant. DM complications can be divided into two main types, acute and
chronic complications. Acute complications involve hypoglycemia and hyperglycemic
crises, which tend to onset abruptly [5], instead of the slow and steady progression of
chronic complications over the years [6]. Regardless of the type of diabetes mellitus, the
chronic complications are likewise divided into two categories depending on the vascular
damage. Macrovascular complications include cardiovascular disease (CVD); meanwhile,
microvascular complications include chronic kidney disease (CKD), neuropathy, and dia-
betic retinopathy [7].

Diverse studies have determined that advanced glycation end products (AGEs) are
involved in the pathophysiological mechanisms of DM complications [8]. These derive
from nonenzymatic reactions between carbohydrate residues and protein, lipids, or nucleic
acids, along with oxidative processes [9]. The development mechanism of DM compli-
cations through AGEs is varied, since these can generate structural changes to different
macromolecules, altering their function and leading to intracellular pathways that trigger
inflammatory responses and endothelial damage [10]. Thus, measuring these changes
works both as a diagnostic method of DM and as a biochemical marker of glycemic control,
being the determination of hemoglobin A1c (HbA1c), the most known marker tested [11].

The quantification of AGEs can also serve to assess the risk of developing DM com-
plications and measure their degree of progression [9]. Although multiple measurement
techniques have been developed, the search for more accurate, selective, and safe proce-
dures is still ongoing [11]. Luckily, skin fluorescence (SAF) has recently been described in
several studies as a noninvasive method [12]. Here, we analyze the pathophysiological
mechanisms induced by AGEs that trigger the progression of chronic complications of DM
and describe the newer measurement techniques available, focusing on SAF, a possible
tool to measure the risk of developing DM complications.

2. Protein Glycation and Formation of Advanced Glycation End Products

Advanced glycation end products (AGEs) are an heterogeneous group of oxidative
molecules with pathogenic capability [13]. The synthesis of these compounds begins with
common metabolic pathways that occurred during the storage of food-derived products
in the organism due to nonenzymatic reactions between reduced carbohydrates and free
amino acids, peptides, lipids, or nucleic acids [14]. These reactions mentioned earlier are
called Maillard reaction, glycation, or “nonenzymatic glycosylation” [15].

The generation of AGEs is completed through three stages [16], starting with the
production of Schiff Bases [17], which emerge from the covalent bond established between
the amino group of the free amino acid (generally composed by lysine and less frequently
by arginine and cysteine residues), lipids, and nucleic acids with glucose [18,19]. This stage
takes place in a time-lapse of hours following the postprandial glycemic increase, and it is
characterized as a reversible reaction, since it can be re-established if the glycemic levels
decrease [13].

Afterward, Schiff Bases submit to a molecular rearrangement, generating Amadori
products, which are more stable compounds, although this stage is still reversible from
carbohydrate oxidation [20]. The most recognized product is HbA1c, assembled through
the junction of a valine residue of one of the β chain of this hemeprotein with plasma
glucose [11]. Later, Amadori products accumulate in the organism; these go through
reduction–oxidation reactions to eventually associate with secondary proteins through
covalent bonds, altering their tertiary and quaternary structures and forming AGEs such as
3,4-N-carboxymethyl-lysine (CML), 3-deoxyglucosone (3DG), and Methylglyoxal (MG) [18].
AGEs have a brown-yellowish pigmentation, and some of them even have fluorescent
properties, especially pyrrolidine, CML, imidazoline, and pentosidine [21]. Under physi-
ological conditions, the glycation process occurs in weeks to years; nonetheless, in some
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pathological states such as hyperglycemia, oxidative stress, and temperature increase, the
needed time can be reduced to hours [22] (Figure 1).
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Figure 1. Maillard Reaction: production of AGEs. Production of AGEs initiates from a three-staged
metabolic process denominated by a Maillard reaction, starting with the reversible formation of Schiff
Bases, followed by a molecular rearrangement that results in the generation of Amadori products
and, finally, leading to the formation of AGEs due to a posterior binding to secondary proteins,
establishing as nonreversible structures. This can occur due to oxidative processes such as the
formation of pyrrolidine and, also, nonoxidative processes such as the formation of pentosidine and
CML; however, other proteins can be added to these molecules, allowing the formation of products
such as DOLD and GOLD. Additionally, there are alternative pathways to form AGEs; for instance,
the oxidation of glucose and subsequent glyoxal formation can generate CML by the binding of
glyoxal to lipids. Hb1Ac: glycated hemoglobin and CML: 3,4-N-carboxymethyl-lysine.

Comparatively, glucose has the slowest glycation rate of carbohydrate within these
compounds, unlike fructose, glucose 6-phosphate, and threose (intracellular carbohydrates),
which have a faster oxidation capacity [15]. Additionally, the formation of AGEs is also
exogenous, since they can be found in food, like primarily animal-derived high-fat food
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such as beef [14]. Different studies have demonstrated that these types of food induce
an increase in plasma levels of AGEs, since up to 10% of food rich in AGEs is absorbed
into the bloodstream [13]. Despite the existence of discrepancies regarding the effects of
exogenous compounds, studies have shown that a higher consumption of these food is
correlated with weight gain [23], insulin sensitivity alteration [24], and albuminuria [25].
Therefore, AGE-rich diets, favoring oxidative stress and chronic inflammation states due to
interactions with cellular compounds, are a substantial risk factor to the development of
metabolic and cardiovascular complications [26].

3. AGEs and Their Implication in Chronic Complications of Diabetes Mellitus

Chronic complications of DM derive from structural and functional modifications of
blood vessels due to hyperglycemia, affecting the heart, kidneys, and nervous system [27].
Among the mechanisms implied in developing these complications are the structural
modifications induced by AGEs in vulnerable molecules such as proteins, lipids, and DNA,
altering their stability and functions [28].

Activation of the receptor for advanced glycation end products (RAGE) represents
the main mechanism involved between DM and AGEs [8]. RAGE is a cell surface receptor
composed of three extracellular domains, a transmembrane domain, and a cytoplasmic
tail [8], which belongs to the immunoglobulin superfamily [29], since its expression derives
from the major histocompatibility complex class III (MHC-III) [30]. Thus, RAGE expression
predominates in specific cells such as monocytes, macrophages, proximal tubular cells,
podocytes, and mesangial cells [29].

As a result of the AGE–RAGE interaction, the cytoplasmic domain of RAGE leads to
different signaling pathways. In particular, it can activate the p21 protein [31], triggering
other signaling compounds to eventually stimulate kinases such as the extracellular signal-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and mitogen-activated protein
kinase (MAP) [29], along with Janus kinase 1 and 2/Signal transducer and activators of
transcription (JAK/STAT1) [32]. Finally, the consequences of these signal transduction
pathways consist of the activation of transcription factors such as nuclear factor kappa
B (NF-kB) [33] and the interferon-sensitive response element (ISRE) [34], which lead to
the synthesis of proinflammatory cytokines as tumor necrosis factor-alpha (TNF-α) [34]
and interleukins (IL) 1, 6, and 17 [35,36], as well as vascular cell adhesion molecule-1
(VCAM-1) [29].

Additionally, NADH oxidase’s activation directly and indirectly generates reactive
oxygen species (ROS) due to RAGE stimulation [37]. Furthermore, RAGE can be activated
by other types of ligands aside from AGEs, including S 100 or Calgranulin, Mac-1, High-
mobility group box 1 (HMBG1), and β-amyloids, predominantly when their levels increase
during inflammatory reactions (Figure 2) [31]. The discovery of RAGE’s multiligand nature
explains its elevated and persistent activity in diabetes complications [36,37].

There are different types of these receptors that have been studied, known as soluble
forms of RAGE (RAGEs), which are composed of extracellular domains without their
intracellular portion, so they can be transported and found free in the plasma [38]. Of
note, two types of receptors have been identified, cleaved RAGE(cRAGE) and endoge-
nous secretory RAGE (esRAGE) or RAGE_V1, depending on how they were created [39].
cRAGE is formed from the action of matrix metalloproteases (MMP) and α-disintegrin
metalloprotease (ADAM)-10; these enzymes cleave from the cell surface to RAGE, thus
losing its transmembrane and cytosolic portions, but it conserves the V1-C1-C2 domains of
RAGE. On the other hand, esRAGE is generated by the alternative splicing of the RNAm
RAGE gene, changing its structure by adding a 16-amino acid extension at the c-terminal
end [40].

Although the distribution and function of these receptors are not yet clear, there are
multiple hypotheses about their role in the pathophysiology of inflammatory and metabolic
diseases, such as DM. Among the most managed actions, their role as “decoys” for AGEs
is evaluated, generating a downregulation effect in inflammation and preventing cell



Int. J. Environ. Res. Public Health 2021, 18, 7236 5 of 24

damage due to the sequestration of RAGE ligands that leads to the pathways not activated
being intracellularly related to these receptors not only by AGEs but other ligands such
as HMB1 or S100, postulating a possible regulatory action on the AGEs–RAGE axis [40].
In addition, studies have established an inversely proportional relationship between the
levels of sRAGE and the markers of metabolic syndrome and atherosclerosis in patients
with DM, used as a biomarker in inflammatory processes and complications associated
with this disease [41].
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Figure 2. Signaling pathways induced by the activation of the receptor of AGEs. (a) RAGE is a cell surface receptor
composed of three extracellular domains, a transmembrane domain, and a short cytoplasmic tail. (b) AGEs bind to RAGE’s
extracellular portion and induce activation of the cytoplasmic domain, leading to different signaling pathways, which will
finally result in the stimulation of transcription factors such as NF-KB and ISRE. Three pathways that can lead to such a
response: (c) activation of the protein p21, which induces RAF-1, MEKK-1, and MEK 3/6 proteins that activate the factors
ERK, JNK, and MAPK, which translocate to the cell nucleus. (d) Activation of the JAK2/STAT1 pathway, where STAT1
dimerizes and binds to the IRF1 sequence to translocate to the cell nucleus, binding to the ISRE segment and inducing
transcription of proinflammatory cytokines. (e) Activation of the NADPH oxidase that leads to the stimulation of NF-KB.
These processes can be activated by other molecules such as S100, Mac-1, HMBG-1, and β-amyloids. NF-kB: nuclear
factor kappa light chain enhancer of activated B cells, ISRE: interferon-sensitive response element, TNFα: tumor necrosis
factor-alpha, IL: interleukins, VCAM-1: adherence and growth factors as the vascular cell adhesion molecule-1, TGF-β1:
transforming growth factor β, RAF-1: proto-oncogene serine/threonine kinase, MEKK-1: mitogen-activated protein kinase
kinase kinase 1, MEK 3/6: mitogen-activated protein kinase kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun
N-terminal kinase, MAPK: mitogen-activated protein kinase, JAK: Janus kinase, STAT: signal transducer and activators of
transcription, IRF1: interferon regulatory factor-1, S 100: calgranulin, and HMBG1: high-mobility group box 1.
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3.1. Molecular Mechanisms of AGEs in Microvascular Complications of DM

The presence of diabetic retinopathy, neuropathy, or (micro) albuminuria defines the
existence of microvascular complications of DM [42]; despite affecting different organs,
these complications mutually relate to each other [43]. Diverse studies have associated
AGEs with the progression of those complications, mainly given the direct action of
these products on tissues or via stimulation of the AGE–RAGE axis and the subsequent
inflammatory response [44–46].

Diabetic kidney disease (DKD) is characterized by renal hypertrophy, proteinuria,
decreased glomerular filtration rate, and renal fibrosis [47], ultimately progressing to
chronic kidney disease (CDK) [48]. Induction of the AGE–RAGE pathways deriving from
the accumulation of these products in renal tissue leads to inflammatory activity [49].
Thus, triggering the migration of macrophages that agglomerate in the renal glomerulus’s
mesangium and establishing an inflammatory microenvironment led by IL-6 synthesis with
the consequent expansion of this layer eventually causes the compression of capillaries and
reduction of the body surface area of renal filtration [50]. Additionally, increased expression
of transforming growth factor β (TGF-β) has been correlated with fibrogenesis activation,
collagen synthesis stimulation, and renal tubular cell apoptosis, therefore explaining both
glomerular sclerosis and dysfunction [51].

Other mechanisms induced by the AGE–RAGE pathway arise specifically through
CML, which constitutes a higher AGE accumulation in vivo [52], the renal epithelium being
continuously exposed to these changes [53]. It has been recently determined that AGEs gen-
erate lipid accumulation in this tissue deriving from altered cholesterol metabolism, since
AGEs activate the sterol-regulatory element-binding protein 2 (SREBP-2) and, correspond-
ingly, the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA
reductase) increases, concluding in an increased cholesterol synthesis. Additionally, this
molecule’s access to cells benefits from the stimulation of low-density lipoprotein (LDLc) ac-
tivity in conjunction with the decrease of the ATP-binding cassette transporter A1 (ABCA1),
which results in tissue dysfunction [44] (Figure 3).

Diabetic neuropathy is defined by the progressive loss of axons within peripheral
nerves, clinically manifested by severe pain and sensory impairment [54]. The accumulation
of AGEs in the endoneurium, Schwann cells, extracellular matrix, and capillary within
these nervous structures cause the glycation of proteins such as fibronectin and laminin [55],
inducing structural and functional modifications that decrease the regenerative capacity
related to axonal atrophy [56]. Likewise, oxidative stress and, thereby, neuronal cytotoxicity
are induced through the AGE–RAGE pathway [57], given the increased levels of superoxide
and hydrogen peroxide [58] and decreased intracellular glutathione (GSH) [46], which is
an essential antioxidant tripeptide composed of glutamate, cysteine, and glycine [59].

The loss of peripheral sensation and the increase of mechanical pressure in the feet
are the primary cause of diabetic foot [60]. Secondly, the oxidative stress, proinflammatory
cytokines presence, and glycation of proteins such as collagen lead to the hardening of
epithelial cells’ basement membranes, concluding in skin tissue frailty and impaired wound
healing [61].

On the other hand, diabetic retinopathy (DR) constitutes a degenerative vascular
process that progresses through different stages [62]. First, a blood flow imbalance emerges,
in addition to an increased vascular permeability and capillary basement membrane
hardening, advancing to the formation of microaneurysms and establishing a microvascular
injury that produces ischemia due to decreased retinal blood flow, thus representing a
significant cause of blindness [63,64]. The development of these pathological changes
results from pericyte apoptosis induced by the AGE–RAGE pathway. Likewise, increased
oxidative stress produced by NF-kB expression produces free radicals such as peroxynitrite
inside the subretinal membrane and microvasculature, damaging the DNA [65].

Moreover, the regulatory function of Müller cells inside the retina [66] becomes af-
fected in DM by exposure to hyperglycemia [67], and the inflammatory process, alongside
its effects on the microvasculature, is also a consequence of activation of the AGE–RAGE
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pathway [45]. Furthermore, this pathway increases the expression of cytokines and proan-
giogenic factors such as the vascular endothelial growth factor (VEGF) [68], basic fibroblast
growth factor (bFGF) [69], and TGF-β [70], leading to the distinguished neovascularization
of DR and significantly exacerbated by the high accumulation capacity of AGEs in the
vitreous humor [69].
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Figure 3. AGEs in diabetic kidney disease. Activation of the AGE–RAGE axis derived from the
accumulation of AGEs in renal tissue induces tissue dysfunction through diverse mechanisms: (a)
macrophage migration, which agglomerates in the renal glomerulus’s mesangium, establishing
an inflammatory microenvironment led by IL-6 synthesis and, eventually, causing the expansion
of this layer, compression of the capillary, and reduction of the body surface area of filtration.
(b) Increased expression of transforming growth factor β (TGF-β), which stimulates fibrogenesis,
collagen synthesis, and renal tubular cell apoptosis, leading to glomerular sclerosis. (c) Lipids storage
from altered cholesterol metabolism as a result of the activation of sterol-regulatory element-binding
protein 2 (SREBP-2), increasing the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMG-CoA reductase) and, finally, concluding in increased cholesterol synthesis.

3.2. AGEs and the Macrovascular Alterations in DM

Cardiovascular complications of DM arise as a consequence of the damage to large-
diameter vascular structures. They are mostly the leading cause of death among diabetic
patients, representing 50% of the deaths related to this disease [27]. Diabetic cardiomy-
opathy is characterized by ventricular dysfunction originating from myocyte hypertro-
phy [71,72] and myocardial fibrosis [73]. The AGE–RAGE axis has been admitted as one of
the contributing factors to this incompletely elucidated chronic complication (Figure 4) [29].

This process may cause the deterioration of cardiac functions by myocyte hypertro-
phy [74]. Lately, it has been established that this cardiac remodeling process occurs through
the connection within the AGE–RAGE pathway and dendritic cells (DC) [75], which are
antigen-presenting cells with essential functions in T-cell regulation and homeostasis [76].
However, it has been reported that the accumulation of matured DC during myocardial
infarction could aggravate the tissue remodel [77]. Equally, during in vitro studies, it was
determined that the AGE–RAGE pathway promotes DC’s maturation and, therefore, the
expression of genes that develop hypertrophy, such as MYH7, which encodes the cardiac
beta-myosin heavy chain (β-MHC) [75,78].
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inhibition of the SIRT1/NAD+ pathway, disturbing the function of the Na++/K+ ATPase. (d) Overstimulation of the RyR,
generating irregular modifications of the Ca++ levels, favoring its exit and causing an alteration of the cardiac cycle that
advances to diastolic dysfunction. Ca++: calcium, K+: potassium, Na++: sodium, TGF-β1: transforming growth factor β,
and RyR: ryanodine receptors.

The increment in fibroblast numbers after the increase of AGEs in the extracellular
matrix [74] promotes interactions with structural proteins, inducing reticulation between
collagen fibers and laminin, deriving in a loss of the cardiac tissue’s elastic properties,
rigidity, and increased cardiac volume, conductive to diastolic dysfunction [79,80]. The
AGE–RAGE pathway intervenes in fibroblast proliferation by stimulating proinflammatory
genes and TGF-β, amplifying the adverse effect on the cardiac elastic properties [81].

Separately, the accumulation of AGEs in cardiac tissue is also related to the inhibition of
the sirtuin-1 protein (SIRT1) expression. SIRT1, a member of the class III deacetylase family,
is an antioxidant protein capable of delaying fibrosis and apoptosis of cardiac cells through
its activation by NAD+ [82]. Besides, the adenosine monophosphate-activated protein
kinase (AMPK) keeps a cellular energetic balance and enhances the NAD+ levels and can
also regulate SIRT1 functions [83]. In conclusion, it has been established that Na++/K+

ATPase alterations are due to dysregulation of the SIRT1/AMPK pathway, modifying
cellular ionic homeostasis [84].

Moreover, the Ca2+ levels decrease due to the increased activity of the ryanodine
receptors induced by AGE–RAGE [85]. These receptors manage to equilibrate the ion levels
during diastole and systole [86]; however, their hyperactivity allows a Ca2+ leak from the
sarcoplasmic reticulum during diastole, diminishing the Ca2+ levels during systole and,
thus, disturbing the cardiac cycle [87], driving to cardiac dysfunction [85].
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4. Progression of Measurement Techniques of AGEs in Patients with DM

Numerous studies have determined the essential role of the plasma levels of AGEs in
developing chronic DM complications [29,88–90], being described as even better markers
than the HbA1c measurements [91]. Experimentally, it has been observed that preventing
these products’ accumulation reduces the development and progression of DM-associated
complications. As a result, different measurement techniques have been developed to
quantify AGEs, including biochemical and immunohistochemical methods capable of
measuring products such as pentosidine and CML [92].

The plasma levels of AGEs come from the balance between the synthesis of circulating
proteins, accumulation in different tissues [93], absorption from food [14], and renal
clearance [94]. For this reason, urine and blood samples allow quantifying their levels
that are relevant in DN, especially during the end stage of the disease [95]. The most
used measurement technique is the enzyme-linked immunosorbent assay (ELISA), which
relies on AGE-recognizing antibodies (Ac), mediated through their bindings and their
posterior identification using fluorescence techniques [96]. In this regard, Münch et al.
initially described ELISA and validated two procedures: the use of direct monoclonal
Ac, which can specifically recognize imidazoline, a product derived from the union of
arginine with 3-deoxyglucosone. Secondly, since that technique’s development, different
measurement methods using prepared Ac that recognize the epitopes of various AGEs
have been designed, including CML [8,96,97].

Nevertheless, applying these types of measurements has been disputed due to both
difficulties in reproducing and determining AGE epitopes that can interact with the specific
Ac [98]. Thus, the interest in quantifying diabetic patients’ AGEs through their fluorescent
properties has increased [21]. Recently, high-performance liquid chromatography (HPLC)
analyzes the components of a mixture made by the interaction between the used substances
and chromatography columns [99] and can determine the levels of AGEs according to
the intensity of their fluorescence. HPLC also allows a faster analysis of protein-bound
AGEs such as pentosidine [21] while establishing their influence on the tissues’ biologic
characteristics [21].

The use of mass spectrometry (MS) has also been incorporated; this tool allows to
identify, characterize, and quantify chemical compounds depending on fragmentation
patterns [100]. In this regard, gas chromatography-mass spectrometry (GC-MS) [101] is
used as a specific method to quantify oxidative stress markers [102], detecting the activity
of products such as CML in heart failure and increasing its association with mortality [101].
Thus, demonstrating the impact of oxidative stress upon these diseases may improve the
antioxidant therapy efficacy [103,104]. Likewise, liquid chromatography-MS (LC-MS) [105]
has also been developed, granting a more straightforward way to use MS while reducing the
limitations presented by GC-MS [100]. This technique allows the determination of plasma
levels of AGEs according to DM evolution, exhibiting high levels since the early stages [106],
besides their protein-damaging activity in conjunction with other oxidative processes [107],
estimating their measure to prevent the development of chronic complications of DM [106].

Despite these techniques’ exceptional results, there are still concerns regarding their
cost, complexity, and fluctuations among their results [108]. There is the requirement of
newer techniques with more uncomplicated applications and higher reliability [108].

5. Measurement of Skin Fluorescence

It has been demonstrated that AGEs heavily conglomerate within tissue structures,
specifically inside skin collagen [91]. In this context, a notable difference between tissue
and plasma measurement results has been observed [109], the skin collagen being the
highest concentration location, thus correlating with the presence and severity of DM’s
chronic complications [110]. Hence, the measurement of tissue’s AGEs has become more
meaningful, including assessing the cornea, lens [111], or even a skin biopsy [112]. More-
over, there have been techniques designed concerning skin fluorescence and the presence
of AGEs in dermis structures [108].
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In this regard, Meerwaldt et al. developed an instrument capable of measuring skin
fluorescence (SAF) in a noninvasive modality and comparing the autofluorescence reader
(AFR) results with the results obtained through skin biopsies; they determined its effectivity,
validating the application of SAF as a method to quantify AGEs in DM [108].

The SAF principle relies on the relation between skin fluorescence and the presence
of AGEs (Figure 5) [108], explaining its application as a marker to assess the chronic
complications of DM [113–117]. Considering that skin collagen’s half-life is about 10–15
years [118], the AGEs bound to skin collagen throughout such a time are a medium to
represent the maintained glycemia during long periods [113]. Furthermore, a retrospective
study determined that a positive correlation exists between the SAF and HbA1c values
measured every three months in patients with DM1, demonstrating a correlation between
SAF and long-term glycemic control [119].
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Said stimulus excites AGEs, which are bound to skin proteins and have autofluorescent properties within that range.
These emit their fluorescence from light waves within a range of 420–600 nm and can be detected by a spectrometer.
The autofluorescence of the stimulated AGEs is measured by the proportion between the intensity of the emitted light
(420–600 nm) and the excitation light (300–420 nm) multiplied by 100, aiming to compensate for the effect of the skin
pigmentation in the capacity of light absorption on the autofluorescence. The obtained results are expressed in arbitrary
units (AU) and are shown immediately in a computed connected to the measurer, with a reference established from the
results considering the patient’s age. (1) Source of UV light, (2) spectrometer, and (3) illumination window.

While the implementation of SAF to measure the concentration of AGEs in tissue
increased, some limitations arose. Among them, skin pigmentation [120], since the mea-
surements in dark skin patients resulted in lower values than patients of Caucasian origin,
attributed to the decreased absorption of excitatory or emitted lights from the skin com-
ponents [121]. For instance, melanin can decrease UV radiation penetration through
the epidermis [122], impairing the recognition of fluorescence emitted by AGEs in skin
proteins [108].

Based on these findings, Kooetsier et al. validated an algorithm that allows the evalu-
ation of SAF in individuals of different skin colors; contrastingly, this adjustment has solely
been applied in healthy individuals [121,123]; in consequence, more research regarding its
application on sick patients, mainly with DM, and its complications is required.
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6. Therapeutic Strategies: Halting the AGE–RAGE Axis

The discovery of the pleiotropic effects of AGEs in the establishment and progression
of micro- and macrovascular complications of DM [29] has driven the search for prompt
intervention strategies on the advanced glycation pathway that can diminish the damage
upon target organs and improve the quality of life of affected patients [124]. Thus, lifestyle
modifications and better glycemic control are still the key to prevent the first steps of
the AGE process [125]. Indeed, it has been proven an the AGE-rich diet consumption
restriction [23,24] added to smoking cessation [126,127] are measurements capable of
significantly decreasing the serum levels of CML and MG, with beneficial effects on the
skin fluorescence values, respectively. Similarly, it has been reported that an increase of the
energy requirements induced by regular physical activity could improve glycemic control
and reduce the availability of reactive precursors for glycation reactions, decreasing the
accumulation of AGEs in diabetic patients [128].

Nevertheless, over the last few decades, there has been an exhaustive study of phar-
macologic agents capable of interfering with the diverse glycation process stages, demon-
strating promising results in numerous models in vitro and in vivo [129]. These drugs’
mechanisms of action rely principally on inhibiting the absorption of exogenous AGEs,
preventing their endogenous formation and inducing the rupture of preformed AGEs or
antagonizing their union with their receptor (Table 1) [130–136].

6.1. Inhibition of the Absorption of Exogenous AGEs

Studying inhibitory compounds of the absorption of AGEs acquires relevance by
considering the limitations surrounding the implementation of strict diet modifications
to decrease these proinflammatory compounds’ exogenous sources. One particular agent
researched to accomplish this issue is AST-120 (Kremezin) [137], an oral adsorbent drug
composed of porous spherical carbonic particles mainly indicated for treating patients
with CKD to attenuate its progression by removing uremic toxins inside the bowels [138].
AST-120 has been described as capable of binding to food’s CML in the bowels, impairing
its absorption. As a result, a significant reduction of the serum levels of AGEs has been
reported, aside from decreasing the ARNm of RAGE, the monocyte chemoattractant
protein-1 (MCP-1), and the vascular cell adhesion molecule-1 (VCAM-1) in endothelial
cells, diminishing the inflammatory response induced by these molecules [139]. On the
other hand, sevelamer carbonate, a nonabsorbable oral drug used primarily as a phosphate
binding agent to prevent hyperphosphatemia in patients with CKD [140], has proven to
prevent the absorption of diet AGEs, in addition to decreasing the serum and cellular levels
of AGEs and other inflammation markers [141].

6.2. Inhibition of the Endogenous Formation of AGEs

To date, the most widely studied drugs are precisely those destined to impede endoge-
nous AGE formation. The first drug developed to achieve this purpose was aminoguani-
dine (AG) [142], a compound of hydralazine that, in virtue of its guanidine group, is
capable of trapping α-dicarbonyl compounds such as MG and 3DG produced during the
glycation early stage and, therefore, can prevent their subsequent reaction with amino
groups of proteins [143,144]. The outcome described above has been correlated to a signifi-
cant attenuation of chronic complications of diabetes [145], such as atherosclerosis, DN,
retinopathy, and neuropathy, in numerous experimental studies [146,147]. Accordingly,
studies have focused on elucidating the inhibitory properties of the AGE formation of
bioactive compounds derived from herbs and spices [148], along with multiple drugs used
in clinical practice—specifically, for instance, metformin [149], the vitamin B complex, and
even antihypertensive drugs such as the angiotensin-converting enzyme inhibitors (ACEI)
and angiotensin II receptor blockers (ARBs) [150].
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Table 1. Recent clinical evidence of therapeutic interventions in advanced glycation products and their complications.

Mechanism of Action Drug Methodology Results Author [REF]

Inhibition of the endogenous
formation of AGEs

Benfotiamine and
Pyridoxamine

Randomized, double-blinded controlled by
placebo trial, which included 30 patients with

primary osteoarthritis divided randomly
between two groups to receive tablets of

inhibitors of AGEs (benfotiamine (50 mg) +
PM (50 mg) + methylcobalamin (500 mg)) or

placebo tablets, three times a day.

Significant decrease in serum levels and
fluorescence of AGEs. Decreased pain

and inflammation. Increase in daily
activity and mobility in patients with

osteoarthritis.

Garg S et al. (2013) [130]

Pioglitazone and
Metformin

Randomized, open parallel-groups trial,
performed in patients recently diagnosticated

with DM2, who were given 30 mg/day of
pioglitazone (n = 30), 1000 mg/day of

metformin (n = 50) or not any drugs (n = 49).

In both treated groups with either
pioglitazone or metformin was observed
a statistically significant decrease in levels
of AOPP and AGEs, besides causing an
increase in FRAP (a marker of plasma

antioxidant capacity).

Mirmiranpour H et al. (2013) [131]

Enalapril and
Lercanidipine

Randomized, double-blinded trial, which
included 359 ambulatory patients <65 years

of age, first-diagnosed with essential
hypertension and without treatment, divided
between three groups, who were randomly

given: enalapril 20 mg/day (n = 126),
lercanidipine 10 mg/day (n = 115), or

enalapril + lercanidipine 20/10 mg/day (118),
in order to assess their effects in markers of

cardiovascular risk.

All treatments showed a significant
increase in levels of sRAGE, which was

higher in patients treated with enalapril +
lercanidipine.Significant reduction of

levels of TNF-α and US-CRP in patients
treated with enalapril + lercanidipine

Derosa G et al. (2014) [132]

Benfotiamine

Randomized, double-blinded, controlled trial,
which included 41 patients with DM2

without complications, who were randomly
given 900 mg/day of benfotiamine or

900 mg/day of a placebo, to assess their effect
on levels of AGEs and sRAGE.

Patients treated with benfotiamine had a
statistically significant decrease in levels
of carboxymethyl-lysine. There were no

statistically significant differences in
levels of sRAGE.

Contreras C et al. (2017) [133]
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Table 1. Cont.

Mechanism of Action Drug Methodology Results Author [REF]

Breakage and Reversal of
preformed AGEs

Alagebrium (ALT-711)

Randomized, double-blinded, controlled by
placebo prospective study, performed in 57
healthy subjects over 60 years of age, which
were randomly divided between 4 groups:

sedentary + placebo, sedentary + alagebrium
(200 mg/day), exercise + placebo, and

exercise + alagebrium in order to assess their
effect in hemodynamics, function, and

structure of the left ventricle.

Alagebrium led to a moderate
improvement in rigidity of the left

ventricle, which was more prominent
when it was combined with

physical activity.

Fujimoto N et al. (2013) [134]

Alagebrium

Randomized, controlled by placebo trial,
which included 47 older subjects previously
sedentary, who were divided between 4 types
of interventions: Exercise + Alagebrium (200

mg/day), Exercise + Placebo, Alagebrium
(200 mg/day), and Exercise aiming to

examine their effect over endothelial function,
arterial stiffness, and cardiovascular risk.

There were no improvements in
endothelial function or arterial stiffness in

any of the four groups.

Oudegeest-Sander M et al.
(2013) [135]

Inhibition of the absorption of
exogenous AGEs Sevelamer carbonate

Randomized, open, single-blinded trial,
which included 117 patients with T2DM and

diabetic nephropathy in stages 2 to 4, who
were given sevelamer carbonate (1600 mg) or

calcium carbonate (1200 mg), three times a
day, to measure their effects in the

AGE–RAGE axis and onto oxidative stress.

Patients treated with sevelamer carbonate
showed a significant reduction of both

circulating and intracellular AGEs
(carboxymethyl-lysine and

methylglyoxal).It was also observed a
significant increase in antioxidant

defenses and reduction of pro-oxidant
molecules.

Yubero-Serrano et al. (2015) [136]

AGEs, advanced glycation end products; AOPP, advanced oxidation protein products; T2DM, Type 2 diabetes mellitus; FRAP, Ferritin reducing ability of plasma; HbA1C, glycated hemoglobin; RAGE, receptor
for advanced glycation end products; sRAGE, soluble RAGE; TNF-α, tumor necrosis factor-α; US-CRP, ultra-sensitive C-Reactive Protein; and sVCAM, soluble vascular cell adhesion molecule-1.
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Concerning phytochemicals, through the inhibition of AGE precursors, experimental
studies have determined an antiglycation effect of polyphenols and other bioactive com-
pounds extracted from plant species such as Cinnamomum verum J. (Ceylon-Cinnamon),
Syzygium aromaticum L. (Cloves), Pimpinella anisum L. (Anise), Pimenta dioica L. (Allspice),
Rumex japonicus, Ilex paraguarieusis, Piper auritum, and Origanum majorana [151–154]. Al-
though the mechanisms behind the antiglycation effect are not precisely known [155], it
has been reported that compounds such as resveratrol, oxyresveratrol, and piceatannol can
inhibit the production of AGEs through the elimination of reactive carbonyl species [156].

Metformin, a biguanide extensively used as an antihyperglycemic drug for treating
patients with DM2 [157], has recently been linked to important antioxidant and anti-
inflammatory properties [158,159]. Using metformin as an inhibitor of AGEs is justified
due to its structural similarity to AG, and it has also been proven capable of reacting with
α-dicarbonyl compounds [160], preventing the posterior production of AGEs [161].

Contrarily, vitamins such as pyridoxamine (PM), thiamine pyrophosphate, and its
lipophilic derivative benfotiamine have been demonstrated to intervene during the late
stage of the glycation process, blocking the transformation of Amadori products into
AGEs [162,163]; however, their actions are carried out throughout different levels. PM traps
reactive oxygen species, leading to the blockage of the oxidative degradation of Amadori
intermediaries while promoting the elimination of toxic carbonyl products originating
from glucose and lipid degradation [164–166]. Differently, thiamine pyrophosphate and
benfotiamine increase the transketolase activity, an enzyme that reduces the accumulation
of glycolytic metabolites like glyceraldehyde-3-phosphate and fructose-6-phosphate by
stimulating the pentose phosphate pathway, both involved in the formation of intracellular
AGEs [163].

Another form to impede the formation of AGEs depends on the chelation of transition
metals [167] such as Mg2+, Cu2+, and Zn2+, since, during hyperglycemic conditions, these
function as catalysts of oxidation reactions, thus favoring the formation of AGEs [168].
Regarding this, it has been found that the inhibitory actions on the formation of AGEs
shown by some antihypertensive agents such as losartan and valsartan [169,170] can
be attributed to their antioxidant and metal-chelating properties, which have also been
associated with the decreased plasma levels of AGEs in various experimental studies [171].

6.3. Breakage and Reversal of Preformed AGEs

Other sorts of compounds have obtained relevance throughout the search for inhibitors
of the glycation pathway. These are the N-phenacylthiazolium bromide (PTB) [172] with
its derivative ALT-711 or alagebrium (dimethyl-3-N-phenacylthiazolium chloride) [173],
given their ability to cleave AGE-AGE crosslinks that maintain AGEs attached to tissue
proteins like collagen and elastin [174]. Thoroughly, their precise mechanisms of action
rely on their reactions to carbonyl groups located in the crosslinks between AGEs, sub-
sequently promoting the spontaneous cleavage of carbon–carbon bonds at physiologic
pH [175]. Likewise, an experimental study demonstrated the efficacy of MnmC, an enzyme
involved in bacterial tRNA modification, capable of performing a catalytic reversion of the
AGEs carboxyethyl-lysine (CEL) and carboxymethyl-lysine (CML) to lysine’s native struc-
ture [176]. The application of these drugs, mainly alagebrium, in diverse animal models
has proven to be helpful in arterial stiffness reduction, blood vessel fibrosis [173,177], the
development of atherosclerosis [178], cardiovascular disease [179], hypertension [180], and
kidney injury [181].

6.4. Antagonism towards RAGE-Binding

Finally, agents capable of antagonizing the binding to RAGE could inhibit the harmful
effects of AGEs. This antagonism could function through different means, such as inhibiting
RAGE expression, interfering with intracellular signaling mediated by RAGE, or increasing
the plasma levels of the circulating sRAGE, given its ability to serve as a decoy receptor
to trap AGEs [182,183]. Numerous existing agents have proven to reach these objectives;
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among the most remarkable are statins [184,185] and thiazolidinediones [186]. Beyond their
potential as a lipid-lowering agent [187] and an oral hypoglycemic agent, respectively [188],
both have demonstrated an in vivo reduction of RAGE expression [184–186] in conjunction
with increased serum levels of sRAGE. It has been suggested that said effects depend
upon the activation of the peroxisome proliferator-activated receptor γ (PPAR-γ), which
could inhibit the phosphorylation of ERK1/2 and, thus, suppress the activation of NF-
KB, decreasing the expression of both proinflammatory cytokines and RAGE [189,190].
Moreover, azeliragon (PF-04494700 or TTP488), an oral antagonist of RAGE, has obtained
favorable results in animal models of Alzheimer’s disease and was proven safe and effective
at low doses in diverse clinical trials [191,192] (NCT02080364), being established as a
promising therapeutic agent in the management of chronic complications of DM such as
diabetic retinopathy [193].

Other molecules being widely researched are glucagon-like peptide-1 (GLP-1) and
its analog exendin-4. Various experimental studies have shown their ability to decrease
RAGE expression by suppressing NF-KB and reducing ROS generation by decreasing
NADPH oxidase activity [194,195]. Consequently, these results have been associated with
reducing the damage related to the activation of the AGE–RAGE axis in diseases like
diabetic retinopathy [196], atherosclerosis [197], and diabetic cardiomyopathy [198].

7. Future Perspectives

The clinical potential of these interventions has not been completely established yet.
For instance, aminoguanidine, despite being the first drug capable of examining the concept
that inhibiting the formation of AGEs could lead to a clinically significant attenuation of
a severe complication of diabetes [199], had to be suspended due to drug safety issues
secondary to multiple adverse effects, such as its prooxidative potential [200], inhibition
of NO synthase [201], abnormalities in liver function, development of antineutrophil
cytoplasm antibodies, and even some cases of glomerulonephritis [145].

However, some agents, including alagebrium, benfotiamine, pyridoxamine, and thia-
zolidinediones, have achieved promising results in recent clinical trials [130–136,202–204].
Nonetheless, there are no available therapies specifically directed to prevent or eradicate
AGEs; most of the preliminary clinical trials have focused on assessing the single effect of
any particular AGE inhibitor, excluding the rest of the signaling pathways that could be
intervened. Respectively, it would be excellent to research the combined effect of two or
more inhibitors that act on different steps of the AGE–RAGE axis. Additionally, designing
a drug with a broad spectrum of action to obtain better results in controlling the adverse
effects of AGEs in the organism can be a further alternative.

In this sense, sRAGE has emerged as a promising molecule to competitively inhibit
RAGE activation, modulating the systemic inflammation produced by the AGE–RAGE axis
in multiple experimental studies. [205]. By acting as a decoy for RAGE ligands, sRAGE is
able to attenuate inflammatory signaling, oxidative stress, and metabolic dysregulation.
However, these findings came from experimental models [206].

8. Conclusions

The action of AGEs in the development of chronic complications of DM has been
reported. The increase in plasma concentrations of AGEs, either due to an increase in
their consumption or due to their intrinsic formation, as well as the subsequent activation
of RAGE, is known as the AGE–RAGE axis, which functions as a powerful inducer of
proinflammatory pathways by promoting the synthesis of cytokines such as TNF-α, IL,
VCAM-1, and even the increase of ROS, which has harmful effects on the micro- and
macrovasculature of the target organs affected in DM. As a result, the interest in AGEs as a
therapeutic target has increased, with the aim of creating drugs that can interfere with the
activity of these molecules, decrease their concentration, or antagonize the AGE–RAGE
axis, opening up the possibility of finding a new way to reduce the damage in target organs
and improve the quality of life of patients. Additionally, the measurement of AGEs has
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acquired relevance, since they can be considered better markers than HbA1c. Studies
using the SAF assessment have shown that increased levels are related to the risk factors of
long-term complications; thus, these noninvasive tools could be used to establish the risk
of developing DM complications, allowing for prompt intervention.
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