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SUMMARY
Understanding antibody-basedSARS-CoV-2 immunity is critical for overcoming the COVID-19 pandemic and
informing vaccination strategies. We evaluated SARS-CoV-2 antibody dynamics over 10 months in 963 indi-
viduals who predominantly experienced mild COVID-19. Investigating 2,146 samples, we initially detected
SARS-CoV-2 antibodies in 94.4% of individuals, with 82% and 79% exhibiting serum and IgG neutralization,
respectively. Approximately 3% of individuals demonstrated exceptional SARS-CoV-2 neutralization, with
these ‘‘elite neutralizers’’ also possessing SARS-CoV-1 cross-neutralizing IgG. Multivariate statistical
modeling revealed age, symptomatic infection, disease severity, and gender as key factors predicting
SARS-CoV-2-neutralizing activity. A loss of reactivity to the virus spike protein was observed in 13% of indi-
viduals 10months after infection. Neutralizing activity had half-lives of 14.7weeks in serum versus 31.4weeks
in purified IgG, indicating a rather long-term IgG antibody response. Our results demonstrate a broad spec-
trum in the initial SARS-CoV-2-neutralizing antibody response, with sustained antibodies in most individuals
for 10 months after mild COVID-19.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which

was first identified inDecember 2019 (Zhou et al., 2020; Zhu et al.,

2020). Since then, the virus has rapidly spread across the globe

and caused more than 140 million proven infections and over 3

million deaths (Dong et al., 2020). Disease severity can range

from asymptomatic infection to symptoms like cough, fever,

muscle pain, and diarrhea, to severe course of infection including

pneumonia with severe respiratory distress and a high mortality

risk (Huang et al., 2020b; Mizrahi et al., 2020; Rothe et al.,
Cell H
2020). While the majority of infected individuals experience a

mild course of disease, elderly individuals or thosewith pre-exist-

ing conditions are at a higher risk for severe course of COVID-19

(Williamson et al., 2020). In symptomatic non-hospitalized cases,

the acute course of disease typically spans 7–14 days (He et al.,

2020; Wölfel et al., 2020). However, a significant fraction of

COVID-19 patients suffer long-lasting symptoms post-recovery,

the so called ‘‘post-COVID syndrome’’ (Augustin et al., 2021; Cir-

ulli et al., 2020; Galván-Tejada et al., 2020; Huang et al., 2021).

SARS-CoV-2 infects human cells by using the virus spike (S)

protein (Walls et al., 2020) for targeting the angiotensin-convert-

ing enzyme-2 (ACE-2) receptor (Hoffmann et al., 2020). The
ost & Microbe 29, 917–929, June 9, 2021 ª 2021 Elsevier Inc. 917
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S-protein carries immunodominant epitopes against which hu-

moral B and T cell responses are generated upon natural infec-

tion and vaccination (Ni et al., 2020; Piccoli et al., 2020; Rydyzn-

ski Moderbacher et al., 2020; Sahin et al., 2020; Widge et al.,

2020). S-specific IgM, IgA, and IgG antibodies are detected early

after infection (Long et al., 2020; Seow et al., 2020) and IgG anti-

body levels and IgG memory B cells can persist post-infection

(Dan et al., 2021; Wajnberg et al., 2020).

Neutralizing antibodies (NAbs) are powerful molecules that

target viruses and block infection. Moreover, they can eliminate

circulating viruses and infected cells by antibody-mediated

effector functions (Zohar and Alter, 2020). As a result, NAbs

are crucial to overcome infectious diseases and are an important

correlate of protection (Corti and Lanzavecchia, 2013). For

SARS-CoV-2, vaccine-induced NAbs as well as purified IgG

from convalescent animals have been shown to protect non-hu-

man primates (NHPs) from infection in a SARS-CoV-2 challenge

model (McMahan et al., 2021; Mercado et al., 2020). Moreover,

highly potent monoclonal NAbs have been isolated (Kreer

et al., 2020; Robbiani et al., 2020; Zost et al., 2020) and are being

used for treatment of COVID-19 in humans (Chen et al., 2020a;

Weinreich et al., 2020).

Given the short time SARS-CoV-2 has been studied, informa-

tion on long-term antibody dynamics are limited. Recent studies

show that serum neutralizing activity is detectable within a week

after onset of symptoms (Ng et al., 2020;Wu et al., 2020) and can

persist in the first months after infection (Dan et al., 2021; Iyer

et al., 2020;Wajnberg et al., 2020). Moreover, studies with symp-

tomatic and hospitalized individuals have shown that more se-

vere courses of disease result in a stronger SARS-CoV-2 neutral-

izing antibody response (Chen et al., 2020b; Piccoli et al., 2020;

Zeng et al., 2020). While these studies provide important in-

sights, a precise quantification of SARS-CoV-2 neutralizing ac-

tivity and dynamics, as well as clinical correlates of developing

a protective antibody response, are less known.

In this study, we set out to provide a deeper understanding of

the neutralizing antibody response to SARS-CoV-2. To this end,

we determined anti-S antibody levels and neutralizing serum and

IgG activity of 2,146 samples from a longitudinally monitored

cohort of 963 individuals, together with detailed information on

the course of disease and past medical history. We combined

statistical modeling to infer antibody decay rates after SARS-

CoV-2 infection and built a prediction model for evaluating how

clinical or disease features correlate with NAb titers. Finally, we

performed longitudinal analyses to study anti-S antibody levels

as well as NAb titers for a time period of up to 10 months post-

SARS-CoV-2 infection. Our results inform on the kinetics,

longevity, and features affecting the antibody response to

SARS-CoV-2. They are critical to understand SARS-CoV-2 im-

munity and to aid non-pharmacological interventions and vacci-

nation strategies to overcome COVID-19 (Lanzavecchia

et al., 2016).

RESULTS

Establishing a cohort for investigating SARS-CoV-2
immunity
To investigate the development of SARS-CoV-2 immunity, we

established a cohort of COVID-19 patients who recently recov-
918 Cell Host & Microbe 29, 917–929, June 9, 2021
ered from SARS-CoV-2 infection. Time since disease onset

was derived from self-reported symptom onset or date of posi-

tive naso-/oro-pharyngeal swab. In addition, each participant re-

ported details on the course of infection, symptoms, and past

medical history (Table S1). Participants enrolled ranged from

18 to 79 years of age (median: 44 years) with a balanced distribu-

tion of males (46.1%) and females (53.9%). Disease severity

included asymptomatic (4.6%), mildly symptomatic (91.7%),

and hospitalized individuals (2.9%; Figure 1; Table S1). 20.6%

of participants reported pre-existing conditions that have been

described to influence COVID-19 outcomes (Williamson

et al., 2020).

Blood samples were collected from 963 individuals at study

visit 1 (median 7.3 weeks post-disease onset) with follow-up an-

alyses at study visit 2 for 616 participants (median 18.8 weeks

post-disease onset), study visit 3 for 430 participants (median

30.1 weeks post-disease onset), and study visit 4 for 137 partic-

ipants (median 37.9 weeks post-disease onset; Figure 1). Other

participants were lost in follow-up or did not reach the respective

study visit at the time of our analysis. Anti-S IgG was quantified

by ELISA and chemiluminescent immunoassays (CLIA), and the

NAb response to SARS-CoV-2 was analyzed using serum dilu-

tions as well as purified IgG to precisely quantify neutralizing ac-

tivity (Figures S1A–S1D). In total, 4,516 measurements were

collected for visit 1 with another 2,275 subsequent measure-

ments for visits 2 to 4 to determine the SARS-CoV-2 antibody

response for 10 months following infection.

Broad spectrum of the initial SARS-CoV-2 neutralizing
antibody response
NAb levels were quantified by testing serum and purified

IgG from plasma/serum against pseudovirus particles express-

ing the Wuhan01 S protein (EPI_ISL_406716). Serum neutraliza-

tion at study visit 1 was categorized based on titer into non-

(ID50 < 10), low (ID50 = 10–25), average (ID50 = 25–250), high

(ID50 = 250–2500), and elite neutralizers (ID50 > 2500; Figure 2A).

Mean serum ID50 titer was 111.3 with 17.7% of individuals that

did not reach 50% neutralization at the lowest serum dilution

of 1:10. In addition, all samples were purified for IgG and the

neutralizing response was determined and categorized based

on IC50 values into no (IC50 > 750 mg/mL), low (IC50 = 500–

750 mg/mL), average (IC50 = 100–500 mg/mL), high (IC50 = 20–

100 mg/mL), and elite neutralization (IC50 < 20 mg/mL; Figure 2B).

At study visit 1, out of 963 participants, 10%, 44.8%, and 20.9%

demonstrated low, average, and high neutralization, respec-

tively. 21% did not mount an IgG neutralizing response of an

IC50 below 750 mg/mL. 3.3% of individuals were classified as

elite neutralizers with IC50 values as low as 0.7 mg/mL detected

in one individual at 8.6 weeks post-disease onset. Combining

serum and IgG measurements, 87.3% individuals showed

detectable NAb activity at a median of 7.3 weeks after SARS-

CoV-2 infection (Figure 2C). The serum and IgG neutralization

potency categorization matched for most individuals with a

high correlation between serum ID50 titers and IgG IC50 values

(Spearman r = �0.72, p < 0.0001; Figure 2C). Moreover, only

8.5% of samples had only serum and no IgG neutralization, indi-

cating that IgG antibodies form the dominant NAb isotype in

serum. To further determine the predictive value of IgG binding

to the S protein for SARS-CoV-2 neutralization, we performed
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Figure 1. SARS-CoV-2-recovered cohort and study design

(A) Illustration depicting study timeline and number of individuals analyzed at each study visit. Graph represents sample collection time for participants in weeks

since disease onset (symptom onset date or positive PCR date).

(B) Age distribution of the cohort.

(C) Gender distribution, presence of pre-conditions, and disease severity.
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an S1-reactive ELISA (Euroimmun) on all samples of visit 1.

82.8% and 70.2% of individuals possessed S-reactive IgG (Fig-

ures 2D and 2E) and IgA Abs, respectively (Figure S1E). Of note,

the serum-only neutralizers had very low serum neutralization

levels with geometric mean (GeoMean) ID50 of 24 and 47.6%

of this fraction demonstrating IgA reactivity. Anti-S IgG levels

were directly proportional to IgG NAb IC50 values (Spearman

r = �0.62, p < 0.0001; Figure 2F) and IgG Ab levels better corre-

lated with serum neutralization than IgA Ab levels (Figures

S1F–S1I).

Finally, we determined the fraction of individuals lacking any

detectable antibody response. To this end, we combined the re-

sults of different IgG and IgA assays detecting binding to SARS-

CoV-2 S1, S1/S2, and N, as well as three neutralization assays

(Figure 2G). Out of the 166 anti-S1-IgG negative (12.7%) or

equivocal (4.6%) individuals, we found binding antibodies in

62.0% in at least one of four assays and neutralizing activity in

54.2% in at least one of three assays (Figures 2G and 2H).

Combining these results and accounting for assay specificity

(see STAR Methods), we show that only 5.6%–7.3% of individ-

uals do not mount a detectable antibody response against

SARS-CoV-2. Notably, while only 3.6% (1 of 28) of hospitalized

patients and 4.9% (43 of 877) of individuals with mild symptoms

lacked anti-SARS-CoV-2 antibodies, 22.7% (10 of 44) of asymp-

tomatic individuals were negative for a detectable antibody
response in at visit 1 (Figure 2I). We conclude that 92.7%–

94.4% of individuals naturally infected with SARS-CoV-2 mount

an antibody response against the virus within the first 12 weeks.

Among those, we detected a broad variation in neutralizing activ-

ity with approximately 3% generating a highly potent serum and

IgG NAb response.

Age, symptoms, and disease severity predict SARS-
CoV-2 neutralization
Next, we analyzed how age, disease severity, gender, and the

presence of pre-existing conditions correlate with the anti-S

antibody and SARS-CoV-2 neutralizing responses (Figures 3A

and S2). The IgG NAb response was significantly higher in older

individuals (p < 0.0001), with participants >60 years comprising

7.7% of elite and 42.8% of high neutralizers (Figure 3A). Hospi-

talized patients had significantly higher NAb activity compared

to individuals with symptoms (p = 0.0008) and asymptomatic in-

dividuals (p = 0.0003), and 43.2% (25 of 44) of the asymptomatic

lacked detectable IgG NAbs (Figure 3A). Males showed higher

SARS-CoV-2 neutralization than females (GeoMean IC50

136.3 mg/mL versus 188.4 mg/mL; p < 0.0001). Individuals with

pre-existing conditions had only slightly higher NAb activity

compared to those without them (GeoMean IC50 161.9 mg/mL

versus 174.6 mg/mL, p = 0.022; Figure 3A). Similar to IgGNAb ac-

tivity, serum neutralizing activity and anti-S antibodies were also
Cell Host & Microbe 29, 917–929, June 9, 2021 919
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Figure 2. Neutralizing antibody response after recovery from SARS-CoV-2 infection
(A) Pie chart illustrating fraction of serum neutralizers against Wu01 pseudovirus at study visit 1. Violin plot depicts serum ID50 values for the neutralizers (n = 793),

categorized based on serum ID50 titers. Dotted line represents the LOD (10-fold dilution) of the assay.

(legend continued on next page)
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higher in older individuals, patients with a more severe course of

disease, and males (Figures S2A–S2C). Next, we performed a

multivariate statistical analysis to determine the interplay be-

tween clinical features and the NAb response and to rule out

confounders. Features included gender, age, disease severity,

presence of pre-existing conditions, disease symptoms (Table

S1), and weeks since disease onset. We applied a stepwise

regression that adds new features only if they significantly

improved the model according to a likelihood ratio test. The re-

sulting IC50 prediction model (adjusted R2 = 0.177) revealed

that age is most predictive for SARS-CoV-2 neutralizing activity

(p = 1.3�278), followed by fever during infection (p = 2.9*10�10),

disease severity (p = 6.3*10�5), diarrhea during infection

(p = 0.003), time since disease onset (p = 0.003), and male

gender (p = 0.004; Figures 3B and 3C). Pre-existing conditions

were not a significant feature of neutralizing activity in the multi-

variate analysis. Similar to the results for IgG neutralization, age,

time since disease onset, fever during acute infection, male

gender, disease severity, and diarrhea during infection were

highly predictive of serum ID50 (Figure S3A). Additionally, we built

a Bayesian network model to determine the feature depen-

dencies and how they predict the SARS-CoV-2 IgG (Figure 3D)

and serum neutralization response (Figure S3B). The Bayesan

network revealed that features like age and fever are directly pre-

dictive of neutralization, while other features are indirectly pre-

dictive through their correlation with other features. In addition,

we investigated the possible effect of viral load obtained from

naso-/oro-pharyngeal swabs at the time of diagnosis on the anti-

body response at study visit 1, but no correlation was found (Fig-

ures S3C and S3D). In summary, older age, fever or diarrhea

during acute infection, disease severity, shorter time since infec-

tion, andmale gender are highly predictive of the development of

SARS-CoV-2 neutralizing activity.

Elite SARS-CoV-2 neutralizers exhibit SARS-CoV-1
cross-neutralization
Individuals mounting a highly potent neutralizing antibody

response are often considered ‘‘elite neutralizers’’ (Simek

et al., 2009). These individuals are of particular interest (1) to

identify factors associated with the development of effective hu-

moral immunity, (2) to guide vaccine design, and (3) to isolate

highly potent neutralizing monoclonal antibodies (Walker and

Burton, 2018). In order to characterize the small fraction of

SARS-CoV-2 elite neutralizers in our cohort (3%, IC50 < 20 mg/

mL; Figure 2B), we selected 15 individuals of each group of

non-, low, average, high, and elite neutralizers, testing them

against authentic SARS-CoV-2 as well as SARS-CoV-1 pseudo-
(B) Pie chart depicting the fraction of IgG neutralization against Wu01 pseudovirus

categorized based on IgG IC50. Dotted line represents the LOD (750 mg/mL) of th

(C) Pie chart comparing fraction of samples with neutralization at serum and/or Ig

study visit 1.

(D) Violin plot of Euroimmun ELISA signal over cut-off (S/CO) ratios for anti-spike

(E) Pie charts illustrating fraction of anti-spike IgG reactive individuals in the Euro

(F) Spearman correlation between Euroimmun IgG S/CO and IgG IC50 at study v

(G) Plot depicting binding against spike, nucleocapsid (N), and neutralizing respon

fraction (n = 166) with each row representing 1 individual.

(H) Pie charts showing total fraction of individuals with binding or neutralizing ac

(I) Pie chart representing total combined binding and NAb response in the cohort (n

Bars in violin plots in A, B, and D depict median and interquartile range. LOD, lim
virus (Figure 4A). Neutralization of SARS-CoV-2 pseudovirus

correlated well with authentic virus neutralization (Spearman r =

0.79; Figure 4B). SARS-CoV-1 neutralization was not observed

in non- and low neutralizers and only in 1 out of 15 average neu-

tralizers. However, in the high and elite neutralizing groups, 8/15

and 15/15 samples carried SARS-CoV-1 cross-neutralizing ac-

tivity, respectively, with potencies (IC50) as low as 5.1 mg/mL

IgG (Figure 4A). Of note, while all SARS-CoV-2 elite neutralizers

demonstrated SARS-CoV-1 cross-neutralization, variation in po-

tency ranged from 12.1 to 634.9 mg/mL and an overall low corre-

lation (Spearman r = 0.3745; Figure 4C) was observed. Next, we

studied the neutralizing potency of the elite neutralizers against

six different SARS-CoV-2 strains carrying several mutations

that became prominent at a global level (Figure 4D; Hadfield

et al., 2018). IgG from elite neutralizers was potent against all

tested SARS-CoV-2 strains, including both S1 and S2 mutants,

as well as variants (BAVP1 and DRC94) carrying the D614G mu-

tation (Figure 4E). Intriguingly, testing the neutralizer groups

against recent SARS-CoV-2 variants of concern, B.1.1.7 and

B.1.351 (Figure 4F), revealed no significant effect on neutralizing

activity against the B.1.1.7 variant for all five groups (Figure 4F).

On the other hand, the B.1.351 variant caused almost a 20-fold

drop in GeoMean IgG IC50 in elite neutralizers, with many

average/low neutralizers losing neutralizing capacity against

this variant (Figure 4F). We conclude that individuals mounting

a potent SARS-CoV-2 NAb response possess cross-reactive an-

tibodies against SARS-CoV-1 without any known prior exposure

and can neutralize most of the prevalent SARS-CoV-2 strains. In

addition, while the B.1.1.7 variant did not alter neutralization pro-

file of IgG from convalescent individuals, neutralization capacity

against the B.1.351 variant was markedly reduced.

Long-term persistence of IgG NAbs after SARS-CoV-2
infection
In order to study antibody kinetics, we first investigated the

development of SARS-CoV-2-directed antibodies in the first

4 weeks after disease onset. To this end, we evaluated 251 sam-

ples obtained from an additional 110 individuals. In this sub-

group, 45% and 55% were male and female, respectively, and

41.8% had been hospitalized (Figure S4A). Anti-S IgG and IgA

could be detected in some people within the first week after dis-

ease onset, with IgA levels starting to decline by week 4 (Fig-

ure S4B). Out of eight individuals that were closely monitored,

most individuals sero-converted between 2 and 3 weeks post-

disease onset (Figure S4C).

In order to assess longevity of humoral immunity following

SARS-CoV-2 infection, we applied a linear regression mixed
at study visit 1. Violin plot depicts IgG IC50 values for the neutralizers (n = 760),

e assay.

G level. Spearman correlation plot between serum ID50 and IgG IC50 values at

IgG. Dotted line represents LOD (S/CO = 1.1) of the assay.

immun ELISA.

isit 1.

se against authentic virus (AV) andWu01 pseudovirus (PSV) of the IgG negative

tivity in the IgG fraction from (G).

= 963) and bar graph of the Ab-negative individuals based on disease severity.

it of detection.
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Figure 3. Correlates of SARS-CoV-2 neutralizing activity

(A) Violin plots depicting IgG neutralization IC50 values at study visit 1 against Wu01 pseudovirus, subdivided based on age, disease severity, gender, and pre-

conditions. Dotted line represents the limit of detection (750 mg/mL) of the assay. Statistical analysis was performed Kruskal-Wallis andMann-Whitney tests. Bars

represent median and interquartile range.

(B) Multiple linear regression model for predicting IgG IC50 using the features of gender, age, disease severity, pre-conditions, weeks since infection, and the nine

reported symptoms. Plot below depicts model coefficients to study the relationship of features and response in the final IC50 prediction model.

(C) Bayesian network of the features predicting IgG IC50 are plotted using the bnlearn R package. The graph connects the features, which are predictive of each

other with IgG IC50 as sink.

Features highlighted in red in (C) had p values <0.05 in the multiple regression model in (B).
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effects model to antibody measurements obtained between 3.1

to 41.9 weeks post-infection. The half-life of anti-S IgG was

estimated to be 34.9 weeks (Figure 5A). For systematic tracking

of the antibody response within individuals, we analyzed anti-S
922 Cell Host & Microbe 29, 917–929, June 9, 2021
antibodies in 131 individuals at four study visits (range 3.1 to

38.7 weeks post-disease onset; Figures 5B and 5C). The data

show that IgG levels decrease between the first and

second study visits (GeoMean S/C0 = 4.6 versus GeoMean
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Figure 4. Cross-neutralization by SARS-CoV-2 elite neutralizers
(A) Heatmaps visualizing the neutralizing activity of 15 individuals from each neutralization category: elite, high, average, low, and non-neutralizers (total n = 75)

against SARS-CoV-2-S (SARS-2) pseudovirus, SARS-CoV-2 authentic virus, and SARS-CoV-1 (SARS-1) pseudovirus.

(B) Spearman correlation of IgG IC50 against SARS-CoV-2-S and SARS-CoV-1-S pseudovirus.

(C) Spearman correlation of IgG IC50 against SARS-CoV-2-S pseudovirus and SARS-2 authentic virus.

(D) Schematic of the SARS-CoV-2 spike domains and the mutations present in global strains of SARS-CoV-2 generated and used in this study. NTD: N-terminal

domain; RBD: receptor binding domain; FP: fusion peptide; HR: heptad repeat; TM: trans-membrane.

(E) Heatmap visualizing the IC50 values of 15 elite neutralizers against the SARS-CoV-2 global spike variants.

(F) Dot plots depicting IgG neutralizing activity of 15 individuals from each neutralization category: elite, high, average, low, and non-neutralizers (total n = 75)

against SARS-2-S variants Wu01, B.1.1.7, and B.1.351.
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Figure 5. Longitudinal kinetics of anti-SARS-CoV-2 antibody titers

(A, D, and G) Semiquantitative IgG ELISA ratios (n = 1,669) (A), serum ID50 titers (n = 1,196) (D), and IgG IC50 values (n = 1,167) (G) plotted against weeks since

infection for half-life estimate using a linear mixed-effects model.

(legend continued on next page)
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S/C0 = 3.7), followed by relatively constant IgG levels

for 10 months after infection (GeoMean S/C0 = 3.0; Figure 5B;

Table S1). While the detection of S1 reactivity stays equal

at the first and second visits (86%), the fraction of individuals

that are positive for S1-reactive antibodies decays to

79% (7% drop from visit 1) at the third visit and to 73%

(13% drop from visit 1) at visit 4 (9–10 months post-dis-

ease onset).

NAb activity was longitudinally monitored for 102 individuals

from visit 1 (median 6.4 weeks post-infection) up to visit 4

(median 37.9 weeks post-infection; Figures 5D–5H). Regres-

sion modeling showed that serum neutralizing titers had a

short half-life of 14.7 weeks (Figure 5D) compared to a

much longer 31.4-week half-life for IgG NAb levels (Figure 5G).

Out of 102 individuals, 88.2% had serum neutralizing activity

at visit 1, whereas only 79.4% had NAb activity remaining at

visit 4 (Figure 5F). The overall fraction of IgG neutralizers

changed from 87.3% to 71.6% between visits 1 and 4. The

most dramatic change from GeoMean IC50 of 40.14 to

166.6 mg/mL was detected in elite/high neutralizers from visits

1 to 4, 76% of whom lost their elite or high status. 35% of

average/low neutralizers at visit 1 became negative at visit 2

(Figure 5I). Approximately 9% of these individuals did not

develop any NAbs and remained serum and IgG neutralization

negative throughout the observation period. Overall, only 3%

of individuals lost detectable antibody responses against

SARS-CoV-2 between 1.5 and 10 months post-infection (Fig-

ures S4D and S4E). Among the SARS-CoV-1 cross neutral-

izers, there was an almost 4-fold drop in IgG neutralizing

activity against SARS-CoV-2 between 7.4 and 19.4 weeks

post-disease onset. However, reactivity to SARS-CoV-1 did

not change in most individuals (Figure S4F). Finally, we also

performed regression modeling to estimate half-life based

on age, gender, pre-conditions, and disease severity (Fig-

ure S5). We found that females had more stable antibody

levels than males and that younger individuals had more sus-

tained antibody levels over time. The presence of pre-condi-

tions did not significantly affect the decay rate of antibodies.

Finally, hospitalized individuals with a more potent initial

response exhibited a more rapid decay of anti-S antibodies

than asymptomatic individuals or those with mild symptoms

(Figures S5A–S5D).

In summary, these results show that in most individuals, anti-

S IgG antibody levels are maintained for 10 months with a half-

life estimate of 8.7 months. Moreover, even though there is a

rapid decline in serum NAb activity, IgG NAb function remains

relatively constant with an estimated half-life of 7.9 months. We

conclude that although there is a decay of antibody titers in

serum, the humoral IgG response persists for as long as

10 months after SARS-CoV-2 infection.
(B) Longitudinal mapping of IgG levels in 131 individuals from visits 1–4. Dot plots

study visit 2 (blue), study visit 3 (turquoise), and study visit 4 (brown). Geometric me

for IgG ELISA).

(C) Pie charts illustrate the change in the fraction of IgG ELISA positive (Pos), ne

(E and H) Longitudinal mapping of serum neutralization (E) and IgG neutralization

assigned values of ID50 = 5 and IC50 = 900 for plotting. Dotted lines represent limit

assays).

(F and I) Pie charts illustrate the change in the fraction of serum neutralizers (F) a
DISCUSSION

In order to end the COVID-19 pandemic, widespread SARS-

CoV-2 protective immunity will be required. Antibodies are crit-

ical for effective clearance of pathogens and for prevention of

viral infections (Murin et al., 2019). In this study, we examined

the neutralizing antibody response in 963 individuals who had

recently recovered from SARS-CoV-2 infection. The cohort con-

sisted primarily (91.7%) of patients with mild COVID-19, there-

fore representing the predominant clinical course of this disease

(Williamson et al., 2020). Since higher disease severity was

shown to correlate with higher antibody responses (Garcia-Bel-

tran et al., 2021; Piccoli et al., 2020), cohortsmainly composed of

hospitalized individuals have limited applicability on the majority

of COVID-19 cases (Röltgen et al., 2020; Seow et al., 2020; Su-

thar et al., 2020; Zeng et al., 2020). Moreover, to our knowledge,

this is the most comprehensive study (n = 963) in which neutral-

izing antibody activity has been reported to date.

Upon recovery from COVID-19, we detected the development

of a broad spectrum of IgG neutralizing activity ranging from no

neutralization (threshold IC50 < 750 mg/mL, 21%) to low (IC50 =

50–750 mg/mL, 10%), average (IC50 = 100–500 mg/mL, 44.8%),

high (IC50 = 20–100 mg/mL, 20.9%), and elite SARS-CoV-2

neutralization (IC50 < 20 mg/mL, 3.3%). 94.4% of individuals

were found to possess S- or N-reactive antibodies or neutralizing

activity at the serum or IgG level. Thus, while most individuals

develop a detectable antibody response upon natural infection,

the extent of SARS-CoV-2 neutralizing activity is highly variable,

with the fraction of non-responders being highest for asymptom-

atic individuals (23%).

The broad spectrum of neutralizing activity observed in

COVID-19-recovered individuals may impact the level of protec-

tive immunity. For instance, asymptomatic infection is estimated

to account for up to 40% of all infections (Oran and Topol, 2020).

In these individuals and in other patients with weak antibody re-

sponses, lower IgG titers may contribute to a higher susceptibil-

ity to re-infection (Lumley et al., 2021). Recently, mutated virus

strains were reported (Andreano et al., 2020; Tegally et al.,

2020), some of which possess mutations causing partial resis-

tance to convalescent plasma (Tegally et al., 2020) or SARS-

CoV-2 monoclonal antibodies (Thomson et al., 2020). A weak

antibody response could make these individuals carriers and

help propagate escape variants, thereby complicating effective

measures to combat the COVID-19 pandemic.

To aid prevention strategies, it is critical to understand the

development of antibody responses upon natural infection.

The NAb response presented here is comparable to recent

S-based mRNA vaccine studies in age group 18–55, where

geometric mean neutralizing titers were in the range of 100–300

ID50 (depending on dose) 1.5 months post-vaccination
illustrate antibody titer against the weeks since infection to study visit 1 (red),

an change shown in black. Dotted lines represent limit of detection (S/CO = 1.1

gative (Neg), and equivocal (Equi) samples (n = 131) between the study visits.

(H) in 102 individuals at study visits 1–4. Serum and IgG non-neutralizers were

of detection (ID50 of 10 and IC50 of 750 mg/mL for serum and IgG neutralization

nd IgG neutralizers (I) in the samples (n = 102) between the study visits.
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(Jackson et al., 2020; Walsh et al., 2020) versus 111.3 ID50 in this

study. Recent studies have reported that age, gender, and dis-

ease severity14,36,44 can impact SARS-CoV-2 NAb titers (Chen

et al., 2020b; Garcia-Beltran et al., 2021; Luchsinger et al., 2020;

Piccoli et al., 2020; Röltgen et al., 2020). However, a comprehen-

sive analysis ona large cohortwasmissing.Usingmultivariate sta-

tistical analysis on the clinical data, we found that older age,

symptomatic infection, and a severe course of COVID-19 were

good predictors of higher NAb titers. Based on our data on natural

infection, the >60 age group had the highest level of neutralizing

IgG antibodies (Geomean IC50 = 84.8 mg/mL, Geomean ID50

serum titer = 276.6). This is notable in comparison to vaccine

studies where older individuals mount a less potent immune

response to SARS-CoV-2 vaccination (Walsh et al., 2020).

In some individuals, we detected very high levels of SARS-

CoV-2 neutralizing activity (IC50 < 20 mg/mL, ID50 serum titer >

2,500) ranking them as elite neutralizers. While cross-reactivity

against SARS-CoV-1 and other Beta-CoVs has been shown for

some SARS-CoV-2-recovered individuals (Lv et al., 2020; Pré-

vost et al., 2020; Rogers et al., 2020), we found that all elite neu-

tralizers have readily detectable cross-reactive IgGNAbs against

SARS-CoV-1. This suggests that a potent antibody response

against SARS-CoV-2 is accompanied by diversification toward

more broadly reactive antibodies. Moreover, IgG from elite neu-

tralizers could efficiently block infection of various SARS-CoV-2

strains. Of these, BavP1 and DRC94, containing the D614G mu-

tation in the S protein (Korber et al., 2020), and the B1.1.7 variant

are associated with higher infectivity (Davies et al., 2021; Weiss-

man et al., 2020). Given the eminent risk of novel emerging CoVs

and monoclonal antibody-resistant SARS-CoV-2 variants,

developing antibodies with greater neutralization breadth will

be critical. Further evaluation of the antibody response in such

elite neutralizers at the single B cell level will be required to un-

derstand the details of such potent NAb responses and could

yield the identification of new highly potent cross-reactivemono-

clonal antibodies.

Effective neutralization and clearance of pathogens is mainly

mediated by IgG antibodies, which are typically formed within

1–3 weeks post-infection and often provide long-term immunity

that can last decades (Amanna et al., 2007). Protective immunity

to seasonal coronaviruses like NL63, 229E, OC43, and HKU1 is

known to be short lived, and re-infection is common (Edridge

et al., 2020). In addition, the antibody response to SARS-CoV-1

and Middle East respiratory syndrome (MERS)-CoV was shown

to wane over time (Huang et al., 2020a). Upon SARS-CoV-1 infec-

tion, serum IgG and NAbs were shown to decline 3 years after

infection (Cao et al., 2007). This suggests that immunity to CoVs

is rather short lived compared to some other viruses such asmea-

sles virus, for which life-long antibody immunity is observed

(Amanna et al., 2007). In our study, we not only measured serum

neutralization, but also quantified SARS-CoV-2 IgG neutralizing

activity. While serum neutralization waned quickly (half-life of

3.6 months), levels of purified IgG rather persisted with a longer

half-life of 7.8 months. The sharp drop in serum neutralization

could be partially attributed to a decline in anti-S IgA and IgM titers

(Iyer et al., 2020), which, alongwith IgG, cumulatively contribute to

serumNAb activity (Klingler et al., 2020;Wang et al., 2021). Finally,

SARS-CoV-2 S-based mRNA vaccines (Sahin et al., 2020) were

shown to induce NAb titers in different age groups for a time
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span of at least 4.25 months (Widge et al., 2020). In this study,

we found that although SARS-CoV-2-neutralizing IgG levels

decline by 16% within the first 4 months after infection, anti-S

neutralizing IgG can be persistently detected in the majority of

COVID-19 cases for up to 10 months post-infection.

In summary, the data presented in this study provide insight

into the features that shape the SARS-CoV-2 NAb response in

COVID-19-recovered individuals. Longitudinal mapping of anti-

body responses reveals a relatively long-lived IgG antibody

response lasting at least 10 months after SARS-CoV-2 infection

in the majority of individuals. Since many SARS-CoV-2 vaccines

are S protein based (Krammer, 2020), studying antibody dy-

namics against S informs us on longevity of natural immunity

and may help to inform on vaccination strategies and outcomes

in the population.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Florian

Klein (florian.klein@uk-koeln.de).

Materials availability
SARS-CoV-2 spike variants and authentic virus used in this study will be made available by the lead contact with a Material Transfer

Agreement.

Data and code availability
All data are provided in the manuscript or supplementary material.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Enrollment of human subjects and study design
Blood samples were collected from donors who gave their written consent under the protocols 20-1187 and 16-054, approved by the

Institutional Review Board (IRB) of the University Hospital Cologne. All samples were handled according to the safety guidelines of the

University Hospital Cologne. Individuals that met the inclusion criteria of i.) 18 years old and older, and ii.) history of SARS-CoV-2 pos-

itive polymerase chain reaction (PCR) from nasopharyngeal swab or collected sputumwere enrolled in this study. Demographical data,

COVID-19-related pre-existing conditions, and information on the clinical course were collected at study visit 1. The final cohort

comprised 963 individuals with 46.1% males and 53.9% females. Blood samples were collected starting from study visit 1, for up

to 4 follow up visits between the 6th of April and 17th of December 2020.

METHOD DETAILS

Processing of serum, plasma and whole blood samples
Blood samples were collected in Heparin syringes or EDTA monovette tubes (Becton Dickinson) and fractionated into plasma and

peripheral blood mononuclear cell (PBMC) by density gradient centrifugation using Histopaque-1077 (Sigma). Plasma aliquots

were stored at �80�C till use. Serum was collected from Serum-gel tubes (Sarstedt) by centrifugation and stored at �80�C till use.
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Isolation of IgGs from serum and plasma samples
For the isolation of total IgG, 0.5-1 mL plasma or serum was heat inactivated at 56�C for 45 min and incubated overnight with Protein

G Sepharose 4 Fast Flow beads (GE Healthcare) at 4�C. Next day, beads were washed on chromatography columns (BioRad) and

Protein G bound IgG was eluted using 0.1MGlycine pH = 3 and instantly buffered in 1M Tris pH = 8. Buffer exchange to PBS (GIBCO)

was performed using 30 kDa Amicon Ultra-15 columns (Millipore) and the purified IgG was stored at 4�C.

Cell lines
VeroE6 cells, HEK293T cells and 293T-ACE2 cells were maintained in DMEM (Gibco) containing 10% FBS, 1% Penicillin-Strepto-

mycin, 1mM L-Glutamine and 1mM Sodium pyruvate. Cells were grown on tissue culture treated dishes in a T75 flask (Sarstedt)

at 37�C and 5% CO2. For passaging cells, the medium was removed, PBS (5 mL) was used to wash the cells and incubated at

37�C, 5%C O2 for 1–2 min with trypsin (1–2 mL). The sample was diluted with medium (10 mL) and centrifuged at 400 g, 20�C for

4 min. The pellet was resuspended in an appropriate volume of medium and the culture continued.

Cloning of SARS-CoV-2 spike variants
The codon optimized SARS-CoV-2Wu01 spike (Hoffmann et al., 2020) (EPI_ISL_406716) was cloned into pCDNATM3.1/V5-HisTOPO

vector (Invitrogen). SARS-2-S global strains (BavP1 EPI_ISL_406862; ARA36 EPI_ISL_418432; DRC94 EPI_ISL_417947; CA5 EPI_-

ISL_408010; NRW8 EPI_ISL_414508) (Elbe and Buckland-Merrett, 2017) were generated by introducing the corresponding amino

acid mutations using the Q5� Site-Directed Mutagenesis Kit (NEB) and per manufacturer’s protocol. SARS-2-S variants B.1.1.7

(Chand et al., 2020) and B.1.351 (Tegally et al., 2020) were generated by introducing the corresponding amino acid mutations in

the Wu01 spike via PCR in the pCDNATM3.1/V5-HisTOPO backbone.

Production of SARS-CoV pseudovirus particles
Pseudovirus particles were generated by co-transfection of individual plasmids encoding HIV-1 Tat, HIV-1 Gag/Pol, HIV-1 Rev, lucif-

erase followed by an IRES and ZsGreen, and the SARS-CoV-2 spike protein as previously described(Crawford et al., 2020). In brief,

HEK293T cells were transfected with the pseudovirus encoding plasmids using FuGENE 6 Transfection Reagent (Promega). The vi-

rus culture supernatant was harvested at 48 h and 72 h post transfection and stored at�80�C until use. Each virus batch was titrated

by infecting 293T-ACE2 and after a 48 h incubation period at 37�C and 5% CO2, luciferase activity was determined after addition of

luciferin/lysis buffer (10 mM MgCl2, 0.3 mM ATP, 0.5 mM Coenzyme A, 17 mM IGEPAL (all Sigma-Aldrich), and 1 mM D-Luciferin

(GoldBio) in Tris-HCL) using a microplate reader (Berthold). An RLU of approximately 1000-fold in infected cells versus non-infected

cells was used for neutralization assays.

Pseudovirus assay to determine IgG/plasma/serum SARS-CoV-2 neutralizing activity
For testing SARS-CoV-2 neutralizing activity of IgG or serum/plasma samples, serial dilutions of IgG or serum/plasma (heat inacti-

vated at 56�C for 45 min) were co-incubated with pseudovirus supernatants for 1 h at 37�C prior to addition of 293T cells engineered

to express ACE2 (Crawford et al., 2020). Following a 48 h incubation at 37�C and 5% CO2, luciferase activity was determined using

the reagents described above. After subtracting background relative luminescence units (RLUs) of non-infected cells, 50% inhibitory

concentrations (IC50s) were determined as the IgG concentrations resulting in a 50% RLU reduction compared to untreated virus

control wells. 50% Inhibitory dose (ID50) was determined as the serum dilution resulting in a 50% reduction in RLU compared to

the untreated virus control wells. Each IgG and serum sample were measured in two independent experiments on different days

and the average IC50 or ID50 values have been reported. For each run, a SARS-CoV-2 neutralizing monoclonal antibody was used

as control to ensure consistent reproducibility in experiments carried out on different days. Assay specificity calculated using pre-

COVID-19 samples was found to be 100%. IC50 and ID50 values were calculated in GraphPad Prism 7.0 by plotting a dose response

curve.

SARS-CoV-2 live virus isolation from nasopharyngeal swabs
For outgrowth cultures of authentic SARS-CoV-2 from nasopharyngeal swabs, 1x106 VeroE6 cells were seeded onto a T25 flask (Sar-

stedt) on the previous day DMEM (GIBCO) containing 10%FBS, 1%PS, 1mM L-Glutamine and 1mMSodium pyruvate. 0.2 mL swab

in virus transport medium was diluted with 0.8 mL DMEM (GIBCO) containing 2% FBS, 1% PS, 1mM L-Glutamine and 1mM Sodium

pyruvate. The swab dilution was added to VeroE6 cells and left for 1 h at 37�C, 5%CO2 after which an additional 3 mL medium was

added. The cultures were examined for the next days for cytopathic effects (CPE) and samples were sent for viral load analysis to

track growth of virus by E-gene qPCR. Cell culture supernatant was harvested from positive cultures and stored at �150�C until

use. Virus was titrated by adding serial dilutions of virus supernatant (8 replicates) on VeroE6 cells in DMEM (GIBCO) containing

2% FBS, 1% Penicillin-Streptomycin, 1mM L-Glutamine and 1mM Sodium pyruvate. After 4 days of incubation at 37�C, 5% CO2,

the presence or absence of CPE was noted in using a brightfield microscope. TCID50 was calculated using the Spearman and

Kaerber algorithm (K€arber, 1931; Spearman, 1908).

SARS-CoV-2 live virus neutralization assay
Live SARS-CoV-2 (termed CoV2-P3) was grown out from a swab in Cologne using VeroE6 cells as described above and then

expanded in culture by superinfection of VeroE6 from the initial outgrowth culture. Whole genome sequencing of the isolated virus
e3 Cell Host & Microbe 29, 917–929.e1–e4, June 9, 2021
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was done isolating viral RNA using the QIAamp MinElute Virus Spine kit (QIAGEN) and performing Illumina sequencing. The virus

spike amino acid sequence is identical to the Wu01 spike (EPI_ISL_406716) with the exception that it contains the D614G mutation.

For the neutralization assay, dilutions of IgG were co-incubated with the virus (1000-2000 TCID50) for 1 h at 37�C prior to addition of

VeroE6 cells in DMEM (GIBCO) containing 2%FBS, 1%PS, 1mML-Glutamine and 1mMSodium pyruvate. After 4 days of incubation

at 37�C, 5% CO2, neutralization was analyzed by observing cytopathic effects (CPE) using a brightfield microscope and the highest

dilution well with no CPE was noted to be the IC100 for the antibody. Assay specificity calculated using pre-COVID-19 samples was

found to be 100%. All samples weremeasured in two independent experiments on separate days and the average IC100 from all mea-

surements has been reported.

Detection of anti-SARS-CoV-2 spike IgG and IgA by ELISA
For assessing IgA and IgG antibody titers, the Euroimmun anti-SARS-CoV-2 ELISA using the S1 domain of the spike protein as an-

tigen was used (Euroimmun Diagnostik, L€ubeck, Germany). Serum or plasma samples were tested on the automated system Euro-

immun Analyzer I according tomanufacturer’s recommendations. Signal-to-cut-off (S/CO) ratio was calculated as extinction value of

patient sample/extinction value of calibrator. IgA and IgGS/CO valueswere interpreted as positive S/COR1.1, equivocal S/COR0.8

- < 1.1, and negative S/CO < 0.8. Additional commercial kits used for antibody measurements were also used as per manufacturer’s

recommendations; Anti-S1/S2 IgG was measured using DiaSorin’s LIAISON� SARS-CoV-2 ELISA kit with the following cut-off

values: negative < 12.0 AU/mL, equivocal R12.0- < 15.0 AU/mL and positive R15.0 AU/mL. Anti-N Pan-Igs were measured using

Roche’s Elecsys�-Assaywith cut-off values: non-reactive < 1,0 COI and reactiveR1,0 COI. Anti-N IgGweremeasuredwith Abbott’s

Alinity i system with cut-off values: positive S/COR1.4 and negative S/CO < 1.4. Assay specificities calculated using pre-COVID-19

samples: Euroimmun IgG 100%; Euroimmun IgA 96%; Roche 98%; Diasorin 98%; Abbott 98%.

Measurement of SARS-CoV-2 RNA levels from nasopharyngeal swabs
Cycle threshold values for quantifying viral load in naso/oro-pharyngeal swabswas done by qPCR using LightMix�SarbecoV E-gen-

e(Corman et al., 2020) plus EAV control (TIB Molbiol, Berlin, Germany) in combination with the N-gene (inhouse primer sets in multi-

plex PCR) on LightCycler� 480 (Roche Diagnostics).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical modeling
To select features that are predictive for the log10 response in a multivariate analysis (Figures 3 and S3), forward stepwise regression

was applied, using the p value from a likelihood ratio test (R function lmtest::lrtest) as selection criterion in each step. The finalmultiple

linear regression model (Figures 3 and S3) includes only features that show a significant model improvement (alpha = 0.05) in the

feature selection phase. To study the interplay of the different features regarding their relationship with the response (Figure 3D),

a Bayesian network was learned by maximizing the BIC score for hybrid networks via hill-climbing (R function bnlearn::hc) (Scutari,

2010). To enforce it to be a sink in the network, all outgoing edges from the response variable were blacklisted prior to learning. For

the longitudinal analyses (Figure 5), linear mixed effect models (R-function nlme:lme) were applied to all data points from both visits,

where each patient has its own intercept. Since a binary transformation of the response was used, half-life estimates were computed

as negative inverse of the common slope regression coefficient. Prediction intervals were computed using R-function ggeffects::gg-

predict (L€udecke, 2018).
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