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Neuroendocrine tumors overexpress somatostatin receptors, which serve as important
and unique therapeutic targets for well-differentiated advanced disease. This
overexpression is a well-established finding in gastroenteropancreatic neuroendocrine
tumors which has guided new medical therapies in the administration of somatostatin
analogs, both “cold”, particularly octreotide and lanreotide, and “hot” analogs, chelated to
radiolabeled isotopes. The binding of these analogs to somatostatin receptors effectively
suppresses excess hormone secretion and tumor cell proliferation, leading to stabilization,
and in some cases, tumor shrinkage. Radioisotope-labeled somatostatin analogs are
util ized for both tumor localization and peptide radionuclide therapy, with
68Ga-DOTATATE and 177Lu-DOTATATE respectively. Benign and malignant
pheochromocytomas and paragangliomas also overexpress somatostatin receptors,
irrespective of embryological origin. The pattern of somatostatin receptor
overexpression is more prominent in succinate dehydrogenase subunit B gene
mutation, which is more aggressive than other subgroups of this disease. While the
Food and Drug Administration has approved the use of 68Ga-DOTATATE as a
radiopharmaceutical for somatostatin receptor imaging, the use of its radiotherapeutic
counterpart still needs approval beyond gastroenteropancreatic neuroendocrine tumors.
Thus, patients with pheochromocytoma and paraganglioma, especially those with
inoperable or metastatic diseases, depend on the clinical trials of somatostatin analogs.
The review summarizes the advances in the utilization of somatostatin receptor for
diagnostic and therapeutic approaches in the neuroendocrine tumor subset of
pheochromocytoma and paraganglioma; we hope to provide a positive perspective in
using these receptors as targets for treatment in this rare condition.
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INTRODUCTION

The theranostic revolution began over three decades ago,
following the medical conception of somatostatin receptors
(SSTRs) and their analogs (SSA). The identification of specific
tumor targets for diagnosis and therapy of advanced diseases has
been a continuing trend in oncology since its innovation.
Neuroendocrine tumors (NETs) with the overexpression of
SSTRs are ideal cancer models for discovering the dual ability
of diagnosis and treatment using SSAs.

Two decades after the identification of somatostatin (SST) as
the central regulator of neuroendocrine cell physiology in the
early seventies, five SSTR subtypes were discovered (1–4). The
discovery of SSTRs led to the successful introduction of
somatostatin analogs (SSAs), initially as antisecretory agents,
and recently as antiproliferative agents based on the results of
two large phase III trials (5–7).

Through recognition of the SST molecular pathway, we can
extrapolate how SSAs exert these physiologic functions. SST
inhibits the secretion of neuroendocrine hormones by
activating seven-transmembrane somatostatin receptors, a type
of G-protein coupled receptor (GPCR). Activation of GPCR
initiates a cascade of inhibiting adenyl cyclase, lowering
intracellular cAMP, decreasing protein kinase A (PKA)
activity, and inhibiting/activating Ca2 and K+ channels,
respectively. This sequence leads to a decrease in exocytosis of
peptides, effectors, or ligands resulting in a reduction of hormone
secretion (8–17). SST antiproliferative effect has been much more
difficult to elucidate, involving various pathways that result in a
global imbalance toward increased apoptosis, cell growth
modulation, and decreased angiogenesis. Besides the reduction
in growth factors (GF) release, SST exerts the effect through
SSTR2 triggering and subsequent activation of phosphotyrosine
phosphatases (PTPs). This causes a downregulation of the
mitogen-activated protein kinase (MAPK) pathway and of
tyrosine kinase receptor (TKR) phosphorylation, inducing cell
cycle arrest and decreased cell proliferation (18–27).

Moreover, clinical imaging using radiolabeled SSAs to target
SSTRs, known as somatostatin receptor imaging (SRI), became a
prominent method in the diagnosis and management of NETs.
The earliest success of SRI was pivotal in gastroenteropancreatic
(GEP)-NETs and glomus paraganglioma (PGL) localization
using 111In-pentetreotide (Octreoscan®) (28, 29). The
progression of SRI in NETs increased with the introduction of
radiolabeled isotope 68Ga-SSAs for positron emission
tomography (PET) imaging. Then, Lutetium-177 (177Lu)-SSA
was developed for peptide receptor radionuclide therapy
(PRRT). A particular SST-based PRRT, 177Lu-DOTA0-Tyr3-
Octreotate (177Lu-DOTATATE), was shown to be superior to
other modalities in terms of progression-free survival (PFS) in a
subset of GEPNETs (30). In 2018, based on the results of the
NETTER-1 trial, 177Lu-DOTATATE (Lutathera®) was approved
by the FDA for foregut, midgut, and hindgut GEPNET
treatment. Current management algorithms for GEPNET
patients use radiolabeled, and “cold” or unlabeled SSAs for
their antiproliferative and cytotoxic abilities.
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The discovery of SSTR overexpression in pheochromocytomas
and paragangliomas (PPGLs) occurred in the 1990s (31),
predicting a limitless therapeutic potential of SSA; however, its
role in PPGL management was not developed in parallel with
GEPNETs. Initial efficacy testing of SSAs, both cold and
radiolabeled, was futile, mostly due to small clinical trials
without any clear accrual of therapeutic benefits (32–34) in
PPGLs. Despite the therapeutic responses of SSAs in GEPNETs
showing significant success (35–39), the application of cold and
radiolabeled SSA in PPGL was prematurely abandoned. In the last
decade, there was a rise in the use of octreotide and radiolabeled
SSA for recommended therapies approved by the FDA for both
functioning and nonfunctioning GEPNETs, without enough
studies confirming the clinical benefits of these compounds in
PPGLs for federal approval. Figure 1 is a timeline comparing
important findings and trials in SSTRs and 121 SSAs between
NETs and PPGLs.

The primary therapy of choice for PPGL is surgical resection,
but not in the case of unresectable advanced andmetastatic tumors.
A significant proportion of patients with PPGL is due to an
inheritable genetic component, where the incidence of metastatic
PPGL (mPPGL) occurs due to succinate dehydrogenase subunit B
(SDHB) germline mutation patterns (49). Interestingly, SDHB-
related PPGLs overexpress SSTRs, mainly SSTR2 (48). To advance
and expand the clinical utilization of SSAs in this PPGL, it is
imperative to view the SDHB subgroup as a prime example of
clinical benefits that these analogs could provide.

This review summarizes the studies on the role of SSTRs
focusing on PPGLs. We detail the discovery of PPGL receptors
and the creation of diagnostic and therapeutic radionuclide-
bound moieties to target these receptors. We also explore future
perspectives for SSTRs and SSAs in driving precision-based care
of PPGL patients.
PHEOCHROMOCYTOMA AND
PARAGANGLIOMA

PPGLs are rare NETs arising from neural crest cells, specifically
chromaffin cells. Differentiated based on anatomic locations, tumors
from the adrenal medulla are defined as pheochromocytoma (PCC),
whereas tumors from the sympathetic and parasympathetic ganglia
are known as paraganglioma (PGL). While both these tumors
present with similar molecular findings on pathology, they vary in
manifested symptoms based on their biochemical profile (50).

More than 20 susceptibility genes (SDHA, SDHB, SDHC,
SDHD, SDHAF2, FH, VHL, EPAS1, CSDE1, MAML3, RET, NF1,
MAX, HRAS, TMEM127, HIF2A, PHD1/2) indicate predisposition
to PPGLs (50). SDHB-related PPGLs are considered aggressive,
causing more than 40% of all the metastatic cases (47). The risk of
metastatic progression necessitates early diagnosis and
intervention for obtaining good outcome in patients. It is
important to identify symptoms and perform laboratory tests
using plasma or urine metanephrines to confirm the diagnosis,
followed by tumor localization through imaging.
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FIGURE 1 | Timeline of important events in the development of somatostatin receptors and
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Imaging allows personalized therapy by assisting clinicians in
deciding whether surgical interventions can render the patient
disease-free. PPGLs occur in a wide range of anatomical
locations, from the base of the skull to the bladder, making
computed tomography (CT) with intravenous contrast the initial
choice of imaging modality. However, magnetic resonance
imaging (MRI) with or without gadolinium is recommended if
there are contraindications to CT imaging, for example contrast
allergy, pregnancy, young age, and surgical clip artifacts (51).

Several predictors increase the risk of metastases: PPGL
tumor > 5 cm, noradrenergic phenotype, dopaminergic
phenotype, familial PPGLs (especially SDHB and SDHA),
young age at initial diagnosis, multiple tumors, and recurrent
disease (52, 53). PPGLs are more likely to metastasize to the
lungs, liver, bones, and lymph nodes (54). While MRI has high
sensitivity and specificity for PPGLs, functional imaging has
shown to surpass it (55, 56). The advent of functional imaging
utilizing SSTRs dramatically improved PPGL localization and
identification, enabling clinicians to guide precision medicine.
ADVENT OF SSTR-BASED IMAGING IN
PHEOCHROMOCYTOMA AND
PARAGANGLIOMA

Success in nuclear imaging of PPGLs was achieved in 1990, when
Lamberts et al. conducted a study on three NETs, including one
PGL, by labeling Tyr3-octreotide with radioisotope 123Iodine
(123I-Tyr3-octreotide) to target SSTRs and capturing them
using gamma cameras to produce single photon emission
computed tomography (SPECT) and planar images. Results
showed that 29 of the 31 possible PGLs were identified, and
the twomissed lesions were less than 5 mm in size (40). Although
it was a relatively small study in terms of patient number, these
findings on SRI-related PGLs could not be ignored. Subsequent
studies improved the radiolabeled nucleotide by substituting
123Iodide with 111Indium in octreotide (111In-pentetreotide),
chelated by a diethylene triamine penta-acetic acid (DTPA)
group, thus solving the problems of short half-life half-life: 13
hours for 123Iodide versus 24-48 hours for 111Indium and
obscured pathology identification due to biliary excretion with
subsequent accumulation in the intestines (57). A study detected
94% of PGLs in 25 patients, and an additional 36% of tumors that
were not recognized with conventional imaging [CT, ultrasound,
123I-metaiodobenzylguanidine (123I-MIBG), MRI, and bone
scanning] were detected using 111In-pentetreotide. The study
showed that using 111In-pentetreotide could identify the PGLs
identified by conventional imaging and others that were not
initially visualized (58). In PCCs, 123I-MIBG significantly
outperformed 111In-pentetreotide in detection (57). 111In-
pentetreotide had higher sensitivity than 123I-MIBG in
detecting head and neck PGLs (HNPGLs) (59–61) and mPPGL
(62, 63). The ability of 111In-pentetreotide to bind with SSTRs,
especially SSTR2, provided an additional diagnostic tool for
clinicians to identify PPGL; however, their sole gamma-
emitting capability allows the application of only SPECT to
Frontiers in Endocrinology | www.frontiersin.org 4
visualize them. SPECT images do not provide spatial
resolution to pinpoint the precise anatomical location of PPGL.
68GA-BASED-SSA: A PREFERRED
IMAGING RADIOISOTOPE IN PPGL

PET, which captures emitted positrons from radiotracers and
combines them with low dose CT (PET-CT) for targeted
receptor localization, was developed in the late nineties (64).
Not only does PET have better spatial resolution than SPECT, it
can also quantify radiotracer uptake in the form of a
standardized uptake value (SUV) (65). To utilize PET-CT
hybridized imaging, radiotracers -emitting positrons and
targeting SSTRs were created. The first discovered radiotracer
was a somatostatin analog 1-Nal3-octreotide (NOC) combined
with 68Gallium (68Ga)-labeled 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA), better known as 68Ga-
DOTANOC. 68Ga-DOTANOC targets SSTR2,3, and 5 (66, 67)
subtypes, while another moiety, 68Ga-labeled DOTA-Tyr3-
octreotide (68Ga-DOTATOC), showed affinity for SSTR5,
which is not specific to PPGLs. The last moiety of the three
68Ga-labeled DOTA peptides is 68Ga-DOTA-Tyr3-octreotate
(68Ga-DOTATATE), which showed a strong tendency to bind
with SSTR2 and is ideally suited for PPGLs because of the
preferential expression of these SSTR subtypes (68). These
three radiolabeled somatostatin analogs were compared with
previous somatostatin-targeting 111In-pentetreotide. The
overall sensitivities for NET detection, including metastatic
lesions, were much higher with 68Ga-labeled DOTA-peptides
by PET imaging than 111In-pentetreotide by SPECT imaging
(69–75). While these studies were not specific to PPGL tumors,
one study found 16 and 12 additional PGLs on 68Ga-
DOTATATE compared to only two on 111In-pentetreotide
(71). The other study included two patients with PGLs,
comparing 68Ga-DOTATOC to 99mTechnetium-labeled
hydrazinonicotinyl-Tyr3-octreotide (99mTc-HYNIC-TOC).
While the study proved that 68Ga-labeled DOTA-peptide was
superior, individual details of these PGL patients cannot be
inferred from the analysis because it was performed on a
regional basis, and on other NETs (75). There were no studies
comparing the efficiency of 68Ga-DOTATATE to that of its
predecessor, 111In-pentetreotide, but it was widely shown to be
effective in tumors that express SSTRs. In an individual case of
metastatic PGL with SDHD germline mutation, 68Ga-
DOTATATE PET/CT produced higher resolution of tumors
than Octreoscan®, as seen in Figure 2.

Among the three radiolabeled somatostatin analogs, 68Ga-
DOTATATE provided a brighter outlook for PPGL evaluation.
SSTR expression by PPGLs, mainly extra-adrenal PGLs and
mPPGLs, was found to be the subtype 2 variety (76). This
subtype was the preferred target of 68Ga-DOTATATE (68).
68Ga-DOTATATE was shown to be superior to alternative
PET radiotracers in imaging for genotypes, phenotypes,
metastases, and PGL-predominant diseases. The two
alternative PET radiotracers used to diagnose PPGLs,
March 2021 | Volume 12 | Article 625312
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18F lourine-fluorodeoxyglucose (18F-FDG) and 18F-
fluorodihydroxyphenylalanine (18F-FDOPA), were inferior to
68Ga-DOTATATE in the following cohorts of patients with:

i. sporadic metastatic PPGL (77)
ii. PGLs (78)
iii. HNPGLs (78, 79)
iv. metastatic SDHB PPGL (47)
v. SDHA PPGL (80)
vi. SDHD PPGL (81)
vii. pediatric SDHx PPGL (82).

At a molecular level, the utility of 68Ga-based SRI in these
patient cohorts can be explained by the current knowledge
that SDHx-based lesions and extra-adrenal PGLs have higher
proportions of SSTR2 than other PPGL types. Even though 68Ga-
DOTATATE has lower sensitivity in other types of PPGLs than
18F-FDOPA, it remains the secondary radiopharmaceutical of
choice in the evaluation of PPGL genotypic and phenotypic
subtypes that do not fit in the cohorts mentioned above.

In two recent meta-analyses, 68Ga-DOTA-SSA had
outperformed several radiotracers, including 18F-FDOPA and
18F-FDG. The pooled detection rate of unknown genetic
mutational status in 68Ga-DOTA-SSA was 93% ([95% CI,
91%-95%], P < 0.005), higher than 80% in 18F-FDOPA ([95%
CI, 69%–88%], P < 0.005) or 74% in 18F-FDG PET ([95% CI,
46%–91%], P < 0.005). The analyses showed that while genetic
mutations can help select the type of radiotracers to be used in
staging and diagnosing PPGL, it was not always required prior to
the selection of 68Ga-DOTATATE, 68Ga-DOTATOC, and 68Ga-
DOTANOC PET exams (83). A second meta-analysis pooled
results of mPPGLs with germline mutational status, and the
outcomes showed that 68Ga-DOTA-SSA PET/CT (0.97 [95% CI:
0.94-0.98]) detected more lesions than 18F-FDG PET/CT (0.79
[95% CI: 0.69–0.87]) (84).

68Ga-DOTATATE PET/CT proved to be more than a
complementary imaging modality to traditional CT and MRI
Frontiers in Endocrinology | www.frontiersin.org 5
imaging modalities. 68Ga-DOTATATE PET/CT has taken the
place of 111In-pentetreotide (Octreoscan®) in becoming the SRI
modality of choice in PPGLs, subject to the availability of a PET/
CT scanner and radiotracer. It also outperformed 18F-FDOPA
and 18F-FDG for detection of PGLs, mPGLs, HNPGLs, and
SDHx PPGLs in adults and children. Figure 3 illustrates the
superiority of 68Ga-DOTATATE PET/CT compared to 18F-
FDOPA and 18F-FDG of metastatic lesions in a PPGL patient
with a SDHB mutation. While 68Ga-DOTATATE PET/CT
effectively localizes PPGL tumors, the benefit was ultimately
attributed in conversion of the 68Ga radiometal to a stronger
beta-emitting one for therapeutic purposes.
EXPERIENCES WITH PEPTIDE RECEPTOR
RADIONUCLIDE THERAPY USING
SOMATOSTATIN ANALOGS IN PPGLS

An interchange of radiolabeling on a chelated SSA (e.g., DOTA-
SSA) caused a functional switch of the molecular compound from
diagnostic to therapeutic capabilities. 68Ga-DOTA-SSA precisely
located SSTRs on the surface of PPGL lesions through the capture
of 68Ga-beta emissions by PET/CT scanners. A change in
radiometal to 177Lutetium (177Lu) or 90Yttrium (90Y) gave
radiolabeled DOTA-SSA the ability to emit not only imageable
radiations but also deliver beta radiations to the target lesions.
Lutathera® was approved by the FDA for GEPNET treatment;
hopefully, it is only a matter of larger-model experiences and
extensive reporting until its approval in surgically unamenable or
metastatic PPGLs. More trials and research are needed to
determine its actual applicability in PPGLs and to support the
studies mentioned in this section.

177Lu-Based-SSA PRRT
A recent 2020 report by Basu et al. reviewed 1000 patients with
NETs treated with 177Lu-DOTATATE; 15 were diagnosed with
FIGURE 2 | Nuclear imaging in a male patient with metastatic PPGL in the setting of SDHD showing the superiority in resolution of (A) 68Ga-DOTATATE PET/CT
compared to Octreoscan® in the (B) anterior anatomical plane and (C) posterior anatomical plane.
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PPGL. A particular case of metastatic HNPGL was detailed in the
review, displaying stabilization of the disease after two cycles of
177Lu-DOTATATE on 68Ga-DOTATATE PET/CT (85) and
should be considered in metastatic HNPGL with associated
SDHB mutations (86). The same team recently published a
retrospective study highlighting disease control of progressive
mPGL in 6 out of 9 patients treated with 177Lu-DOTATATE with
negative 131I-MIBG scans. These patients tolerated treatment
without any significant adverse events (87).

A retrospective study in 2019 by Vyakaranam et al. involved
22 PPGL patients (nine with progressive disease and 13 with
stable disease at the start of PRRT) and their responses to 177Lu-
DOTATATE. The response rates of the therapy, such as
biochemical response, scintigraphy, response evaluation criteria
in solid tumors (RECIST), overall survival (OS), and
progression-free survival (PFS) showed favorable outcomes.
177Lu-DOTATATE showed that only one of the 19 patients
reviewed with SPECT/CT had progressive disease, while with
CT, according to RECIST 1.1, all patients either had stable
disease (n=20) or partial response (n=2). The median OS
calculated was 49.6 months and median PFS was 21.6 (88);
these were not established in other recent studies (87, 89, 90).

Another retrospective study focused on 30 patients with
either parasympathetic PGL, sympathetic PGL, or PCC; after
four cycles of 177Lu-DOTATATE, results showed either stable
disease or partial response in 90% of these patients. Among these
patients, 20 had progressive disease prior to the start of 177Lu-
DOTATATE, of which 85% showed the disease controlled post-
treatment (91).

90Y-Based-SSA PRRT
The alternative beta-emitting radiometal, 90Y, was utilized and
studied in SSA-based PRRT. 90Y had shorter half-life, longer path
length, and greater emitted energy compared to 177Lu (92, 93).
90Y also cannot be imaged using gamma cameras post-therapy
Frontiers in Endocrinology | www.frontiersin.org 6
because of its inherent property of being a sole beta emitter (93).
With longer half-life, shorter path length, lower beta emission,
and partial gamma emission, 177Lu had a significant advantage
over 90Y; however, studies showed the therapeutic benefit of 90Y-
labeled SSA as PRRT.

In a prospective study from 2019 by Kolasinska-Cwikla et al.,
13 patients with metastatic SDHB and SDHD (n=5 and 8,
respectively) were treated with 90Y-DOTATATE, with an 82%
response of stable disease after 1 year. The median OS and PFS
were 68 months and 35 months, respectively, with no difference in
the endpoints in patients who were either secretory or non-
secretory (94). A retrospective study assessing 90Y-DOTATATE
and 131I-MIBG concluded that mPGLs were best suited for
treatment by SSA-based PRRT. The study reviewed the
treatment responses of 22 patients with mPCC or mPGL after
three different targeted radionuclide therapies. While only two
patients received 177Lu-DOTATATE, 90Y-DOTATATE
performed better in terms of median PFS and RECIST 1.1 base
response to treatment compared to 131I-MIBG (these were the two
statistically significant findings) in mPGL with no significant
difference observed when considering all themPPGL patients (95).

These studies showed some positive responses to either 177Lu-
or 90Y-based SSA therapy (Table 1, summarizing experiences
using SSA-based PRRT therapies in PPGL). There are still
insufficient data for FDA approval of these therapies for PPGLs.
CLINICAL SIDE EFFECTS OF
SOMATOSTATIN ANALOG BASED
PEPTIDE RECEPTOR
NUCLEOTIDE THERAPY

The clinical side effects of SSA-based PRRT include nausea,
vomiting, fatigue, and abdominal pain (106). Nausea and
FIGURE 3 | PET/CT radiotracer imaging of a 41-year-old male with metastatic PPGL in the setting of SDHB mutation. (A) 68Ga-DOTATATE displaying more
metastatic disease than radiotracers (B) 18F-FDG and (C) 18F-FDOPA.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


TABLE 1 | Somatostatin-based PRRT experiences with pheochromocytoma and paraganglioma in the order of year of publication (2020 to 2006).

Total
sponse
(%)

PFS in
months
(median)

OS
inmonths
(median)

Concomitant Therapy

6/9
(67)

N.A. N.A. -

12/15
(80)

N.A. N.A. –

7/7
(100)

N.A. N.A. –

10/12
(83)

35.0 68.0 –

22/22
(100)

21.6 49.6 –

27/30
(90)

30.0 N.A. –

21/25
(84)

32.0 N.A. Chemotherapy (100%)

5/5
(100)

14.0 37.0 –

6/8
(75)

31.4
(mean)

51.8
(mean)

–

4/5
(80)

N.A. N.A. –

15/17
(88)

39.0 N.A. Chemotherapy (45%)

13/13
(100)

38.5 60.8 Chemotherapy,
Radiation Therapy, or
Cold SSA

4/5
(80)

17.0 N.A. –

10/14
(71)

N.A. N.A. –

9/9
(100)

N.A. N.A. –

4/4
(100)

N.A. N.A. –

7/39
(18)

N.A. N.A. –

20/28
(71)

N.A. N.A. –

8/11
(73)

N.A. N.A. –
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Study Authors Type of SSA-
based PRRT

Type of
study

PPGL
patients

Progression
at baseline

Response assessment data Partial
Responders

(%)

Stable
Disease

(%)
R

Parghane et al. (87) 177Lu-DOTATATE Retrospective 9^ 7 Morphological, biochemical,
clinical, and SSA PET/CT

1/9
(11)

3/9
(33)

Jaiswal et al. (89) 177Lu-DOTATATE Retrospective 15* 8 Morphological, biochemical,
clinical, and SSA PET/CT

1/15
(7)

8/15
(53)

Roll et al. (90)⊥ 177Lu-DOTATATE Retrospective 7 1 Morphological, clinical, and
SSA PET/CT

4/7
(57)

3/7
(43)

Kolasinska-Cwikla
et al. (94)

90Y-DOTATATE Prospective 13 13 (100%) Morphological 1/12
(8)

9/12
(75)

Vyakaranam et al. (88) 177Lu-DOTATATE Retrospective 22 9 (41%) Morphological, biochemical,
and clinical data

2/22
(9)

20/22
(91)

Zandee et al. (91) 177Lu-DOTATATE Retrospective 30 20 (67%) Morphological and clinical data 7/30
(23)

20/30
(67)

Yadav et al. (96) 177Lu-DOTATATE Retrospective 25 21 (84%) SSA PET/CT, morphological,
biochemical, and clinical data

7/25
(28)

14/25
(56)

Garske-Roman
et al. (97)↲

177Lu-DOTATATE Prospective 5 2 Morphological, clinical, and
biochemical data

0/5
(0)

5/5
(100)

Demirci et al. (98)↲ 177Lu-DOTATATE Retrospective 12 NR Morphological and SSA PET/
CT

4/8
(50)

2/8
(25)

Hamiditabar et al. (99)↲ 177Lu-DOTATATE Prospective 5 NR Morphological, clinical, and
biochemical data

0/5
(0)

4/5
(80)

Kong et al. (34) 177Lu-DOTATATE Retrospective 20 6 (30%) SSA PET/CT, morphological,
biochemical, and clinical data

8/17
(47)

7/17
(42)

Nastos et al. (95) 177Lu-/ (90)Y-
DOTATATE

Retrospective 13 13 (100%) Morphological, biochemical,
and clinical data

NR NR

Pinato et al. (100) (177)Lu-
DOTATATE

Case series 5 5 (100%) SSA PET/CT and
morphological data

1/5
(20)

3/5
(60)

Estevao et al. (101) 177Lu-DOTATATE Retrospective 14 4 (29%) SSA PET/CT and clinical data N.A. N.A.

Puranik et al. (102) (177)Lu-/90Y-
DOTATATE/
DOTATOC

Prospective 9 NR SSA PET/CT, morphological
and clinical data

4/9
(44)

5/9
(56)

Zovato et al. (33) 177Lu-DOTATATE Case series 4 4 (100%) SSA scintigraphy,
morphological and clinical data

2/4
(50)

2/4
(50)

Imhof et al. (103) 90Y-DOTATOC Prospective 39 39 (100%) SSA scintigraphy,
morphological, biochemical,
and clinical data

NR NR

Forrer et al. (104) 177Lu-/90Y-
DOTATOC

Retrospective 28 28 (100%) Morphological, biochemical,
and clinical data

7/28
(25)

13/28
(46)

van Essen et al. (45) 177Lu-DOTATATE Retrospective 12 4 (33%) Morphological, biochemical,
and clinical data

2/11
(18)

6/11
(55)

⊥adapted from Roll et al. (90). ↲adapted from Satapathy et al. (105). The remaining studies were adapted from Taieb et al. (92).
^All 9 patients had mPGL, no PCC. *3 patients had concomitant PNETs of which 2 patients had VHL.
NR, not reported; PFS, progression-free survival; OS, overall survival.
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vomiting have been attributed to commercial amino acid infusion
for renal protection prior to infusion of the selected PRRT. The
occurrence of nausea and vomiting can be reduced by
substituting the commercial amino acid infusion with an
alternative containing L-lysine and L-arginine. More serious side
effects include neutropenia, lymphopenia, thrombocytopenia,
and nephrotoxicity. In a review of 45 PPGL patients treated
with PRRT, 3% had grade 3/4 neutropenia, 9% had
thrombocytopenia, 11% had lymphopenia, and 4% had
nephrotoxicity. A long-term complication of myelodysplastic
syndrome was also observed in an unreported number of PPGL
patients receiving the therapy (105). In a case report by Wolf et
al., a dangerous side effect of Lutathera® in two mPGL patients
was hyperprogression of mPGL disease after three cycles of
90Y/177Lu-DOTATOC (cycle one was 90Y, and cycle two and
three were 177Lu) in patient A and two cycles of 177Lu-
DOTATATE in patient B (107). Future reporting of adverse
effects of SSA-based PRRT is important in assessing the safety of
this therapy in PPGL patients to determine whether the therapy
can be effectuated in patients, without life-threatening side effects.
FUTURE AVENUES OF SOMATOSTATIN-
BASED THERAPY IN PPGLS

The following section will focus on ongoing studies that focus on
the targeting of SSTRs by SSA based therapeutic compounds.

Ongoing PRRT Clinical Trials
An ongoing phase II study at the National Institutes of Health
(NIH), NCT03206060, could make a strong case for federal
approval. The study is using Lutathera® for treating progressive
and inoperable PPGL patients with either germline SDHx
mutation or sporadic disease. This prospective clinical trial will
identify important clinical benefits of this treatment, focusing on
the primary endpoint of PFS and several secondary endpoints,
such as safety profile, OS, and quality of life. There are two other
trials on Lutathera® currently recruiting children (NCT03923257
in Iowa, USA) and adults (NCT04029428 in Warsaw, Poland)
with nonresectable or treatment-refractory SSTR-positive PPGLs.
Similar prospective clinical studies should be conducted to
uncover the therapeutic potential of SSTR-targeting radiotherapy.

Ongoing Lanreotide
Clinical Trial
The long history of adoption and trial of SSA with good
outcomes perpetuated an environment of ongoing clinical
research and investigation. This culminated in large studies,
such as the PROMID and CLARINET trials, which showed the
clinical benefit of SSAs in GEPNETs (6, 7). However, the subset
of NETs focused on in this review did not have extensive trials
for testing the efficacy of cold SSA. There are reports of clinical
stabilization of surgically unamenable PPGLs, two of which were
patient experiences observed by our clinical team (80, 108), but
there were no prospective or retrospective studies to either
strengthen or refute these claims (80, 108–111). A prospective
Frontiers in Endocrinology | www.frontiersin.org 8
clinical trial (NCT03946527 in New York, USA) will evaluate the
effectiveness of lanreotide inmPPGLs (LAMPARA) by observing
tumor growth rate, overall survival, overall response rate,
progression-free survival, and biochemical response.

Next Generation Cold SSAs
Overexpression of SSTRs on the cell surfaces of PPGLs has led to
ongoing investigations that target andmanipulate these receptors.
The antiproliferative and apoptotic effects of somatostatin and its
analogs upon binding with SSTRs were identified through
extensive and detailed studies (112, 113). Targeting SSTR2 due
to their preferential expression is the current and future direction
of therapeutic management in these tumors (93, 114, 115). Cold
SSAs, such as octreotide and lanreotide, have a proclivity to target
SSTR2, which have been studied and utilized in various
endocrine-related diseases, including GEPNETs and acromegaly
(116). Pasireotide, a second-generation SSA, targets five SSTR
subtypes, unlike octreotide and lanreotide. Although it was not
superior to octreotide in terms of therapy or safety profile, it
could be beneficial in tumors with broader expression of SSTR
subtypes, including SSTR1, SSTR2, SSTR3, and SSTR5 (117, 118).
Somatoprim, another second-generation SSA, is a multi-receptor
targeting analog with a preference for SSTR2, SSTR4, and SSTR5,
which was trialed in vitro on growth hormone (GH)-secreting
pituitary adenomas. The results showed that it had anti-secretory
effects on GH adenomas that were not controlled by octreotide
(119). It would be worthwhile to investigate whether somatoprim
has the same antisecretory effect in PPGLs. Dopastatin, a novel
chimeric analog with dual binding ability to SSTR2 and
dopamine receptors (D2), also exhibited an antisecretory effect
on GH in acromegaly patients (120), and antitumor effects in
midgut carcinoid cells in vitro (121). D2 receptors were expressed
in larger amounts in 52 PPGL patients than 35 GEPNET patients
(122), providing another targetable receptor for dopastatin
analogs through radiopeptide imaging and therapy.

SSTR Antagonists
Development and research on SSA, which were recognized to
antagonistically bind to SSTRs, are ongoing. According to an in
vitro study by Ginj et al. (123), SSTR antagonists (SSTR-ANs)
bound to NET SSTRs (especially SSTR2 and SSTR3) better than
agonists but did not undergo subsequent internalization. These
antagonists, sst3-ODN-8 and sst2-ANT were chelated to In by
DOTA to create a receptor-targeting radioligand. These findings
captured by gamma cameras were impressive in displaying
antagonist-based radioligands, which bound more receptors for
longer durations than their counterparts (123). The study caused
a shift from the traditional theory that better binding and more
benefits are derived from agonist-based analogs, mainly due to
their ability to internalize the compound. A subsequent clinical
comparison showed an antagonist-based SST ligand, 111In-
DOTA-BASS, which allowed better visualization and had
higher uptake in NETs than 111In-pentreotide (124). Based on
the impressive results from first-generation SSTR-ANs, second-
generation ones, such as LM3, JR10, and JR11, were developed.
These second-generation SSTR-ANs were further improved in
their SSTR binding capacity by using the chelator NODAGA
March 2021 | Volume 12 | Article 625312
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(125). A comparative study showed that 68Ga-NODAGA-JR11
had higher tumoral uptake despite its lower affinity to SSTR2

than 68Ga-DOTATATE (126). The benefits were just as clear
when 177Lu-DOTA-JR11 was used for treating four patients with
18 advanced NETs, with a ten-fold higher dose than 177Lu-
DOTATATE and with reversible adverse events (127). A phase I/
II study (NCT 02592707) focusing on the endpoints of safety,
tolerability, efficacy, biodistribution, and dosimetry of 177Lu-
OPS201 (also known as 177Lu-DOTA-JR11) in unresectable
GEPNETs, lung carcinoids, and PPGLs is currently underway.
This study could provide an additional research perspective to
identify therapeutic options for PPGLs.

Alpha Emitting
255Ac-DOTATATE PRRT
Alpha-emitting radiometals are also being explored in the
treatment of GEPNETs and PPGLs. A study explored the
utility of 225Actinium (225Ac)-DOTATATE, a targeted alpha
therapy (TAT), in 32 patients with metastatic GEPNETs
refractory or stable after 177Lu-DOTATATE therapy. Four
patients with paraganglioma received TAT but were excluded
from the analysis. Of the 32 GEPNET patients, 24 were assessed
by RECIST 1.1 and found to have either stable or partial
response. A positive biochemical response in chromogranin A
(CgA) was observed as well, showing stable or decreased levels in
32 patients. There were also minimal grade III/IV toxicities
reported in patients, which included gastritis in 7, weight loss
in 5, flushing in 3, and headaches in 2 (128). Another study used
225Ac-DOTATATE as compassionate care in two patients with
progressive PCC after 3 cycles of 177Lu-DOTATATE; however,
results on the effectiveness and toxicity were not published (89).

Cytotoxic Compounds Conjugated to SSA
Another frontier of therapeutic innovation in SSTR targeting was
that of compounds linking SSA and cytotoxic agents. The SSA,
Tyr3-octreotate, was conjugated with a microtubule-targeting
agent, DM1, creating PEN-221. SSTR2 targeting of this agent
was accomplished by the Tyr3-octreotate analog of the
Frontiers in Endocrinology | www.frontiersin.org 9
compound; after endocytosis, the DM1 portion induced a toxic
payload within the targeted cells (129). A current phase I/II study
(NCT 02936323) is ongoing for investigating the utility of PEN-
221 in advanced NETs, including PPGLs.
CONCLUSION

The “Old Players” in the title of this review shows that SSAs have
a historic role in treating and managing NETs. The review hopes
to restore clinical awareness of these analogs through successes
achieved in PPGLs. The theranostic utility of SSAs in PPGLs can
be realized once federal approval is achieved. However, research
and innovation should not be halted once an approval of
Lutathera® for unresectable PPGLs is garnered. Research
should be continued for targeting SSTRs with second-
generation SSAs, SSTR-ANs, chimeric dual receptor-targeting
peptides, chemotactic delivery through SSTRs, and other
novel methods.
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