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Objective. Neuropathic pain (NP) is a type of intractable chronic pain with complicated etiology. *e exact molecular mechanism
underlying NP remains unclear. In this study, we searched for molecular biomarkers of NP. Methods. Differentially expressed
genes (DEGs) were predicted by analyzing three NP-related microarray datasets in Gene Expression Omnibus with robust rank
aggregation. A weighted gene coexpression network analysis was conducted to construct a network of differentially expressed
genes, followed by the evaluation of correlations between gene sets and the determination of hub genes. *e candidate genes from
the key module were identified using a gene set enrichment analysis. Results. In total, 353 upregulated and 383 downregulated
genes were obtained, among which five hub genes were determined to be related to pain phenotypes. Reverse transcription-
quantitative polymerase chain reaction was performed to verify the expression of these hub genes in the dorsal root ganglia of rats
with spared nerve injury, which revealed the decreased expression of EMC4. Hence, EMC4 was defined as a biomarker for NP
development. Conclusions. *e results of this study form a basis for further research into the mechanism of NP development and
are expected to aid in the development of novel therapeutic strategies.

1. Introduction

As a type of chronic pain with complex etiology, neuropathic
pain (NP) is characterized by hyperalgesia, numbness, and
allodynia [1]. More than 6% of patients experience debili-
tating NP-related physical and emotional trauma. Damage
to the sensory system afflicts the transmission of sensory
signals, thus resulting in hyperalgesia symptoms [2]. Owing
to the complex pathogenesis of NP, there is still no effective
treatment. With the development of bioinformatics, gene
expression datasets such as those in the Gene Expression
Omnibus (GEO) have been widely utilized to construct
genetic networks and identify the potential roles and
functions of differentially expressed genes (DEGs) in the
development of NP [3].

However, the study of molecular mechanisms has sig-
nificant implications in the treatment of NP. Dorsal root
ganglia (DRGs) have previously attracted the attention of

researchers. DRGs consist of pseudounipolar neurons that
transmit signals from the peripheral nerves to the dorsal
horns via the neuronal cell bodies [4]. Evidence shows that
genetic variations in DRGs are related to pain phenotypes
[5]. *erefore, it is of importance to analyze gene expression
changes in the DRGs after peripheral nerve injury for the
understanding of the molecular mechanism underlying NP,
which may contribute to the development of an effective
therapeutic regimen.

A large number of gene studies on the molecular basis of
NP have been performed, but most are based on the analysis
of peripheral blood samples from patients to identify DEGs.
*erefore, the non-spinal cord in situ genetic information
obtained does not truly reflect the lesion site. Additionally, it
is difficult to obtain a stable and reproducible phenotype
owing to the complex background of patient samples [6].

Some investigators have utilized rat models with more
stable phenotypes to map genetic changes at the site of NP
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lesions. For example, Yu H et al. screened for hub genes and
measured the expression of these genes in a rat model of NP.
As a result, the authors identified DEGs substantially
enriched in “extracellular space,” and their Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis showed that DEGs were enriched in
inflammatory disease and mitogen-activated protein kinase
signaling pathways [7]. However, these findings were not
assessed in rat models for further validation, and thus, there
is still a lack of reliable analyses of molecular mechanisms
and hub genes in NP.

In this context, we proposed a research hypothesis that
potential core genes for NP could be identified by DEGs and
replicated in animal models. *is work was conducted to
detect the expression of DEGs and determine their repro-
ducibility in an animal model of NP. Because in situ in-
formation could not be obtained from human samples, a
phenotypically stable and reproducible animal model was
employed to ascertain the pathogenesis of NP. Our results
provide novel insights into central genes and biological
pathways in the pathogenesis of NP using bioinformatics
analyses.

2. Materials and Methods

2.1. Selection of Gene Microarray Datasets. Microarray data
were downloaded from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/) for expression profiling of neuralgia.
*ree independent microarray datasets, including
GSE24982, GSE30691, and GSE63442, were selected.
GSE24982 comprised data from 20 spinal nerve ligation-
induced NP model animals and 20 sham cohort samples
generated using the GPL1355 microarray platform (Affy-
metrix Rat Genome 230 2.0 Array). GSE30691 included data
from 56 samples of three independent NP models, which
were generated using the GPL85 microarray platform
(Affymetrix Rat Genome U34 Array). GSE63442 consisted
of data from six spinal nerve ligation model animals and six
sham control samples produced using the GPL341 micro-
array platform (Affymetrix Rat Expression 230A Array).
Raw data were preprocessed using R software (version 4.0.2;
http://www.R-project.org/).

2.2. IdentificationofDEGs. Analysis of DEGs was carried out
to retrieve genes with differential expression in the treatment
group compared to the control group. Microarray data were
normalized to predict DEGs between the control and
treatment groups using the Limma package [8]. Robust rank
aggregation (RRA) was applied to identify reliable DEGs,
minimize inconsistencies, and integrate the results of the
three datasets. Firstly, the genes in each dataset were ranked
as per their fold-changes among the groups. *en, the
“RRA” package was utilized to integrate the list of all ranked
genes. *e adjusted P value of all genes was obtained to
indicate the possibility of their ranking in the resultant gene
list. DEGs were screened out with the threshold of log2 (fold-
change) >0.3 and adjusted P< 0.05 as screening criteria,
followed by the construction of a new data frame. Finally, a

“pheatmap” package in R was used to visualize and plot the
top 40 DEGs (the top 20 upregulated and downregulated
genes were selected based on the adjusted P value).

2.3. Functional Enrichment Analyses. Methods and tools
have been developed to analyze and filter these datasets to
produce smaller, more meaningful, and biologically relevant
gene/protein lists. *e functional enrichment analysis is an
approach that can identify genes enriched in the datasets of
molecular functions, biological processes, and pathways of
interest. Functional enrichment analysis contributes to the
focus of researchers on a specific gene of interest or a specific
biological problem. Considering a threshold of P< 0.05, the
clusterProfiler package [9] was applied for Gene Ontology
(GO) and KEGG pathway analyses. *en, the enrichment
results were visualized using the GOplot package [10] to
further analyze the biological functions of genes related to
NP.

2.4. Identification and Verification of Hub Genes. To identify
the modules most closely correlated with NP phenotypic
traits, a weighted gene coexpression network analysis
(WGCNA) was performed to construct a scale-free network,
define a coexpression matrix and adjacency functions, and
calculate the coefficients of different nodes. *e GSE24982
dataset was selected for the identification of coexpression
modules. Based on the RRA analysis results, the top 4000
genes (according to the P value) from GSE24982 were
extracted, followed by WGCNA of expression data to obtain
the key modules with the highest correlation with NP.
Modules and candidate genes were acquired using the
WGCNA package [11]. An unsigned topological overlap
matrix was employed to construct theWGCNAnetwork and
determine coexpressed gene modules. *e soft-thresholding
power was set to 12 with the threshold for cutting height as
0.25, and the minimum number of gene modules as 30. *e
degree of correlation between genes and modules was de-
termined as module membership (MM), and the degree of
correlation between genes and clinical information was
regarded as gene significance (GS). Genes with high con-
nectivity tended to have crucial functions. *erefore, genes
with high correlation were defined as hub genes in the
candidate modules. *e hub genes in the modules met the
criteria of MM> 0.80 and GS> 0.70. *e top 50 genes with
the highest connectivity were selected to confirm the ex-
pression data in GSE63442 and GSE30691 using an inde-
pendent t-test.

2.5. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). GSEA and GSVA refer to the
analyses based on gene sets. As the name implies, a gene set
is a collection of genes, and any number of genes together
can be called a gene set. However, the gene set applied for
analyses must have a certain biological significance. *e
most widely used gene set databases are GO and KEGG, one
of which classifies genes according to GO, and the other
integrates related genes as per metabolic pathways. In
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addition, genes can be assembled into biologically significant
gene sets through transcription factor regulatory networks,
coexpression networks, and lists of marker genes that define
biological states. *e R packages “clusterProfiler” and
“GSVA” were employed to perform GSEA on candidate hub
genes to yield the biological pathways related to these genes.
*e six samples in GSE63442 were grouped according to the
median expression of the candidate hub genes: high and low
expression groups. P< 0.05 was considered to be statistically
significant.

2.6. Animal Experiments. Our study was ratified and
reviewed by the Animal Care and Use Committee of the
SecondHospital of LanzhouUniversity (D2019-003). Twelve
adult male Sprague Dawley rats (weighing 200–220 g) were
purchased from the Lanzhou Institute of Veterinary Med-
icine, Chinese Academy of Agricultural Sciences.*ere were
2 groups in this study, spared nerve injury group (SNI, n� 6)
and sham-operated group (Sham, n� 6). Animals were
housed in cages with a 12-h light/dark cycle and food and
water ad libitum.

2.7. Establishment of a Rat Model of NP. To establish an NP
model, spared nerve injury (SNI) was induced in the left
sciatic nerve of rats following a previously published pro-
tocol [12]. Briefly, after intraperitoneal injection with so-
dium pentobarbital (40mg/kg), the skin of the left lateral
thigh was incised, and the biceps femoris muscle was bluntly
dissected to expose the terminal branches of the sciatic
nerve. At the bifurcation point, the common peroneal nerve
and tibial nerve were tightly ligated with 4–0 silk that was
then severed at the distal end of the ligature. Approximately
3–5mm of the distal end of the nerve was removed, and
contact with the sural nerve was avoided during the surgery.
Following the confirmation of complete hemostasis, the
wound was sutured. In sham-operated rats, the sciatic nerve
was exposed without ligation and incision. Six rats each were
utilized as biological replicates in the Sham and SNI groups.
*e sample size was not predetermined based on a priori
power calculations but was estimated based on previous
literature and the authors’ experience.

2.8. Measurement of Mechanical Hyperalgesia. Von Frey
filaments (Aesthesio, Danmic Global, USA) were adopted to
assess the withdrawal threshold for mechanical hyperalgesia
in rats as previously described [13]. Rats were placed in
transparent boxes with a wire mesh platform to acclimatize
for at least 30min. *en, the lateral edge in the left hind paw
of the rats was stimulated with von Frey filaments, and the
stimulation intensity started from 2 g. *e paw withdrawal
threshold (PWT) was determined using the up-and-down
method described by Chaplan et al. [13]. *e measurement
was repeated three times for each rat, and the response
frequency of each filament force was recorded and expressed
as a percentage. *e mechanical withdrawal threshold of all
rats was tested 3 days before surgery and 3, 7, 10, and 14 days
after surgery. On day 14 after SNI surgery, all animals were

euthanized by administering an overdose of sodium pen-
tobarbital after the assessment of mechanical hyperalgesia.
*en, the histological samples were collected.

2.9. Quantitative Real-Time Polymerase Chain Reaction (RT-
qPCR) Analysis. L3-5 DRG neurons were collected and
frozen in liquid nitrogen after SNI or sham surgery (n� 6 in
each group). Total RNAwas extracted using a TRIzol reagent
(Invitrogen, Carlsbad, USA) following the manufacturer’s
protocols. SYBR Premix Ex TaqTM was applied for qPCR.
Gene expression was calculated using the 2–△△CT method
with glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
as a normalizer. *e primers used for qPCR are listed in
Table 1. *e ggstatsplot package was used to perform t-test
and created graphics.

2.10. Statistical Analysis. GraphPad Prism 8 was employed
for statistical analysis. *e data are summarized as the
mean± standard deviation, and the Shapiro–Wilk test was
used to examine the normal distribution of data. *e sample
size was not predetermined based on a priori power cal-
culations [14]. It was estimated based on previous literature
and the authors’ experience. Repeated measures analysis of
variance (ANOVA) (factors: group and time) was utilized to
compare PWT evoked by mechanical stimulus between
ipsilateral and contralateral paw of rats in the Sham and SNI
groups. Student’s t-test was carried out to compare the
expression of five hub genes between the Sham and SNI
groups. A P value< 0.05 was considered statistically sig-
nificant. P value was adjusted based on Benjamini–Hoch-
berg FDR using the R package fdrtool.

3. Results

3.1. Identification of DEGs. Figure 1 depicts the process flow
of identification and functional analyses of DEGs. *ree
datasets in the GEO database were used for RRA analysis,
which integrated DEGs from three GSE datasets and re-
trieved intersected DEGs. According to the RRA analysis
results, 353 upregulated and 383 downregulated genes were
filtered out based on a threshold of P< 0.05 (Supplementary
1). *e most significantly upregulated gene was REG3B
(P � 3.85E− 07 and adjusted P � 2.96E− 03), followed by
ATF3 (P � 4.33E-07 and adjusted P � 2.96E-03). *e most
significantly downregulated gene was DDYSL4
(P � 5.94E− 08 and adjusted P � 8.12E-04), followed by
KCNS3 (P �1.92E-07 and adjusted P � 1.31E-03).

*e top 20 upregulated and downregulated genes are
shown in a heatmap in Figure 2, where the specific FDR-
adjusted P value for each gene is shown in Supplementary 4.
Following RRA analysis, a PPI network was constructed to
define the relationship between the proteins expressed by the
DEGs (Supplementary Figure 1), which increases our un-
derstanding of protein functions and relationships. Research
has extensively explored the significant roles of some genes
identified, such as REG3B, ATF3, SPRR1A, GAL, and JUN,
in NP.

Pain Research and Management 3



3.2. Functional Enrichment Analyses of DEGs. *e DEGs
identified by RRA analysis were subjected to GO and KEGG
functional enrichment analyses. “Regulation of ion trans-
membrane transport,” “sensory perception of pain,” “re-
sponse to axon injury,” “regulation of membrane potential,”
and “potassium ion transport” were the most substantially
activated biological functions of the DEGs (Figures 3(a)–
3(c)). KEGG analysis showed that the DEGs were re-
markably enriched in 27 signaling pathways, including
“complement and coagulation cascade,” “neuroactive li-
gand-receptor interaction,” and “ECM-receptor interaction”
(Figure 3(d)). *e pathways identified are closely related to
the development of NP, suggesting that the obtained DEGs
are indeed related to NP.

3.3. Identification and Validation of Hub Genes. A hub gene
is a gene that plays a critical part in a biological proc gene.
WGCNAwas adopted to investigate functional modules and

genes associated with clinical traits. *e key modules were
identified by setting the soft-thresholding power as 12, the
cutting height as 0.25, and the minimum module size as 30
followed by the determination of six modules with sizes from
77 to 2209 genes (labeled with different colors in Figure 4).
*e correlations between module eigengenes and clinical
traits are visualized in Figures 4(c)–4(e). From the heatmap
of module–trait relationships, it was found that the turquoise
module, which contained 2, 209 genes, shared the strongest
correlation with clinical traits (Figures 4(d) and 4(f )). Based
on a heatmap of module–feature correlations, the turquoise
module was considered the key module (correlation coef-
ficient� 0.71 and P � 2E− 06; Figure 4(d)). *e enrichment
of DEGs of the turquoise module in GO and KEGG path-
ways is shown in Supplementary 3. As shown in Figure 4(d),
genes in the blue module (correlation coefficient� 0.53 and
P � 9E− 04) were also correlated with NP traits. *e top 50
genes with the highest connectivity (Supplementary 2) were
extracted based on the screening criteria for candidate hub
genes in the key modules (MM> 0.80 and GS> 0.70). Seven
genes (MKI67, VOM2R75, TJP1, EXT1, FOXP1, RNA-
SEH2C, and EMC4) were retrieved as candidate hub genes.
Among these, five genes were upregulated, whereas only
RNASEH2C and EMC4 were downregulated in the NP
group (Figure 5).

3.4. Screening of the Five Hub Genes by GSEA and GSVA.
To ascertain the biological functions of the seven candidate
hub genes involved in NP development, GSEA and GSVA
were conducted on the GSE63442 dataset. As exhibited in
Figures 6 and 7, and Supplementary Figure 2, the genes in
the groups with high expression of MKI67, TJP1, EXT1,
RNASEH2C, or EMC4 were enriched in “sodium channel
activity” in accordance with the GO term enrichment
analysis. *e genes of the MKI67, TJP1, RNASEH2C, and
EMC4 high-expression groups were enriched in “cation
channel activity” and “cation channel complex.” Further,
TJP1, RNASEH2C, and EMC4 were all enriched in the
pathways “cytosolic DNA sensing pathway,” “ECM-receptor
interaction,” and “focal adhesion.” *erefore, these five hub
genes (MKI67, TJP1, EXT1, RNASEH2C, and EMC4) were
selected for further verification.

3.5. Behavioral Changes of Rats following SNI. Peripheral
nerve injury can cause hyperalgesia and allodynia in affected
rats [15]. Following SNI, the rats developed mechanical
allodynia-like behavior, which was evidenced by the re-
duction of the ipsilateral withdrawal threshold from days 3
to 14 after injury (n� 6, male) (Figure 8(a), Table 2 and

Table 1: Primer sequences used for qRT-PCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)
MKI67 CCTGCCTCAGATGGCTCAA GGTTCCCTGTAACTGCTCCCT
TJP1 ATGAGCGGGCTACCTTACTG ATGCGAGCGACCTGAATG
EXT1 AACTCAAAGGAGCGGTGGG CAGGTAATGGGAATACAGGTAGTGA
RNASEH2C GGGAAGCAGCGTATTCACCT GCGAAACGACACCTGTAGCC
EMC4 ACACCATTTCCATCTTCCCTACT TTCCCAATGAGATAGACCAAGC

GSE30691 GSE63442

RRA

Differentially expressed genes

WGCNA

Key module

Hub genes

GSVAGSEA Validation in qPCR

Function annotation

GS MM filtering Connectivity

KEGG analysisGO analysis

GSE24982

Figure 1: *e workflow of our study. GEO, Gene Expression
Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; WGCNA, weighted gene coexpression net-
work analysis; GS, gene significance; MM, module membership;
GSEA, gene set enrichment analysis; GSVA, gene set variation
analysis.
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Figure 3: Continued.
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Figure 2: *e heatmap of the top 20 upregulated and downregulated genes identified by RRA analysis. Each column represented a dataset,
and each row represented one gene. Red represented upregulated genes, while blue represented downregulated genes.*e Limma R package
was utilized to calculate the logarithmic fold change of each dataset, which was expressed with the numbers in the heatmap. DEG,
differentially expressed gene; RRA, robust rank aggregation.
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Supplementary 5). *e ipsilateral withdrawal threshold of
rats in the SNI group exhibited conspicuously lower values
than that in the sham group (3 days, P � 0.045; 10 days,
P� 0.008; 7, 14 days, P< 0.001). From preoperative stage to
14 days after injury, there were no apparent differences
between the Sham and SNI groups in terms of the with-
drawal threshold of the contralateral paw (3 days, P � 0.965;
7 days, P � 0.992; 10 days, P � 0.922; 14 days, P � 0.783). *e
results illustrate the successful establishment of the NP rat
model.

3.6. Validation of Hub Genes Using RT-qPCR. RT-qPCR was
performed to measure the mRNA levels of the five hub
genes. Compared with the sham-operated rats, MKI67 ex-
pression increased (P � 0.001; Figure 8(b)), and EMC4 ex-
pression clearly decreased in rats after SNI surgery
(P � 0.002; Figure 8(b), Table 3 and Supplementary 6). *ese
results are consistent with those of the microarray analyses.
However, the expression of the other genes was not ap-
preciably different between the SNI and sham-operated rats
(TJP1, P � 0.793; EXT1, P � 0.053; RNASEH2C, P � 0.151;
Figure 8(b), Table 3, and Supplementary 6).

4. Discussion

NP is attributable to either nervous system dysfunction or
neuronal damage, thus leading to abnormal pain. As a
complex disorder, NP is often accompanied by abnormal
gene expression [16].

*e management of NP remains a challenge for clini-
cians. *erefore, there is an urgent need to deepen our
understanding of the genetic changes behind the patho-
genesis of NP to find novel potential genetic targets for NP
treatment.

In recent years, bioinformatics technology has been
commonly utilized to dissect the molecular mechanisms
underlying NP and has revealed several relevant DEGs [17].
ATF3, JUN, and GPR151 are mainly correlated with cyto-
kine–cytokine receptor interaction and p53 signaling in the
SNI model [18]. CCL2, FCER1G, NF-κB1, RAC2, and C1Q
[19], p53 [20], CCL3, CTLA2B, ATF3, PLEK, and TGIF1
[21] are associated with the pathogenesis of NP.

In the present work, three gene expression datasets
(GSE24982, GSE30691, and GSE63442) were integrated for
RRA analysis to screen out DEGs. RRA analysis is a widely
utilized tool for the integration of genome-wide gene
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Figure 3: *e GO and KEGG analyses of the DEGs identified by the RRA analysis. (A-C)*e Chord plot of GO enrichment analysis of the
DEGs in three parts: biological process (BP), cellular component (CC), and molecular function (MF). (D) *e Chord plot of KEGG
pathways enrichment analysis of the DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RRA, robust rank
aggregation.
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expression data from different datasets and the identifi-
cation of the key genes that are most likely to be implicated
in the development of the disease under investigation
[22].*e DEGs identified comprise REG3B [23] and ATF3
[19, 24], which have been reported to assume a major role
in the etiology of NP. After RRA analysis, enrichment
analyses were conducted on 736 DEGs, which elucidated
that they were mainly enriched in ion transmembrane
transport [25], membrane potential regulation [26], sen-
sory perception of pain [27], response to axon injury [28],

and potassium ion transport [29]. GO and KEGG en-
richment analyses uncovered that these functions were
associated with the occurrence and development of NP.
Additionally, complement and coagulation cascade [30],
neuroactive ligand-receptor [31], and ECM-receptor in-
teractions [32] were signaling pathways related to various
functions mediated by NP. *e genes associated with these
pathways were also observed in our analysis. Based on the
above findings, we further evaluated the roles of these genes
in NP development.
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Figure 4: WGCNA. (a)*e Cluster dendrogram of the module eigengenes. (b)*e selection of soft-thresholding powers through scale-free
topology fit index and mean connectivity among genes. (c) *e cluster dendrogram of all DEGs based on the dissimilarity measure and the
assignment modules. (d) *e heatmap of module-trait correlations. *e number in each small box represented the corresponding cor-
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indicated the gene significance value. (f ) *e scatter plot of GS and MM for genes in the turquoise module. DEG, differentially expressed
gene; WGCNA, weighted gene coexpression network analysis.
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WGCNA and coexpression network analysis were ap-
plied to find the hub genes involved in the pathogenesis of
NP. *e turquoise module that showed the highest con-
nectivity with traits was chosen to further identify the genes
in the module. Seven candidate hub genes (MKI67,
VOM2R75, TJP1, EXT1, FOXP1, RNASEH2C, and EMC4)
were retrieved after filtering for connectivity, GS, and MM
values. To study the biological functions of these hub genes,
they underwent GSEA and GSVA. *e results show that
most were associated with cation channel activity. Finally,
MKI67, TJP1, EXT1, RNASEH2C, and EMC4 were selected
as hub genes for further confirmation.

*e expression of the five hub genes was determined in
an SNI rat model. As reflected by RT-qPCR results, MKI67
expression was elevated, and EMC4 expression was

diminished in SNI model rats compared to the sham-op-
erated rats, which are consistent with the results of
microarray analysis. *ere were differences in animal
models and experimental conditions, and only a one-time
point was selected for verification in this study, which might
cause differences in the final results. *erefore, more rig-
orous experiments are warranted in the future for the
comprehensive exploration of the role of these genes.
However, our results suggest that EMC4 is a very sensitive
factor and is potentially an important indicator of prognosis
or prediction.

NP results from nerve injury, in which glial cell acti-
vation is one of the most prominent characteristics. Pro-
liferation, upregulated cell surface markers and receptors,
and functional changes are typical features associated with
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Figure 5:*e selection and verification of the candidate hub genes. *e expression of MKI67, VOM2R75, TJP1, EXT1, FOXP1, EMC4, and
RNASEH2C differed between the two groups. *e genes with the highest connectivity were screened out by WGCNA. To validate the
expression data of these genes, the GSE63442 and GSE30691 datasets were selected for pairwise validation by independent t-test. *e
ggstatsplot package was used to perform t-test and plot graphs. GEO, Gene ExpressionOmnibus. Statistical analysis was conducted using the
independent t-test. Plots represented mean± 95% confidence interval (CI).

8 Pain Research and Management



2000
-0.8

-0.8

-0.4

-0.4

0.0

0.0

0.4

0.4

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(a)

2000
-0.8

-0.25

-0.4

0.0

0.00

0.4

0.50

0.25

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(b)

2000

-1.0

-1.5

-0.5
0.0

-1.0

0.5

-0.5

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(c)

2000

-1.0

-0.6

-0.5
0.0
0.5

0.0

-0.2

-0.4

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(d)

2000

-1.5

-1.5

-1.0

-0.5

-1.0

0.0

-0.5

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(e)

2000

0.0

-0.5

0.0

1.0

0.5

0.6

0.4

0.2

4000

Rank in Ordered Dataset 

R
an

ke
d 

Li
st

 M
et

ri
c

Ru
nn

in
g 

En
ri

ch
m

en
t S

co
re

6000

(f )

Figure 6: *e GSEA of the candidate hub genes in the GEO dataset. (A) C, (E) GSEA of the single candidate hub genes in GO terms
according to the normalized enrichment scores. (C)MKI67, (G) EMC4, (M) RNASEH2C. (B) D, (F) GSEA of the single candidate hub genes
in the KEGG pathway. (D) MKI67, (H) EMC4, (N) RNASEH2C. GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, gene set
enrichment analysis.
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glial cell activation [33].*e nuclear protein MKI67 is a well-
known proliferation marker that is employed to assess cell
proliferation. *e number of Ki67-positive astrocytes and
microglia is enhanced following peripheral nerve injury in
rats, and the proliferation of glial cells may contribute to
central sensitization [34]. *us, MKI67 may participate in
the pathological process of NP and may be the basis for the
development and maintenance of hyperalgesia [35].

*ere are very few reports on the role of EMC4 and no
reports on its role in NP in PubMed. EMC4 is a subunit of
the endoplasmic reticulum (ER) membrane protein complex
(EMC). EMC is a highly conserved oligomeric complex
located on the ER membrane, which is essential for the
folding and lipid transport of transmembrane proteins [36].
In all organisms evaluated, EMC destruction results in a
pleiotropic phenotype. *e phenotypes associated with
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Figure 7: *e GSVA of the candidate hub genes. *ere existed GSVA-derived clustering heatmaps between the single candidate hub genes
and the GO terms. Only signaling pathways with log(fold change)> 0.2 are presented. (a) VOM2R75, (b) MKI67, (c) TJP1, (d) EMC4,
(e) FOXP1, (f ) RNASEH2C. GEO, Gene Expression Omnibus; GO, Gene Ontology; GSVA, gene set variation analysis.
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EMC4 disruption are stress response activation in organisms
and cells [37].

*e ER is a pivotal organelle related to maintaining Ca2+

homeostasis, cell death signaling, and posttranslational
modification [38]. Numerous factors, such as cellular stress
(glucose deficiency and depletion of ER Ca2+ reserves), can
trigger imbalances in the structure and function of ER,
thereby leading to ER stress [39].*e ER stress response may
be a crucial factor in the formation of a wide range of in-
flammatory diseases and neuroinflammation [40]. Nerve
injury in an NP model induces an ER stress response in the
DRG [41].*e repression of ER stress effectively relieves NP,
which is regarded as an indicator for ER stress [42].
*erefore, we speculated that ER stress was correlated with
the induction of NP. Our data show that EMC4 expression
was dramatically reduced on day 14 after SNI surgery. *is
decrease in EMC4 expression may be associated with post-

SNI pain, and ER stress may exert effects. Whether and how
classic pain targets respond to ER stress or ER stress, which is
alleviated, remains an active research topic. Hence, further
work is needed to explore the related mechanisms.

*e hub genes in NP were explored in this study. Unlike
in prior studies, we did not return to the database for
validation. *e screened hub genes were validated in an NP
rat model, which likely yields more reliable results. Relying
on the reproducibility and phenotypic consistency of the
animal model, we can continue to map the subsequent
downstream signaling molecular pathways. Transgenic an-
imals were also obtained through knockout or knock-in
techniques to further verify whether the hub genes we
screened facilitate or suppress NP.

However, our study has some limitations. *e lack of
sample size predetermination based on a priori power
calculations and the small sample size available for analyses
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Figure 8: PWT changes after SNI surgery in rats and experimental validation of the expression of hub genes. (a) Compared with the
sham-operated rats, the PWT of SNI rats decreased from day 3 after surgery. *e withdrawal threshold was evaluated by von Frey
filaments as a response evoked by a mechanical stimulus over time. *e data in the sham and SNI groups were normally distributed.
Repeated measures ANOVA followed by Tukey’s multiple comparisons test was used to evaluate mechanical hyperalgesia, and data
were expressed as mean ± standard deviation. ∗, P< 0.05, ∗∗, P< 0.01, ∗∗∗, P< 0.001, compared with the sham-ips group on the
corresponding days. (b) *e expression of the five hub genes in DRG tissue after SNI surgery was validated by RT-qPCR. *e data in
the two groups were normally distributed. Unpaired Student’s (t) test was carried out, and the data were expressed as mean ± standard
deviation. ∗∗, P< 0.01, ∗∗∗, P< 0.001 compared with the Sham group. DRG, dorsal root ganglia; SNI, spared nerve injury; PWT, paw
withdrawal threshold.

Table 2: PWT changes of rats in different groups (n� 6).

Group n 0 (d) 3 (d) 7 (d) 10 (d) 14 (d)
Sham-con 6 18.385± 4.107 17.793± 4.207 18.190± 4.139 18.499± 3.391 19.018± 5.072
Sham-ips 6 18.007± 5.819 19.636± 4.659 19.393± 4.847 17.717± 4.092 16.290± 3.328
SNI-con 6 18.513± 3.356 18.551± 3.639 18.579± 3.606 17.689± 4.514 18.023± 2.874
SNI-ips 6 17.260± 2.859 11.671± 1.374∗ 6.608± 3.569∗∗∗ 5.610± 2.962∗∗ 5.822± 2.424∗∗∗
Notes: Fgroup � 3.914, P � 0.006; Ftime � 21.947, P≤ 0.001; ∗, P< 0.05, ∗∗, P< 0.01, ∗∗∗, P< 0.001 compared with the Sham-ips group. Repeated measures
ANOVA was used, followed by Tukey’s multiple comparisons test. Data are presented as mean± standard deviation.
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may obscure rare interactions, and further studies are re-
quired to dissect the relevant mechanisms.

5. Conclusions

EMC4 was downregulated in the SNI rat model and was a
sign of NP occurrence. *is finding provides novel insights
into the mechanism of NP development and the associated
therapeutic targets. In the future, we will ascertain the
specific action mechanism of EMC4 in the development of
NP to clarify its function in the pathogenesis of this
condition.
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