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Wuhan, China

Purpose: To construct a prognostic signature composed of DNA repair genes to effectively
predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).

Methods: After downloading the transcriptome and clinical data of HNSCC from the
Cancer Genome Atlas (TCGA), 499 patients with HNSCC were equally divided into
training and testing sets. In the training set, 13 DNA repair genes were screened using
univariate proportional hazard (Cox) regression analysis and least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to construct a risk model, which was
validated in the testing set.

Results: In the training and testing sets, there were significant differences in the clinical
outcomes of patients in the high- and low-risk groups showed by Kaplan-Meier survival
curves (P < 0.001). Univariate and multivariate Cox regression analyses showed that the
risk score had independent prognostic predictive ability (P < 0.001). At the same time, the
immune cell infiltration, immune score, immune-related gene expression, and tumor
mutation burden (TMB) of patients with HNSCC were also different between the high-
and low-risk groups (P < 0.05). Finally, we screened several chemotherapeutics for
HNSCC, which showed significant differences in drug sensitivity between the high- and
low-risk groups (P < 0.05).

Conclusion: This study constructed a 13-DNA-repair-gene signature for the prognosis of
HNSCC, which could accurately and independently predict the clinical outcome of the
patient. We then revealed the immune landscape, TMB, and sensitivity to chemotherapy
drugs in different risk groups, which might be used to guide clinical treatment decisions.

Keywords: head and neck squamous cell carcinoma, DNA repair gene, prognostic signature, immune
microenvironment, tumor mutation burden, drug sensitivity
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a type of tumor that originates from the
squamous epithelium of the head and neck areas, including the mucous membranes of the lips,
tongue, pharynx, larynx, and others (1). HNSCC is currently one of the most common malignant
tumors worldwide, with morbidity and mortality accounting for 3.6 and 3.4% of all malignant
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tumors in 2020, respectively (2). HNSCC is highly malignant,
and there are no specific prognostic-related biomarkers for
clinical application. Therefore, prognostic-related biomarkers
with clinical applicability are urgently required.

DNA damage and repair play important roles throughout the
life of a cell (3). DNA damage affects the expression of a variety of
genes, including proto-oncogenes and cancer suppressor genes.
Changes in the activity of proto-oncogenes and cancer
suppressor genes are crucial in tumorigenesis (4). Several DNA
repair genes have been confirmed to play an important role in the
development and prognosis of HNSCC (5–7). Hence,
constructing a risk model composed of DNA repair genes may
be useful for predicting the prognosis of patients with HNSCC.

In this study, we aimed to establish a prognostic prediction
model for HNSCC based on DNA repair genes. We first equally
divided all patients with HNSCC into training and testing sets. In
the training set, we screened prognostic-related DNA repair
genes using univariate proportional hazard (Cox) regression
analysis and least absolute shrinkage and selection operator
(LASSO) regression analysis to construct a risk model (8). All
patients with HNSCC were classified into high- and low-risk
groups according to the median value of the training set risk
score. Subsequently, we verified the prognostic relevance and
prognostic predictive ability of the risk model in the training and
testing sets. We also analyzed the tumor-infiltrating immune
cells, immune-related gene expression, tumor mutation burden,
and drug sensitivity of patients with HNSCC in the high- and
low-risk groups. The results showed that the risk model
composed of DNA repair genes could effectively distinguish
patients with different clinical outcomes and has independent
predictive prognostic ability.
METHODS

Data Download
The transcriptome profiling (RNA-seq) data harmonized to
fragments per kilobase million (FPKM), clinical information,
and tumor mutations in patients with HNSCC were downloaded
from the Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) in March 2021 (9). The pathologic stages were
reconfirmed according to the seventh edition of the American
Joint Committee on Cancer staging system (10). The gene
transfer format (GTF) files were downloaded from Ensembl
(http://asia.ensembl.org) for annotation (11). Immune-related
genes were downloaded from the Tracking Tumor
Immunophenotype (http://biocc.hrbmu.edu.cn/TIP/index.jsp)
(12). The gene list, containing 569 DNA repair genes, was
downloaded from Gene Set Enrichment Analysis (GSEA),
“GO_DNA REPAIR” gene set (http://www.gsea-msigdb.org/
gsea/msigdb/cards/GOBP_DNA_REPAIR.html) (13, 14). After
annotation by the GTF files, 545 DNA repair genes were
eventually used for subsequent analyses. GSE41613 (15),
GSE27020 (16), GSE117973 (17), and GSE65858 (18) datasets
with transcriptome and clinical data of patients with HNSCC
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were downloaded from Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/) for external validation.

Construction of Risk Model
To construct the risk model, we first combined the transcriptome
data and clinical information of patients with HNSCC to obtain 499
samples with complete clinical information and transcriptome
information, and then randomly divided them into a training set
and a testing set on average. Subsequently, LASSO regression
analysis was performed to further screen out 13 more
representative DNA repair genes for use in constructing the risk
model, and the correlation coefficients (Coef) and expression (EXP)
of these 13 genes were obtained using the “glmnet” package in R
(19). Finally, the risk score of each patient was calculated by the
following formula: Risk Score = Sn

i=1 Expi� Coefi, where n refers to
the number of selected DNA repair genes, Expi indicates the
expression levels of gene i in each HNSCC sample, and Coefi is
the correlation coefficient of gene i. Finally, we classified all HNSCC
samples into high- and low-risk groups based on the median value
of the risk score of the training set.

Validation of the Risk Model
We verified the risk model separately in the training and testing
sets. To this end, we first performed principal component
analysis (PCA) in the training and testing sets to evaluate the
discrimination of the risk model for patients in the high- and
low-risk groups. We then utilized heat maps to show the
expression patterns of the DNA repair genes in the risk model
in the training and testing sets. The Kaplan-Meier survival curve
was used to distinguish the difference in the clinical outcome of
patients in the high- and low-risk groups, and the significant
difference P-value was calculated by the log-rank test. The area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve was used to evaluate the prognostic diagnostic
accuracy of the risk score and clinical characteristics. Univariate
and multivariate Cox regression analyses of risk score and
clinical characteristics were used to evaluate the independent
correlation between the risk score and prognosis of patients with
HNSCC. We also performed the above verification in all patients
with HNSCC. Then we divided all samples into multiple clinical
subgroups based on clinical characteristics, and the Kaplan-
Meier survival curve was performed in each subgroup to
demonstrate the good prognostic ability of the risk score.

Evaluation of the Tumor Immune
Microenvironment and Immune-Related
Gene Expression
Before analyzing the immune-infiltration situation using the
CIBERSORT algorithm, which contains 22 types of immune
cells, we first standardized the gene expression data through the
“CIBERSORT” package in R (20). The Wilcoxon test was used to
compare the different infiltrations of the 22 immune cells in the
high- and low-risk groups. The Pearson test was used to analyze
the correlation between risk genes and tumor-infiltrating
immune cells through Statistical Product and Service Solutions
25.0 (SPSS 25.0) (21). The ESTIMATE (Estimation of STromal
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and Immune cells in MAlignant Tumors using Expression data)
algorithm was used to evaluate the immune score, stromal cell
content, and ESTIMATE score of each sample (22). We analyzed
the expression of negative regulatory immune genes in the high-
and low-risk groups using the Wilcoxon test. Finally, as the
research on the role of immune checkpoint genes in various
tumors is increasing, we analyzed the correlation between these
genes and risk scores using the Spearman test and analyzed their
differences in expression in the high- and low-risk patients using
the Wilcoxon test.

Assessment of Tumor Mutation Burden
We displayed the 30 genes with the highest mutation rate in all
HNSCC samples and calculated the tumor mutation burden
(TMB) of all samples through the “maftools” package in R (23).
We then divided the HNSCC samples into high- and low-TMB
groups according to the best cut-off value of the TMB of each
sample. The Kaplan-Meier survival curve showed the clinical
outcome of the two groups of patients with HNSCC. By
combining the TMB groups and the risk groups, we further
evaluated the impact of the risk score and tumor mutation
burden on the clinical outcome of patients with HNSCC and
displayed them with survival curves.

Online Website Verification
We verified the influence of the expression of the 13 DNA repair
genes on the Oncolnc website (http://www.oncolnc.org).

Analysis of Drug Sensitivity
To evaluate the model in the clinical treatment of HNSCC, we
calculated the half-inhibitory concentration (IC50) of
chemotherapeutic drugs for HNSCC. The difference in the
IC50 between the high- and low-risk groups was compared by
Wilcoxon signed-rank test using the “pRRophetic” package in
R (24).

Statistical Analysis
The significance level of the P-value was set to <0.05. All
statistical analyses were performed using R 4.0.4 (https://www.
r-project.org/).
RESULTS

Development and Validation of the
Prognostic Model
The flowchart of this research is shown in Figure 1. After merging
the transcriptome data and the clinical data of patients with
HNSCC downloaded from TCGA, we obtained 499 samples
with complete information. We then divided all HNSCC
samples into a training set (n = 251) and a testing set (n = 248).
The basic clinical information of the two groups of patients is
shown in Table 1. Subsequently, we screened out 82 prognostic-
related genes among 545 DNA repair genes through univariate
Cox regression analysis (Table S1, P < 0.05), of which 21 were risk
genes (hazard ratio > 1). Subsequently, we screened out a further
Frontiers in Oncology | www.frontiersin.org 3
13 representative DNA repair genes through LASSO Cox
regression analysis, which were used to construct the risk model.
The risk score was calculated based on the sum of the product of
the expression (Exp) of all genes in the model and its correlation
coefficient (Coef). The formula of the risk score was as follow: Risk
Score = MORF4L2 * (0.0037) + COPS2 * (0.0063) + USP10 *
(0.0255) + WAS * (–0.0123) + UVSSA * (–0.1324) + PRRX1 *
(–0.0148) + ZBTB1 * (–0.0632) + DCLRE1C * (–0.0502) +
MSH5 * (–0.3824) + DOT1L * (–0.1573) + ZBTB7A *
(–0.00610) + POLR2C * (0.0085) + MORF4L1 * (0.0047). A
negative correlation coefficient indicated that the gene was a
protective factor in patients with HNSCC. In contrary, the gene
with a positive correlation coefficient was a risk factor.

After calculating the risk scores of all patients with HNSCC,
we divided the training set and testing set samples into high- and
low-risk groups according to the median value of the training
set risk score, as shown in Figures 2A, G. We found that in both
the training and testing sets, the proportion of patients with
HNSCC who died in the high-risk group was higher than that
in the low-risk group (Figures 2B, C, H, I). The high- and
low-risk groups were well distinguished (Figures 2D, J).
Moreover, the DNA repair genes in the risk model showed the
same expression pattern in the training and testing sets
(Figures 2E, K). The Kaplan-Meier survival curve showed that
the clinical outcomes of patients in the low-risk group were
better than those in the high-risk group (Figure 2L), both in
the training set (P = 8.439e–09; Figure 2F) and the testing set
(P = 1.161e-04; Figure 2L).

To verify the ability and independence of our model to predict
the prognosis of patients with HNSCC, we conducted ROC
curves and univariate and multivariate Cox regression analyses
in the training and testing sets, respectively. The sensitivity and
specificity of the risk score were assessed using the ROC curve. In
the training set, the area under the curve (AUC) of the 1-, 3-, and
5-year ROC curves of the risk score were all >0.7 (Figure 3A).
The risk score had the largest AUCs of the 3-year ROC curve,
compared to the clinical traits of patients with HNSCC
(Figure 3B). In the testing set, the AUCs of the 1-, 3-, and 5-
year ROC curves were all >0.65 (Figure 3E), and the risk score
also had the largest AUCs of the 3-year ROC curve (Figure 3F).
The hazard ratio (HR) value of the risk score was the largest in
the univariate and multivariate Cox regression analyses of the
risk score and multiple clinical features, which showed that the
risk score was an independent prognostic factor (Figures 3C, D).
The independence of the risk score for predicting the prognosis
of HNSCC was confirmed in the test set (Figures 3G, H). Table
S2 shows the univariate and multivariate Cox regression analyses
of the training and testing sets. Overall, the risk score was an
independent prognostic factor for HNSCC. We were unable to
find an external validation dataset with transcripts of all risk
genes. However, we still verified the predictive ability of other
genes except MSH5 in patients with HNSCC in GSE41613. We
found that despite the lack of MSH, patients with HNSCC in the
low-risk group showed better clinical outcomes than those in the
high-risk group in our model (P < 0.05), and the expression
pattern of the remaining genes was consistent with the training
July 2021 | Volume 11 | Article 710694
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and testing sets (Figure S1). And we still verified in GSE117973
without transcript of UVSSA, GSE27020 without transcripts of
MSH5 and UVSSA, and GSE65858 without transcripts of
Frontiers in Oncology | www.frontiersin.org 4
UVSSA and ZBTB1. The differences of prognosis of patients
with HNSCC in the high- and low-risk groups were not
significant (P > 0.05, Figure S2). For these external validation,
we did a sensitivity analysis by using only 12 risk genes to
recalculate the risk score. And we found that deleting every risk
gene had little effect on the Kaplan-Meier survival curves
(Figures S3, S4).

To further verify the accuracy of the model, we divided all
samples into clinical subgroups based on different clinical traits,
and we analyzed differences in the clinical outcomes of high- and
low-risk samples in each clinical subgroup. Before clinical
subgroup validation, we conducted a risk model validation for
all samples. The Kaplan-Meier survival curve of all patients
showed that the clinical outcomes of patients in the low-risk
group were significantly better than those in the high-risk group
(P = 1.884e-11; Figure 4A). The sensitivity and specificity of the
risk scores of all HNSCC samples were assessed using the ROC
curve. The AUCs of the ROC curves of risk score for 1-, 3-,
and 5-year were all >0.65 (Figure 4B). The risk score had
the largest AUCs of the ROC curves for 3-year compared to
the clinical traits of patients with HNSCC (Figure 4C). PCA
showed that patients in the high- and low-risk groups showed
FIGURE 1 | Flowchart of this study.
TABLE 1 | Basic clinical information of training set and testing set.

Characteristics Training set (n = 251) Testing set (n = 248)

Age
<=65 162 155
>65 89 93
Gender
Female 70 63
Male 181 185
Stage
Stage I-III 83 86
Stage IV 130 127
Unknown 36 35
Tumor
T 1-2 85 87
T 3-4 136 134
Unknown 30 27
Lymph node
N 0 84 83
N 1-3 122 118
Unknown 45 47
July 2021 | Volume 11 | Article 710694
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FIGURE 2 | Development and validation of the risk model for patients with HNSCC. Distribution of the HNSCC samples with different risk scores in the training
set (A). According to the median value, the HNSCC samples were divided into high- (red dot) and low-risk (green dot) groups. The distribution of survival status of
HNSCC samples (B). The red dot indicated dead status, and the green dot indicated alive status. Percentage of patients with HNSCC in alive or dead status (C).
The red bar meant dead status, and the green bar meant alive status. PCA of HNSCC samples (D). The red dots indicated HNSCC samples in the high-risk group,
while the blue dot meant low risk. Heat map depicting the expression patterns in the 13 DRGs between high- and low-risk groups (E). Kaplan-Meier survival curve
demonstrating the clinical outcome differences between high- and low-risk groups (F). In the testing set, the distribution of the risk scores among all HNSCC
samples (G). The distribution of survival status of HNSCC samples (H). Percentage of patients in survival status and death status (I). PCA of HNSCC samples (J).
Heat map depicting the expression differences in the 13 DRGs between high- and low-risk groups (K). Kaplan-Meier survival curve showing the clinical outcome
differences between the two groups (L).
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good discrimination (Figure 4D). The HR value of the risk score
was the highest in the univariate and multivariate regression
analyses of risk score and clinical characteristics (Figures 4E, F).
Details of the univariate and multivariate Cox regression
analyses of the training and testing sets are shown in Table S3.
We divided all HNSCC samples into different clinical subgroups
according to age, gender, stage, tumor (T), and lymph node (N)
of patients with HNSCC. The clinical outcomes of patients in the
low-risk group were significantly better than those in the high-
risk group in all clinical subgroups, including those aged ≤65
years (P < 0.001, Figure 4G) and >65 years (P < 0.001,
Figure 4H), male (P < 0.001, Figure 4I) and female (P =
0.003, Figure 4J), stage I-III (P = 0.007, Figure 4K), stage IV
(P < 0.001, Figure 4L), T1-2 (P < 0.001, Figure 4M) and T3-4
(P < 0.001, Figure 4N), and N0 (P = 0.011, Figure 4O), and
N1-3 (P < 0.001, Figure 4P).
Frontiers in Oncology | www.frontiersin.org 6
Evaluation of the Immune
Microenvironment and Expression
of Immunoregulatory Genes
To reveal the differences in the immune microenvironment of
high- and low-risk groups, including immune cell infiltration
and expression of immunoregulatory and immune checkpoint
genes, we first used the bioinformatics algorithm CIBERSORT to
estimate 22 types of tumor-infiltrating immune cells in HNSCC.
First, we found that among these 22 cell types, acquired immune-
related immune cells infiltrated to a greater extent in HNSCC
samples (Figure 5A). There were more naïve B cells (P = 5.3e-05,
Figure 5B), resting mast cells (P = 1.8e-06, Figure 5C), T cells
CD8 (P = 0.0093, Figure 5D), regulatory T cells (Tregs, P = 6.7e-
08, Figure 5E), and follicular helper T cells (P = 1.3e-05,
Figure 5F) in the low-risk group. In contrary, activated mast
cells (P = 0.00053, Figure 5G), M0 macrophages (P = 0.00026,
A B

C

D

E F

G

H

FIGURE 3 | Validation of the risk model. In the training set, the 1-, 3-, and 5-year ROC curves (A). The ROC curves of clinicopathological characteristics and risk
score for 3-year OS (B). In the testing set, the ROC curves for 1-, 3-, and 5-year OS (E). The ROC curves of clinicopathological characteristics and risk score for 3-
year OS (F). Univariate and multivariate Cox regression survival analysis was used to validate whether age, gender, grade, stage, T, N, and risk score could
independently predict the clinical outcome of patients with HNSCC in the training (C, D) and testing sets (G, H).
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ivariate and multivariate Cox regression survival
n-Meier curves showing the differences in prognosis
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FIGURE 4 | Validation in different clinical traits subgroups. In all HNSCC samples, the Kaplan-Meier survival curve demonstrating the clinical outcome differences
ROC curves for 1-, 3-, and 5-year OS (B), ROC curves of clinicopathological characteristics and risk score (C) for 3-year OS. PCA of all HNSCC samples (D). Un
analysis validated whether age, gender, grade, stage, T, N, and risk score could independently predict the clinical outcomes of patients with HNSCC (E, F). Kapla
between the high- and low- risk groups in different clinical subgroups, including ≤65 (G), >65 (H), male (I), female (J), stage I-III (K), stage IV (L), T1-2 (M), T3-4
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A
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F G H
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I

FIGURE 5 | Estimation of the immune microenvironment. (A) Relative percentage of 22 types of tumor-infiltrating immune cells from the CIRBERSORT. Greater
infiltration of B cells naïve (B), resting mast cells (C), CD8 T cells (D), regulatory T cells (E), and follicular helper T cells (F) in the low-risk group, and more infiltrating
activated mast cells (G), M0 macrophages (H), and M2 macrophages (I) in the high-risk group. Higher immune score (J), stromal score (K), and ESTIMATE score
(L) calculated by ESTIMATE in the low-risk group.
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Figure 5H), and M2 macrophages (P = 0.0013, Figure 5I)
showed greater infiltration in the high-risk group. The HNSCC
samples in the low-risk group had higher immune scores (P = 1e-
06, Figure 5J), stromal scores (P = 0.00033, Figure 5K), and
ESTIMATE scores (P = 1.9e-06, Figure 5L) evaluated by
ESTIMATE than the high-risk group. In other words, the
tumor purity of HNSCC was lower in the low-risk group.
Naïve B cells were positively correlated with eight risk genes
that had negative correlation coefficients and negatively
correlated with MORF4L2, which had a positive correlation
coefficient (P < 0.05). CD8+ T cells were positively correlated
with five risk genes that had negative correlation coefficients and
negatively correlated with eight risk genes that had negative
correlation coefficients (P < 0.05). Tregs and follicular helper T
cells were positively correlated with all risk genes that had
negative correlation coefficients and negatively correlated with
all risk genes that had positive correlation coefficients (P < 0.05).
Monocytes and Macrophages M2 were negatively related to most
risk genes (P < 0.05). Macrophages M0 were negatively
correlated with some risk genes that had negative correlation
coefficients and positively correlated with some risk genes that
had positive correlation coefficients (P < 0.05). Details are shown
in Table S4.

Next, we analyzed the relevant immune regulatory genes to
further reveal the differences in the immune microenvironment
of HNSCC in the high- and low-risk groups. Almost all negative
immune regulatory genes in Figure 6A were highly expressed in
the low-risk group, similar to CD4+ T cell and CD8+ T cell
regulatory genes (Figure 6B). In addition, in recent years,
immune checkpoint inhibitors have become increasingly
common in the treatment of various tumors, including
HNSCC. Therefore we investigated whether the risk model was
related to immune checkpoint inhibitor-related biomarkers by
Spearman correlation analysis, and we discovered that high risk
scores were negatively correlated with the expression of CTLA4
(R = −0.34, P = 4.7e-15, Figure 6C), LAG3 (R = −0.28, P = 3e-10,
Figure 6D), PD1 (R = −0.37, P < 2.2e-16, Figure 6E), PD-L1
(R = −0.16, P = 0.00051, Figure 6F), and TIM3 (R = −0.26,
P = 7.4e-09, Figure 6G). A further Wilcoxon rank test also
confirmed the expression pattern of CTLA4 (P = 4.8e-09,
Figure 6H), LAG3 (P = 1.6e-06, Figure 6I), PD1 (P = 1.5e-11,
Figure 6J), PD-L1 (P = 0.025, Figure 6K), and TIM3 (P = 6.2e-
06, Figure 6L).

Assessment of Tumor Mutation Burden
To determine the tumor mutation burden (TMB), we first
downloaded all the mutation data of HNSCC from TCGA and
showed the top 30 mutation rate genes (Figure 7A).
Subsequently, we identified the genes with the top 20 mutation
rates in the high- and low-risk groups (Figures 7B, C). The
tumor mutation rate of high-risk group samples was slightly
higher than that of patients in the low-risk group, and the gene
with the highest mutation rate in the high- and low-risk groups
samples was TP53. According to the best cut-off point of TMB,
all patients with HNSCC were divided into high- and low-TMB
groups. The Kaplan-Meier survival curve showed that the clinical
outcomes of patients with low TMB were significantly better
Frontiers in Oncology | www.frontiersin.org 9
than those of patients with high TMB (P = 0.003, Figure 7D). To
further evaluate the influence of TMB and risk score on the
prognosis of patients with HNSCC, we combined the TMB group
with the risk group and analyzed the clinical outcomes of
different groups using the Kaplan-Meier survival curve. The
results showed that patients with low risk and low TMB had
the best clinical outcome, followed by patients with low risk and
high tumor mutation load, and that patients with high risk and
high tumor mutation load had the worst clinical outcome (P <
0.001, Figure 7E). Considering the high mutation rate of TP53,
we analyzed the correlation between TP53 and the risk score and
its expression in the high- and low-risk groups. As a result, we
found that TP53 was negatively correlated with the risk score
(R = −0.31, P = 3.9e-12, Figure 7F) and was highly expressed in
the low-risk group (P = 2.5e-05, Figure 7G).

Validation of the Website Oncolnc
We searched on the Oncolnc (http://www.oncolnc.org/) to verify
the impact of high- and low-risk DRGs in the model on the
prognosis of HNSCC and found that high-risk DRGs were
correlated with poor prognosis and low-risk DRGs were
associated with favorable patient prognosis. There were significant
p-values for COPS2 (P = 0.000031, Figure 8A), DCLRE1C (P =
0.0051, Figure 8B), DOT1L (P = 0.0261, Figure 8C), UVSSA (P =
0.00589, Figure 8D), MORF4L2 (P = 0.00254, Figure 8E), POLR2C
(P = 0.000262, Figure 8F), WAS (P = 0.0146, Figure 8G), ZBTB1
(P = 0.0153, Figure 8H), and USP10 (P = 0.0376, Figure 8I),
whereas MORF4L1 (P = 0.088, Figure 8J), PRRX1 (P = 0.144,
Figure 8K), ZBTB7A (P = 0.205, Figure 8L), andMSH5 (P = 0.391,
Figure 8M) were not significant. The risk genes with negative
correlation coefficients were also protective factors in the
Oncolnc database.

Analysis of Drug Sensitivity
To evaluate the possible clinical application of the risk model, we
analyzed the sensitivity difference of chemotherapy drugs for
HNSCC in the current stage of clinical trials between the high-
and low-risk groups, with the drug sensitivity expressed by IC50.
We showed that patients in the high-risk group were more
sensitive to erlotinib (P = 8.3e-16, Figure 9A), gefitinib (P =
0.00056, Figure 9B), paclitaxel (P = 2.9e-05, Figure 9C),
docetaxel (P = 2e-10, Figure 9D), and sorafenib (P = 2.7e-05,
Figure 9E), whereas patients in low-risk group were more
sensitive to methotrexate (P = 6e-07, Figure 9F), vinorelbine
(P = 8.3e-05, Figure 9G), and rapamycin (P = 0.00015,
Figure 9H), which indicated that the model could be used as a
potential predictor of chemotherapy sensitivity.
DISCUSSION

An increasing number of studies have shown that DNA damage
and repair play important roles in malignant tumors, including
HNSCC (25). DNA repair has been proven to be widely involved
in the development, prognosis, and metastasis of HNSCC (26).
Further studies on the expression profile of DNA repair genes in
July 2021 | Volume 11 | Article 710694
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HNSCC specimens may provide new ideas to improve the
clinical prognosis of patients.

A total of 545 DNA repair genes were obtained from the
“GO_DNA REPAIR” gene set of the GSEA database for
subsequent analysis. Through univariate and LASSO Cox
regression analyses in the training set, we constructed a risk
model that included 13 DNA repair genes. Patients in high-risk
group had worse clinical outcomes than low-risk patients. The
AUC of the ROC at 1-, 3-, and 5-year confirmed the good
prediction performance of the risk score. In addition, prediction
accuracy and independence were verified using univariate and
multivariate Cox regression analyses. We also performed clinical
subgroup validation in the internal dataset and further validated
the model in the online database Oncolnc, which reflected good
accuracy and repeatability of the risk model.

We illustrated the immune landscape of patients with
HNSCC using CIBERSORT and ESTIMATE, including tumor-
infiltrating immune cells, immune score, immune regulatory
genes, and immune checkpoint genes, all of which are
considered important in HNSCC (27). Comprehensive analysis
revealed that the risk score was more negatively related to tumor-
infiltrating cells such as naïve B cells, resting mast cells, CD8+ T
cells, Tregs, and follicular helper T cells, and positively related to
activated mast cells and macrophages. According to Table S4,
the correlation between risk score and tumor-infiltrating
immune cells was contributed by the influence of all risk genes
on tumor-infiltrating immune cells. Tumor-infiltrating immune
cells both correlated with eight gene transcripts that have a
negative correlation coefficient and five gene transcripts having a
positive correlation coefficient. In addition, patients in the low-
risk group had higher immune scores, stromal scores, and
ESTIMATE scores, which indicated that their tumor purity
was lower.

In this study, some of the DRGs in the risk model have already
been identified as having an important role in the immune system
while others have not been well studied in the immune system at
present. Decreasing the activity of DOT1L (DOT1 like histone
lysine methyltransferase) through silencing or an inhibitor
preferentially suppressed the production of interleukin 6 (IL-6)
and interferon b (IFN-b) but not of tumor necrosis factor a
(TNF-a) in macrophages triggered by Toll-like receptor (TLR)
ligands or virus infection. DOT1L-mediated selective histone 3
lysine 79 (H3K79me2/3) modifications at the IL-6 and IFN-b1
promoters are required for the full activation of innate immune
responses (28). DO1L plays an important role in regulating the
differentiation and complete function of CD4+, CD8+T cells and
B cells in the process of acquired immunity, while DO1L
knockdown or mutation invalidates acquired immunity (29–
32). ZBTB1 (zinc finger and BTB domain containing 1)
prevents DNA damage in replicating immune progenitors,
allowing the generation of B cells, T cells, and myeloid cells
(33). In alveolar macrophages, antigen presentation was ZBTB7A
(zinc finger and BTB domain containing 7A)-dependent where
alveolar macrophages deficient in ZBTB7A failed to induce
antibody production and T cell responses (34).

CD8+ T cell infiltration indicates better prognosis of patients
with HNSCC (35). Because of the negative correlation between
Frontiers in Oncology | www.frontiersin.org 14
the risk score and tumor-infiltrating cells, we investigated the
differential expression of negative immune regulatory genes,
CD4+ T cell and CD8+ T cell regulatory genes in different
groups. The results showed that almost all of these genes were
highly expressed in the low-risk group, potentially due to
increased infiltration of immune cells in the low-risk group
samples. Subsequently, the correlation between the risk score
and the expression of five immune checkpoint genes, CTLA4,
LAG3, PD1, PD-L1, and TIM3, indicated that the expression of
immune checkpoint genes was negatively correlated with the risk
score and was highly expressed in the low-risk group, suggesting
that immune checkpoint inhibitors may be beneficial to patients
with HNSCC with low risk scores.

In recent years, there has been an increasing number of
studies on the TMB of various tumors, including HNSCC, not
only in the context of its use as a biomarker, but also in the
treatment of immune checkpoint inhibitors (36). In our study,
TMB was positively correlated with risk score and poorer clinical
outcomes. Because TP53 showed the highest mutation rate, we
compared its expression in different groups and found that it was
negatively correlated with the risk score and highly expressed in
the low-risk group. Our model suggested that patients with
HNSCC with high risk scores were more sensitive to biological
inhibitors such as erlotinib, gefitinib, and sorafenib, instead of
chemotherapeutics like methotrexate. These analyses of drug
sensitivity were based on “pRRophetic” package in R (20).
Although the authenticity of the difference in drug sensitivity
of these drugs among patients with HNSCC in different risk
groups needs to be verified by further clinical trials, this model
based on DNA repair genes provides the possibility for guiding
clinical drug use. We speculated that the effect of
immunotherapy on HNSCC would be better than that of
traditional chemotherapy.

In this study, some of the DRGs in the process of modeling
that have already been identified play an important role in the
malignant phenotypes of various cancer types. DOT1L is
involved in tumorigenesis and tumor metabolism or metastasis
of ovarian cancer (37, 38), prostate cancer (39, 40), leukemia (41,
42), neuroblastoma (43), colorectal cancer (44), and breast
cancer (45). PRRX1 (paired related homeobox 1), a
homeodomain transcriptional factor, has been demonstrated to
be important in pancreatic cancer, especially in the regulation of
epithelial-to-mesenchymal transition (EMT) in pancreatic
cancer (46–49). Moreover, UPS10 (ubiquitin-specific peptidase
10), a deubiquitinase, promotes proliferation of hepatocellular
carcinoma by deubiquitinating and stabilizing YAP/TAZ, and
suppresses lung tumorigenesis by deubiquitinating and
stabilizing KLF4 (50, 51). ZBTB7A (zinc finger and BTB
domain containing 7A) acts as a tumor suppressor through
transcriptional repression in several carcinomas (52–54).
Moreover, its mutation or downregulation promotes cancer
progression (55, 56). Furthermore, its homologous gene,
ZBTB1, participates in regulating the treatment effectiveness
and resistance to chemotherapy (57, 58). At present, other
DRGs in the model have not been studied in depth in tumors.

In general, the prognosis model constructed based on the
DNA repair gene transcripts and clinical information of patients
July 2021 | Volume 11 | Article 710694
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with HNSCC in TCGA can well predict the prognosis of patients
with HNSCC in the high- and low-risk groups. And this model
systematically elaborated the molecular characteristics and
immune microenvironment of HNSCC. The internal
verification established based on the TCGA database also
proved the stability of the model and provided reference value
for prediction of the clinical outcomes of patients with HNSCC.
In addition, the significant differences of multiple immune
checkpoint genes between the high- and low-risk groups point
out possible directions for the immunotherapy of patients
with HNSCC.

However, we recognized that there were limitations to this
study. On the one hand, the HNSCC samples involved in this
study were not sufficient, and the DNA repair gene transcripts
and clinical information of multiple GEO databases were
incomplete, which hindered our external verification. On the
other hand, the immaturity of the biobank of our institution was
not enough to verify. Nevertheless, we still successfully
completed external verification with the remaining genes in
GSE41613 without MSH5 transcript, which further confirmed
the availability and stability of the prognostic model. However,
there were no significant differences in the Kaplan-Meier survival
curves validated in the GSE117973 (without UVSSA), GSE27020
(without UVSSA and MSH5), and GSE65858 (without ZBTB1
and UVSSA). We assumed that the lack of a relatively important
gene would reduce the predictive ability of the model, which
might be the reason for the failure of the verification in
GSE27020, GSE117973, and GSE65858.
CONCLUSION

In conclusion, this study constructed a 13-DRG signature for the
prognosis of HNSCC, which could accurately and independently
predict the clinical outcome of the patient. We then revealed the
immune landscape, TMB, and sensitivity to chemotherapy drugs
in different risk groups, which might be used to guide clinical
treatment decisions.
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