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Numerous evidence has revealed that single-nucleotide polymorphisms (SNPs) are asso-
ciated with liver cancer risk. To assess whether the MIR17HG polymorphisms are associ-
ated with the liver cancer risk in the Chinese Han population, we performed a case–control
(432 liver cancer patients and 430 healthy controls) study. Genotyping of four variants of
MIR17HG was performed with the Agena MassARRAY platform. We used χ2 test to compare
the distribution of SNPs allele and genotypes frequencies of cases and controls. Odds ra-
tios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis
to evaluate the association under genetic models. The results indicated that the rs7318578
was significantly associated with increased the risk of liver cancer in the allele (OR = 1.45,
95% CI: 1.18–1.77, P=3.04E-04), recessive (OR = 3.69, 95% CI: 2.45–5.56, P=4.52E-10)
and additive model (OR = 1.35, 95% CI: 1.13–1.62, P=0.001). Moreover, we found that in-
dividuals with the genotype CC of rs7318578 presented with an increased risk of liver can-
cer (OR = 3.03, 95% CI: 1.98–4.65, P=3.83E-07); however, the CA genotype of rs7318578
significantly decreased the risk of liver cancer (OR = 0.61, 95% CI: 0.45–0.83, P=0.001,
compared with those with the AA genotype. Our findings indicated that MIR17HG polymor-
phism (rs7318578) contributes to liver cancer susceptibility to the Chinese Han population.
Further studies with larger samples are required to confirm the results, as well as functional
studies to determine the role of this SNP in miRNA expression or molecular pathways.

Introduction
Liver cancer is predicted to be the sixth most commonly diagnosed cancer and the fourth leading cause
of cancer death worldwide in 2018, with about 841,000 new cases and 782,000 deaths annually [1]. Liver
cancer is also commonly diagnosed and identified as leading causes of cancer death in China, with an
estimated about 392,868 newly liver cancer cases and 368,960 death in 2018 [2]. The carcinogenesis of
liver cancer is a complex and multistep process regulated by various risk factors. Epidemiological studies
indicated that the major environmental risk factors of liver cancer include chronic infections of hepatitis
B virus (HBV) and hepatitis C virus, exposure to aflatoxin, alcohol consumption and cigarette smoking,
and diabetes [3,4]. Although many individuals are exposed to these risk factors, only a small group of
exposed people eventually develop liver cancer, suggesting that host genetic factors may affect liver cancer
development. Recently, numerous evidences have revealed that single-nucleotide polymorphisms (SNPs)
are associated with liver cancer risk [5–8].

MicroRNAs (miRNAs) are small noncoding single-stranded RNA molecules of about 22 nucleotides,
which can regulate target gene expression through complementary binding to their 3′ untranslated region
with their seed sequences [9]. MiRNAs have been found to regulate various functions during cancer de-
velopment, including cancer cell growth, metastasis, cell cycle, apoptosis, invasion, and chemo-resistance
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[10,11]. The human miRNA 17-92 cluster host gene (MIR17HG) located on chromosome 13q31.3 in the third in-
tron of the c13orf25 (chromosome 13 open reading frame 25) gene, encompasses six miRNAs (miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1 and miR-92a-1) over ∼800 nucleotides. These miRNAs were previously identified to
be highly expressed in various types of human cancers, such as lung cancer [12], breast cancer [13], colon cancer [14],
pancreatic cancer [15] and gastric cancer [16]. It has demonstrated that miR-92a highly expressed in hepatocellular
carcinoma (HCC). In addition, the proliferation of HCC-derived cell lines was enhanced by miR-92a and inhibited
by the anti-miR-92a antagomir [17]. A systematic evaluation of candidate oncomiRs and found that up-regulation
of miR-18a in HCC was associated with poor patient survival and promoted proliferation in HCC cell lines [18].
However, it remains unclear the mechanism by which miR-17-92 cluster is involved in hepatocellular carcinogenesis.

It has been reported that the MIR17HG polymorphisms were associated with the risk of breast cancer [19], col-
orectal cancer [20,21] and multiple myeloma [22]. However, the association of the SNPs (rs75267932, rs72640334,
rs7318578 and rs17735387) in MIR17HG with liver cancer susceptibility has not been investigated. Therefore, we
performed a case–control (432 liver cancer patients and 430 healthy controls) study to assess whether these four
genetic variants are associated with the risk of liver cancer in the Chinese Han population.

Materials and methods
Participants
The present study recruited 862 unrelated subjects that visited the Second Affiliated Hospital of Shaanxi University of
Chinese Medicine, including 432 patients with liver cancer and 430 healthy control individuals. All the patients with
liver cancer were diagnosed by either histopathologic or imaging evidence based on the standards established by the
Chinese Society of Liver Cancer (CSLC). The controls are selected from undergoing routine medical examination,
which has been excluded those with medical history of surgery, cancer and other diseases. All subjects were unrelated
Chinese Han nationality.

DNA extraction
Genomic DNA was extracted from stored blood using the GoldMag-Mini Whole Blood Genomic DNA Purifica-
tion Kit (GoldMag. Co. Ltd., Xi’an, China) depending on the manufacturer’s instructions [23,24]. The concentration
and purity of extracted DNA determined using a spectrophotometer (NanoDrop 2000; Thermo Fisher Scientific,
Waltham, MA, U.S.A.).

Genotyping
We selected four SNPs (rs75267932, rs72640334, rs7318578 and rs17735387) in MIR17HG with a minor allele fre-
quency (MAF) >5% in the global population from the HapMap database. The primers for polymerase chain reaction
(PCR) amplification and single base extension of the three SNPs were designed by the Agena Bioscience Assay De-
sign Suite V2.0 software (https://agenacx.com/online-tools/). The four SNPs genotyping were performed using the
Agena MassARRAY platform with iPLEX gold chemistry (Agena Bioscience, San Diego, CA, U.S.A.) according to
the manufacturer’s instructions. Data were managed and analyzed using the version 4.0 Agena Bioscience TYPER
software.

Statistical analysis
We used the SPSS 20.0 statistical package (SPSS, Chicago, IL) to conduct the basic descriptive statistical analysis of de-
mographic. The chi-squared (χ2) test was used to assess the differences in distribution of gender between the case and
control groups. The Student’s t-test analysis was used to compare the distribution of age between liver cancer patients
and controls. The Chi-square analysis was also used to confirm that the genotype distribution of each SNP among the
control group was in Hardy–Weinberg equilibrium (HWE). The association for polymorphisms in MIR17HG and
the liver cancer was assessed under the genetic models (codominant, dominant, recessive and additive) by PLINK
software (version 1.07). The genotype and allele frequencies of the four SNPs were compared between liver cancer
patients and control subjects with the chi-square test, and the odds ratios (ORs) and 95% confidence intervals (CIs)
were estimated using logistic regression analysis. All statistical analyses were two sided and P-value of less than 0.05
was considered statistically significant.

Results
Table 1 shows the statistical analysis of the demographic characteristics of study participants. There were 432 patients
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Table 1 Characteristics of liver cancer patients and controls in the present study

Characteristics Cases (%) Controls (%) P

Total 432 430

Gender

Male 344 (79.6) 342 (79.5) 0.846

Female 88 (20.4) 88 (20.5)

Age (year)

Mean +− SD 55.09 +− 11.59 55.22 +− 10.73 0.861

BMI

Mean +− SD 24.52 +− 4.52 24.36 +− 4.29 0.571

Smoking

Yes 183 (42.4) 173 (40.2) 0.556

No 249 (57.6) 257 (59.8)

Drinking

Yes 168 (38.9) 162 (37.7) 0.714

No 264 (61.1) 268 (62.3)

Tumor history

Yes 50 (11.6) 18 (4.2) <0.001

No 382 (88.4) 412 (95.8)

Tumor stage

I-II 274 (63.0)

III-IV 161 (37.0)

P<0.05 indicates statistical significance.

Table 2 Allele frequencies distribution and association with liver cancer risk

SNP–ID Chr, Position Role Allele A/B MAF HWE–P OR (95%CI) P
Case Control

rs75267932 13, 91351812 Intron G/A 0.116 0.111 0.461 1.04 (0.78–1.41) 0.775

rs72640334 13, 91352674 Intron A/C 0.115 0.088 0.560 1.34 (0.98–1.83) 0.069

rs7318578 13, 91353215 Intron C/A 0.377 0.294 0.727 1.45 (1.18–1.77) 3.04E-04

rs17735387 13, 91353800 Intron A/G 0.201 0.201 0.652 1.00 (0.79–1.27) 0.971

Abbreviations: CI, confidence interval; Chr, chromosome; HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency; OR: odds ratio; SNP,
single-nucleotide polymorphism.
P<0.05 indicates statistical significance.
P<(0.05/4 = 0.0125) indicates statistical significance with Bonferroni correction.

with liver cancer (344 males and 88 females) and 430 healthy controls (342 males and 88 females) in the present study.
The average ages of cases and controls were 55.09 years old and 55.22 years old, respectively. No significant differences
existed between the case group and the control group in regard to gender, smoking, and drinking (P>0.05). Similarly,
no significant differences were found in terms of mean age (P= 0.861) and BMI (P=0.571) between these two groups.

Four selected SNPs in MIR17HG were successfully genotyped (call rate >95%). Allele distributions and associa-
tions of the MIR17HG gene polymorphisms with liver cancer risk are shown in Table 2. The genotypes of rs75267932,
rs72640334, rs7318578 and rs17735387 were in agreement with the HWE in control group (P>0.05). In the overall
analysis, we found that the allele C of rs7318578 with the higher distribution frequency in the controls than cases
(0.377 vs. 0.294, P=3.04E-04). The SNP rs7318578 was associated with higher risk of liver cancer with an OR 1.45
(95% CI: 1.18–1.77). The association remained significant even after Bonferroni correction, the significant level is
0.05/4 = 0.0125. However, no significant association was observed between the three SNPs in MIR17HG (rs75267932,
rs72640334 and rs17735387) and liver cancer risk.

To explore the association between the genotype distributions and associations of the four SNPs in MIR17HG
with liver cancer risk, we performed four genetic models (codominant, dominant, recessive and additive) analysis
before and after adjusted with age and gender, as shown in Table 3. Individuals with the homozygous genotype CC
of rs7318578 presented with an increased risk of liver cancer, compared with those with the AA genotype (OR =
3.01, 95% CI: 1.97–4.62, P=4.09E-07; adjusted OR = 3.03, 95% CI: 1.98–4.65, P=3.83E-07). The rs7318578 was also
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Table 3 Genetics models analyses of association MIR17HG polymorphisms with liver cancer risk

SNP-ID Model Genotype Case (%) Control (%) OR (95% CI) P
adjust OR (95%

CI) P

rs75267932 Codominant AA 340 (78.7) 342 (79.4) 1 1

GA 84 (19.4) 82 (19.0) 1.03 (0.73–1.45) 0.863 1.03 (0.74–1.45) 0.850

GG 8 (1.9) 7 (1.6) 1.15 (0.41–3.21) 0.790 1.15 (0.41–3.21) 0.788

Dominant AA 340 (78.7) 342 (79.4) 1 1

GG-GA 92 (21.3) 89 (20.6) 1.04 (0.75–1.44) 0.816 1.04 (0.75–1.45) 0.803

Recessive GA-AA 424 (98.1) 424 (98.4) 1.14 (0.41–3.18) 0.798 1.14 (0.41–3.18) 0.797

GG 8 (1.9) 7 (1.6)

Additive 1.04 (0.78–1.4) 0.779 1.05 (0.78–1.40) 0.768

rs72640334 Codominant CC 336 (77.8) 357 (82.8) 1 1

AC 93 (21.5) 72 (16.7) 1.37 (0.98–1.93) 0.070 1.37 (0.97–1.93) 0.070

AA 3 (0.7) 2 (0.5) 1.59 (0.26–9.60) 0.611 1.59 (0.26–9.60) 0.613

Dominant CC 336 (77.8) 357 (82.8) 1 1

AA-AC 96 (22.2) 74 (17.2) 1.38 (0.98–1.93) 0.063 1.38 (0.98–1.93) 0.064

Recessive AC-CC 429 (99.3) 429 (99.5) 1 1

AA 3 (0.7) 2 (0.5) 1.50 (0.25–9.02) 0.658 1.49 (0.25–9.00) 0.662

Additive 1.36 (0.98–1.88) 0.063 1.36 (0.98–1.88) 0.064

rs7318578 Codominant AA 212 (49.3) 211 (49.3) 1 1

CA 112 (26.0) 182 (42.5) 0.61 (0.45–0.83) 0.002 0.61 (0.45–0.83) 0.001

CC 106 (24.7) 35 (8.2) 3.01 (1.97–4.62) 4.09E–07 3.03 (1.98–4.65) 3.83E–07

Dominant AA 212 (49.3) 211 (49.3) 1 1

CC-CA 218 (50.7) 217 (50.7) 1.00 (0.77–1.31) 0.999 1.00 (0.76–1.31) 0.996

Recessive CA-AA 324 (75.3) 393 (91.8) 1 1

CC 106 (24.7) 35 (8.2) 3.67 (2.44–5.53) 4.70E–10 3.69 (2.45–5.56) 4.52E–10

Additive 1.35 (1.13–1.63) 0.001 1.35 (1.13–1.62) 0.001

rs17735387 Codominant GG 276 (63.9) 277 (64.3) 1 1

AG 138 (31.9) 135 (31.3) 1.03 (0.77–1.37) 0.863 1.03 (0.77–1.37) 0.867

AA 18 (4.2) 19 (4.4) 0.95 (0.49–1.85) 0.882 0.95 (0.49–1.85) 0.880

Dominant GG 276 (63.9) 277 (64.3) 1 1

AA-AG 156 (36.1) 154 (35.7) 1.02 (0.77–1.34) 0.907 1.02 (0.77–1.34) 0.912

Recessive AG-GG 414 (95.8) 412 (95.6) 1 1

AA 18 (4.2) 19 (4.4) 0.94 (0.49–1.82) 0.861 0.94 (0.49–1.82) 0.859

Additive 1.00 (0.80–1.27) 0.972 1.00 (0.79–1.27) 0.976

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.
Adjust OR (95% CI) were calculated by logistic regression analysis with adjustments for age and gender.
P<0.05 indicates statistical significance.
P<(0.05/4 = 0.0125) indicates statistical significance with Bonferroni correction.

found to be associated with an increased with liver cancer risk in the recessive model (OR = 3.67, 95% CI: 2.44–5.53,
P=4.70E-10; adjusted OR = 3.69, 95% CI: 2.45–5.56, P=4.52E-10) and the additive model (OR = 1.35, 95% CI:
1.13–1.63, P=0.001; adjusted OR = 1.35, 95% CI: 1.13–1.62, P=0.001). However, the results showed that CA genotype
of rs7318578 was associated with a decreased risk of liver cancer, compared with those with the AA genotype (OR =
0.61, 95% CI: 0.45–0.83, P=0.002; adjusted OR = 0.61, 95% CI: 0.45–0.83, P=0.001). The association also remained
significant even after Bonferroni correction (0.05/4 = 0.0125). However, no any significant association was found
between the SNPs (rs75267932, rs72640334 and rs17735387) in MIR17HG and risk of liver cancer.

We further divided the data into subgroups based on age, gender, smoking, drinking and BMI (Table 4). When
stratifying by age, we found that the genotype CC of rs7318578 was significantly associated with an increased risk
of liver cancer, compared with the AA genotype and CA-AA genotype in age >55 years old (OR = 3.37, 95% CI:
1.74–6.51, P<0.0001; OR = 3.91, 95% CI: 2.07–7.38, P<0.0001); age ≤55 years old (OR = 2.73, 95% CI: 1.55–4.83,
P=0.001; OR = 3.43, 95% CI: 1.99–5.92, P<0.0001); males (OR = 2.77, 95% CI: 1.72–4.46, P<0.0001; OR = 3.44,
95% CI: 2.18–5.42, P<0.0001); females (OR = 4.30, 95% CI: 1.60–11.60, P=0.004; OR = 4.93, 95% CI: 1.89–12.84,
P=0.001); no smoking (OR = 3.46, 95% CI: 1.90–6.30, P<0.0001; OR = 4.13, 95% CI: 2.32–7.33, P<0.0001); smoking
(OR = 2.72, 95% CI: 1.46–5.07, P<0.0001; OR = 3.43, 95% CI: 1.89–6.23, P<0.0001); no drinking (OR = 2.96,
95% CI: 1.70–5.17, P<0.0001; OR = 3.72, 95% CI: 2.17–6.37, P<0.0001); drinking (OR = 3.30, 95% CI: 1.67–6.52,
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Table 4 Association of rs7318578 with liver cancer risk

Model Genotype Case (%) Control (%) OR (95% CI) P case control OR (95% CI) P

Age >55 ≤55

Codominant AA 101 (48.6) 94 (50.8) 1 111 (50) 117 (48.1) 1

CA 57 (27.4) 77 (41.6) 0.68 (0.44–1.07) 0.094 55 (24.8) 105 (43.2) 0.56 (0.37–0.86) 0.007

CC 50 (24) 14 (7.6) 3.37 (1.74–6.51) <0.0001 56 (25.2) 21 (8.6) 2.73 (1.55–4.83) 0.001

Dominant AA 101 (48.6) 94 (50.8) 1 111 (50) 117 (48.1) 1

CC-CA 107 (51.4) 91 (49.2) 1.09 (0.74–1.63) 0.658 111 (50) 126 (51.9) 0.93 (0.64–1.34) 0.698

Recessive CA-AA 158 (76) 171 (92.4) 1 166 (74.8) 222 (91.4) 1

CC 50 (24) 14 (7.6) 3.91 (2.07–7.38) <0.0001 56 (25.2) 21 (8.6) 3.43 (1.99–5.92) <0.0001

Additive — — — 1.41 (1.08–1.86) 0.013 — — 1.29 (1.01–1.66) 0.043

Gender Male Female

Codominant AA 170 (49.6) 163 (48.1) 1 42 (48.3) 47 (53.4) 1

CA 90 (26.2) 147 (43.4) 0.59 (0.42–0.82) 0.002 22 (25.3) 35 (39.8) 0.70 (0.36–1.38) 0.306

CC 83 (24.2) 29 (8.6) 2.77 (1.72–4.46) <0.0001 23 (26.4) 6 (6.8) 4.30 (1.6–11.6) 0.004

Dominant AA 170 (49.6) 163 (48.1) 1 42 (48.3) 47 (53.4) 1

CC-CA 173 (50.4) 176 (51.9) 0.94 (0.70–1.27) 0.698 45 (51.7) 41 (46.6) 1.23 (0.68–2.22) 0.497

Recessive CA-AA 260 (75.8) 310 (91.4) 1 64 (73.6) 82 (93.2) 1

CC 83 (24.2) 29 (8.6) 3.44 (2.18–5.42) <0.0001 23 (26.4) 6 (6.8) 4.93
(1.89–12.84)

0.001

Additive — — — 1.30 (1.06–1.59) 0.013 — — 1.57 (1.05–2.37) 0.030

Smoking No Yes

Codominant A/A 118 (48) 124 (48.6) 1 <0.0001 93 (50.8) 86 (50) 1 <0.0001

C/A 72 (29.3) 114 (44.7) 0.66 (0.45–0.98) 40 (21.9) 69 (40.1) 0.54 (0.33–0.87)

C/C 56 (22.8) 17 (6.7) 3.46 (1.90–6.30) 50 (27.3) 17 (9.9) 2.72 (1.46–5.07)

Dominant A/A 118 (48) 124 (48.6) 1 0.880 93 (50.8) 86 (50) 1 0.880

C/A-C/C 128 (52) 131 (51.4) 1.03 (0.72–1.46) 90 (49.2) 86 (50) 0.97 (0.64–1.47)

Recessive A/A-C/A 190 (77.2) 238 (93.3) 1 <0.0001 133 (72.7) 155 (90.1) 1 <0.0001

C/C 56 (22.8) 17 (6.7) 4.13 (2.32–7.33) 50 (27.3) 17 (9.9) 3.43 (1.89–6.23)

Additive — — — 1.39 (1.08–1.78) 0.009 — — 1.33 (1.01–1.74) 0.042

Drinking No Yes

Codominant A/A 139 (53) 135 (50.9) 1 <0.0001 73 (43.5) 75 (46.3) 1 <0.0001

C/A 62 (23.7) 110 (41.5) 0.55 (0.37–0.81) 50 (29.8) 73 (45.1) 0.70 (0.43–1.14)

C/C 61 (23.3) 20 (7.5) 2.96 (1.70–5.17) 45 (26.8) 14 (8.6) 3.30 (1.67–6.52)

Dominant A/A 139 (53) 135 (50.9) 1 0.630 73 (43.5) 75 (46.3) 1 0.600

C/A-C/C 123 (47) 130 (49.1) 0.92 (0.65–1.29) 95 (56.5) 87 (53.7) 1.12 (0.73–1.73)

Recessive A/A-C/A 201 (76.7) 245 (92.5) 1 <0.0001 123 (73.2) 148 (91.4) 1 <0.0001

C/C 61 (23.3) 20 (7.5) 3.72 (2.17–6.37) 45 (26.8) 14 (8.6) 3.87 (2.03–7.38)

Additive — — — 1.29 (1.02–1.63) 0.033 — — 1.47 (1.09–1.97) 0.010

BMI >24 ≤ 24

Codominant A/A 108 (49.1) 96 (45.5) 1 <0.0001 104 (49.5) 114 (52.8) 1 <0.0001

C/A 56 (25.4) 100 (47.4) 0.50 (0.32–0.76) 56 (26.7) 83 (38.4) 0.74 (0.48–1.14)

C/C 56 (25.4) 15 (7.1) 3.32 (1.76–6.25) 50 (23.8) 19 (8.8) 2.88 (1.60–5.21)

Dominant A/A 108 (49.1) 96 (45.5) 1 0.460 104 (49.5) 114 (52.8) 1 0.500

C/A-C/C 112 (50.9) 115 (54.5) 0.87 (0.59–1.26) 106 (50.5) 102 (47.2) 1.14 (0.78–1.67)

Recessive A/A-C/A 164 (74.5) 196 (92.9) 1 <0.0001 160 (76.2) 197 (91.2) 1 <0.0001

C/C 56 (25.4) 15 (7.1) 4.46 (2.43–8.18) 50 (23.8) 19 (8.8) 3.24 (1.84–5.72)

Additive — — — 1.32 (1.01–1.70) 0.037 — — 1.40 (1.08–1.81) 0.011

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.
OR (95% CI) were calculated by logistic regression analysis with adjustments for age and gender.
P<0.05 indicates statistical significance.
P<(0.05/4 = 0.0125) indicates statistical significance with Bonferroni correction.

P<0.0001; OR = 3.87, 95% CI: 2.03–7.38, P<0.0001); BMI > 24 (OR = 3.32, 95% CI: 1.76–6.25, P<0.0001; OR
= 4.46, 95% CI: 2.43–8.18, P<0.0001); BMI ≤ 24 (OR = 2.88, 95% CI: 1.60–5.21, P<0.0001; OR = 3.24, 95% CI:
1.84–5.72, P<0.0001).

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2020) 40 BSR20193312
https://doi.org/10.1042/BSR20193312

In the additive model, rs7318578 was found to be associated with significantly increased risk of liver cancer in
the age >55 years old (OR = 1.41, 95% CI: 1.08–1.86, P=0.013), age ≤55 years old (OR = 1.29, 95% CI: 1.01–1.66,
P=0.043); males (OR = 1.30, 95% CI: 1.06–1.59, P=0.013), females (OR = 1.57, 95% CI: 1.05–2.37, P=0.030); no
smoking (OR = 1.39, 95% CI: 1.08–1.78, P=0.009), smoking (OR = 1.33, 95% CI: 1.01–1.74, P=0.042); no drinking
(OR = 1.29, 95% CI: 1.02–1.63, P=0.033), drinking (OR = 1.47, 95% CI: 1.09–1.97, P=0.010); BMI > 24 (OR =
1.32, 95% CI: 1.01–1.70, P=0.037), BMI ≤ 24 (OR = 1.40, 95% CI: 1.08–1.81, P=0.011) (Table 4).

However, the CA genotype of rs7318578 significantly decreased the risk of liver cancer in age ≤55 years old (OR
= 0.56, 95% CI: 0.37–0.86, P=0.007); males (OR = 0.59, 95% CI: 0.42–0.82, P=0.002); no smoking (OR = 0.66, 95%
CI: 0.45–0.98, P<0.0001), smoking (OR = 0.54, 95% CI: 0.33–0.87, P<0.0001); no drinking (OR = 0.55, 95% CI:
0.37–0.81, P<0.0001); BMI > 24 (OR = 0.50, 95% CI: 0.32–0.76, P<0.0001), compared with the AA genotype (Table
4).

Discussion
In the present study, we investigated the association between MIR17HG polymorphisms and liver cancer risk in
the Chinese Han population. Overall, stratification analysis found that the rs7318578 was significantly associated
with increased the risk of liver cancer in allele, recessive and additive models. Overall, stratification analysis results
indicated that individuals with the homozygous genotype CC of rs7318578 presented with an increased risk of liver
cancer; however, the CA genotype of rs7318578 significantly decreased the risk of liver cancer in overall, male and
age ≤55 years old, compared with those with the AA genotype.

This MIR17HG gene is the host gene for the MIR17-92 cluster, a group of at least six microRNAs (miRNAs) that
may be involved in cell survival, proliferation, differentiation and angiogenesis [25]. The miR-17-92 gene cluster, also
known as C13orf25, is closely related to tumorigenesis by inhibiting the expression of cell cycle regulatory genes and
tumor suppressor genes. The E2F, p53, STAT3 and c-Myc bind to the promoter region of the miR-17-92 gene clus-
ter and regulate downstream target genes, thereby affecting biological processes such as cell proliferation, invasion,
migration and apoptosis, playing an important role in tumorigenesis [26–28]. The oncogenic effect of the miR-17-92
cluster is enhanced by cooperation between its members in targeting tumor-suppressive proteins and pathways such as
PTEN and TGFβ signaling [29]. MiR17-92 cluster is an oncogenic miRNA cluster that is implicated in several cancers.
The miR-17-92 cluster has been reported to be highly expressed in human hepatocellular carcinoma (HCC) tissues
compared with the non-tumorous liver tissues by reverse transcription-polymerase chain reaction (RT-PCR) and in
situ hybridization analyses. Moreover, forced overexpression of the miR-17-92 cluster in cultured human hepatocel-
lular cancer cells enhanced tumor cell proliferation, colony formation and invasiveness in vitro, whereas inhibition
of the miR-17-92 cluster reduced tumor cell growth [30]. A recent study shows that the histone deacetylase inhibitors
(HDACi) SAHA epigenetically upregulates MICA expression through regulating the expression of miR-17-92 cluster
and MCM7 in hepatoma. Thus, enhancing the sensitivity of HCC to natural killer cell-mediated lysis [31]. These
findings suggest that miR-17-92 cluster plays a pivotal role in the development of liver cancer. However, its role in
hepatocarcinogenesis has not been clearly established.

It has been reported the rs7336610 and AC haplotype of rs4824505/rs7336610 are associated with risk of breast can-
cer [19]. Polymorphisms (rs7336610 and rs1428), haplotype AC (rs4284505-rs1428) and CA (rs7336610-rs4284505)
of MIR17HG were correlated with increased multiple myeloma risk, whereas haplotype GC (rs4284505-rs1428) sig-
nificantly elevated multiple myeloma risk [22]. Meanwhile, Kaplan–Meier curve analysis demonstrated that the CC
genotype of rs7336610 and the AA genotype carriers of rs4284505 had higher 5-year survival. Previous study reported
that two functional polymorphisms (rs9588884 and rs982873) in the promoter region of miR-17-92 cluster are associ-
ated with a decreased risk of colorectal cancer [20]. Recently, Chen et al. [21] indicated that the two SNPs (rs7336610
and rs1428) of MIR17HG were associated with increased colorectal cancer risk, and the two SNPs (rs7318578 and
rs17735387) of MIR17HG were associated with decreased colorectal cancer risk in the Chinese Han population. In
the present study, we investigate the association between of polymorphisms of MIR17HG and liver cancer risk in the
Chinese Han population. The results indicated that the genotype CC of rs7318578 was associated with an increased
risk of liver cancer; however, the CA genotype of rs7318578 significantly reduced the risk of liver cancer, compared
with those with the AA genotype. In the genomes project in Han Chinese, the frequency of allele C of rs7318578
is 0.277; the frequencies of genotype AA, AC and CC are 0.515, 0.417 and 0.068, respectively. In the present study
control group, the frequency of allele C of rs7318578 is 0.294; the frequencies of genotype AA, AC and CC are 0.493,
0.425 and 0.082, respectively. There was no significant difference in the frequency distribution of alleles (P=0.616)
and genotypes (P=0.865) of rs7318578 between this study control group and genomes project CHB. Therefore, the
further research is needed to verify the results.

6 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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To the best of our knowledge, the present study is the first to assess the association between polymorphisms in
the MIR17HG gene and liver cancer risk in the Chinese Han population. The limitations of our work should be
mentioned. First, the sample size of the present study is relatively small. Second, limited the gene–environment inter-
action analysis. Third, additional SNPs in MIR17HG may be associated with liver cancer but were not assessed for
their potential associations. Finally, the present study did not elucidate the role of this SNP in miRNA expression or
the specific mechanism of the MIR17HG polymorphisms affecting in the development of liver cancer.

Conclusions
In conclusion, our study provides evidence that polymorphism (rs7318578) in MIR17HG was associated with sus-
ceptibility to liver cancer in the Chinese Han population. To the best of our knowledge, this is the first time study
investigating SNPs in the MIR17HG gene in liver cancer. Therefore, our findings are required to confirm in further
with larger populations and/or different ethnicities, as well as functional studies to determine the role of this SNP in
miRNA expression or molecular pathways affecting in the development of liver cancer.
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