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Abstract: Trichothecenes are sesquiterpenoid mycotoxins associated with fusarium head 
blight (FHB) of cereals, with worldwide economic and health impacts. While various 
management strategies have been proposed to reduce the mycotoxin risk, breeding 
towards FHB-resistance appears to be the most effective means to manage the disease, 
and reduce trichothecene contamination of cereal-based food products. This review 
provides a brief summary of the trichothecene synthesis in Fusarium species, their 
toxicity in plants and humans, followed by the current methods of screening and breeding 
for resistance to FHB and trichothecene accumulation. 
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1. Introduction 

Fusarium head blight (FHB) is a destructive disease of cereal grain crops, with worldwide economic 
impact. The disease is caused by a series of trichothecene-producing Fusarium species, of which F. 
graminearum (teleomorph: Gibberella zeae) and F. culmorum are the most economically relevant 
[1,2]. Trichothecenes are sesquiterpenoid mycotoxins that have been implicated in disease 
aggressiveness [4-6] and are found to accumulate in kernels of infected spikelets, rendering the grain 
unsuitable for human or animal consumption. Ingestion of contaminated grain can cause intestinal 
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irritation in mammals, and can lead to feed refusal in livestock [7]. A few outbreaks of alimentary 
toxic aleukia (ATA), a potentially fatal condition caused by trichothecene ingestion, have been 
reported in human societies as far back as the 18th century (see Section 2.2). The main source of 
mycotoxins in the food chain is Fusarium-contaminated grain, usually from FHB-outbreaks, although 
some species may proliferate on grain during storage. The first documented FHB-outbreak occurred in 
England in 1884, where the disease was named “wheat scab” [8]. Outbreaks have since been reported 
in the Americas [9-11], Asia [12, 13], Australia [14], Europe [1, 15], and South Africa [16, 17]. The 
most notorious epidemic in North America spanned the 1990s, where in the United States alone, 
estimated economic losses approached 3 billion USD [18]. In South Africa, a double cropping system 
(with maize as a summer crop and wheat as a winter crop) in combination with conservation tillage has 
led to a growing FHB problem, especially in regions where irrigation is required [16]. Rice-wheat 
rotations are routine in many Asian countries. Both rice and wheat are host-crops, and while FHB is 
more endemic in the latter, the former still serves as a host for innoculum buildup [18]. FHB of barley 
and wheat is a pervasive problem in China. Between 1951 and 1990, wheat farmers were burdened 
with seven severe epidemics (exceeding 40% yield losses) and 14 moderate epidemics (10-20% yield 
losses) [12]. The subsequent introduction of moderately resistant cultivars has coincided with a 
reduced frequency of severe epidemics [20].  

FHB-management strategies are essential for reducing the economic damages and potential health 
hazards associated with this disease. Strategies have been developed to target each of the three 
components (innoculum source, susceptible host, and favorable environmental conditions) which are 
necessary for an outbreak. Innoculum source is usually present in the form of ascospores in the soil. 
Studies have shown that crop-rotation, tillage, chemical or biological control, and the use of FHB-
resistant cultivars can all contribute to reduce the amount of innoculum harbored in the soil by 
reducing the amount of Fusarium/Gibberella-contaminated crop and/or crop debris [21-27]. The 
second essential component for an outbreak is a suitable host for the spores to germinate and establish 
disease. In order to reduce the impact of this disease, we need to convince farmers to grow resistant 
cultivars. The selection of registered cultivars with decent FHB-resistance is limited. Moreover, 
farmers preferentially select cultivars with good agronomics, which often have poor resistance. 
Finally, the third component necessary for disease establishment: favorable environmental conditions. 
FHB thrives in wet, humid conditions with an optimum temperature of 25oC during anthesis and grain 
filling stages of crop development [1]. While the weather cannot be controlled, disease forecasting 
models can be used to devise an effective spraying schedule for chemical control, and for more 
organized post-harvest management of potentially diseased kernels [10, 19, 28-29]. Application of 
more than one management strategy [30] has been shown to be most effective in reducing FHB 
severity and trichothecene accumulation in grains. However, if we had to focus our efforts on only one 
disease management strategy, the development of highly resistant cultivars, with good agronomic 
qualities, would have the largest impact. The use of resistant cultivars can manage each of the three 
components essential for disease. First, it can reduce the amount of inoculum buildup in host-crop 
debris (and subsequently in the soil). Second, short of only cultivating non-host crops, we can reduce 
the suitability of host-crops by using highly-resistant cultivars. Finally, while a strong genotype-
environment interaction has been observed in FHB disease outcomes [31], studies have shown that the 
effect of the environment can be indirectly managed by using highly-resistant genotypes. In contrast, 
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while genotypes with moderate or intermediate resistance can reduce the impact of FHB, this 
resistance is not stable under high disease pressure.  

In a two-year FHB field trial of winter wheat, rye and triticale genotypes, grown in three regions of 
South-West Germany, Miedaner et al. (2001) observed strong interactions between genotype and 
disease outcomes/trichothecene accumulation [31]. They also observed a significant impact of the 
environment on these interactions, but the effect of the environment was reduced in more resistant 
genotypes. We observed a similar phenomenon between wheat-genotypes and their interaction with 
different F. graminearum trichothecene-chemotypes (chemotype meaning the major trichothecene 
produced by a given strain) [32]. Trichothecene-chemotype played a role in disease spread and in the 
development of Fusarium damaged kernels (FDK) in intermediate/moderate sources of resistance, but 
the effect of chemotype was not observed in susceptible and resistant genotypes. High levels of 
resistance or susceptibility were stable across all chemotypes tested [32]. We also found that while the 
3-O-acetyl 4-deoxynivalenol (3ADON) chemotypes led to the highest disease symptoms in 
intermediate/moderate resistant sources, FDK in plants infected with 3ADON-producers was nearly as 
low as the least aggressive chemotype, nivalenol (NIV). But, again, in highly resistant sources, the 
aggressiveness of the isolate and the FDK did not impact disease outcomes. 

These studies emphasize the importance of developing highly resistant cultivars. The level of 
resistance “is more important in governing [4-deoxynivalenol (DON)] accumulation in a given cultivar 
than is the aggressiveness of an isolate [33]”. In this review, we will begin with an overview of 
trichothecenes to emphasize their impact on FHB-disease outcomes and on human health. This will be 
followed by a section on FHB-resistance, sources and current breeding methods. Finally, we will 
conclude with our recommendations of the direction breeding programs should take in order to have 
the highest impact on reducing FHB of grain crops and trichothecene accumulation in the food chain. 

2. Trichothecenes 

2.1. Trichothecene biosynthesis and structure 

Trichothecenes are toxic sesquiterpenoid compounds composed of a central core of fused 
cyclohexene/tetrahydropyran rings. In addition, a cyclopentyl moiety is also fused to the 
tetrahydropyran ring through C-2 and C-5. Furthermore, C-12 comprises part of an epoxide 
functionality (Figure 1), which has been deemed crucial for toxicity [34]. There are five positions at 
which functionality varies, most commonly featuring hydroxyl or acetyl groups. Four types of 
trichothecenes have been identified from trichothecene-producing fungi: types A, B, C and D. The 
major type A trichothecenes in Fusarium species include T-2 toxin (T-2) and HT-2 toxin (HT-2), both 
of which posses an isovalerate function at C-8 [35]. F. sporotrichiodies and F. poae are some of the 
major type A trichothecene producers [36]. Type A trichothecenes are highly toxic; T-2 has been 
reported to be roughly ten times more toxic in mammals than DON [37]. DON is the most prevalent 
toxin associated with FHB, and belongs to the more phytotoxic [3] type B trichothecenes which feature 
a ketone at C-8 [35]. F. culmorum and F. graminearum produce mainly DON, NIV and their 
derivatives [36]. Type C and D trichothecenes, respectively characterized by a second epoxide (C-7,8 
or C-9,10) or an ester-linked macrocycle (C-4,16), are not associated with FHB [38]. Other 
mycotoxins, such as zearelenone (ZON), fumonisins, moniliformin and butenolide are also produced 
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by Fusarium species [35, 39-40]. The trichothecene biosynthesis pathway is summarized in Scheme 1; 
genes associated with trichothecene production are presented in Table 1. The initial substrate, farnesyl 
pyrophosphate, is cyclized into a non-toxic trichothecene product, trichodiene. This step is catalyzed 
by trichodiene synthase, TRI5 [6, 34, 41]. A multifunctional cytochrome P450 monooxygenase, TRI4, 
catalyzes the next four steps in the pathway: C-2 hydroxylation [42-43], followed by 12,13 epoxidation 
and two more hydroxylation reactions [43]. The final product of TRI4 activity, isotrichotriol, 
undergoes two non-enzymatic isomerization steps [44], including a cyclization whereby C–O bond 
formation occurs between the C-2 oxygen and C-11. The product, isotrichodermol, forms the skeleton 
trichothecene structure, and is acetylated by TRI101 at C-3 [45], and hydroxylated by TRI11 at C-15 
to produce 15-deacetylcalonectrin [46]. 15-deacetylcalonectrin can act as a substrate for DON 
production, by hydroxylation of C-3 and C-7 and the addition of a ketone group at C-8. Alternatively, 
it can be acetylated by the activity of TRI3 at C-15 to produce calonectrin [47]. 

Figure 1. Type A and B trichothecene structures. Examples of type A trichothecenes 
include T-2 toxin (T-2), HT-2 toxin (HT-2), 4,15-diacetoxyscirpenol (4,15-DAS). 
Examples of type B trichothecenes include nivalenol (NIV), 4-deoxynivalenol (DON), 3-
O-acetyl DON (3-ADON), and 15-O-acetyl DON (15-ADON). OAc = acetyl function; 
OIsoval = isovalerate function. 

 
 
 
 
 
 
 
 
 
Calonectrin serves as a substrate for the biosynthesis of acetylated DON and NIV products, 

including 3,15-diacetyldeoxynivalenol (3,15-ADON), 15-acetyldeoxynivalenol (15-ADON), and 4-
acetylnivalenol (4-ANIV). Functional expression of F. graminearum Tri7 and Tri13 genes is necessary 
for NIV-chemotypes of this species—the absence of these genes confers DON-chemotypes [48-49]. 
NIV can be synthesized directly from DON, or by conversion of calonectrin to 3,15-
diacetoxyscirpenol (-DAS) and then to NIV by ketone addition at C-8. 3,15-DAS is also the major 
substrate type A trichothecenes. Functional expression of F. sporotrichioides Tri7 and Tri8 produces 
T-2 toxin chemotypes in this species [50]. C-4 acetylation of 3,15-DAS (catalyzed by TRI7) produces 
3,4,15-triacetoxyscirpenol, which can be converted to 4,15-DAS by TRI8, or serves as substrate for T-
2 toxin synthesis, initiated by TRI1. HT-2 toxin accumulates in the absence of TRI7, via hydroxylation 
and isovalerate addition to C-8 of 3,15-DAS.  
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Table 1. Genes involved in trichothecene production. For more details on trichothecene 
gene cluster see [163, 167-170]. Note that recent analyses have revealed that Tri1 and 
Tri101 are in the core-trichothecene gene cluster (core-Tri) in F. equiseti and F. scirpi  (R. 
Proctor, unpublished). 

Gene Cluster Description References 

Enzymes: for pathway reactions see also Scheme 1 

Tri1 Tri1-Tri16 
C-7 monooxygenase (F. graminearum); C-8 monooxygenase (F. 
graminearum, F. sporotrichioides)  

[154-156, 174-
175] 

Tri3 Core Tri 15-O-acetyltransferase [47] 
Tri4 Core Tri monooxygenase [41-42, 157] 
Tri5 Core Tri sesquiterpene cyclase, ‘trichodiene synthase’ [6, 40, 158] 

Tri7 Core Tri 
4-O-acetyltransferase; functional F. graminearum TRI7 required for 
NIV-chemotype; functional F. sporotrichioides TRI7 required for T-2 
toxin production 

[49-50] 

Tri8 Core Tri 
C-3 deacetylase; functional F. sporotrichioides TRI8 required for T-2 
toxin production 

[50, 159] 

Tri9 Core Tri  [50] 
Tri11 Core Tri C-15 monooxygenase [45, 160] 

Tri13 Core Tri 
monooxygenase; functional F. graminearum TRI13 required for NIV-
chemotype 

[49, 161] 

Tri14 Core Tri   
Tri16 Tri1-Tri16  [162] 
Tri101 None 15-O-acetyltransferase [44, 136, 162] 

Transcription Factors 

Tri6 Core Tri 
zinc-finger DNA binding protein; required for T-2 toxin production; 
binding motif (YNAGGCC) found in most promoter regions within 
Tri5 cluster 

[164, 165, 50] 

Tri10 Core Tri  [166] 

Other 

Tri12 Core Tri 
major facilitator superfamily (MFS) transporter involved in 
trichothecene efflux 

[166, 141] 

 
2.2. Trichothecene Toxicity: Food Safety and Quality  

 
Trichothecene exposure can lead to growth retardation in eukaryotes, causing reproductive 

dysfunction in mammals and inhibition of seedling growth/regeneration in plants (reviewed in [51]). 
The toxicity of trichothecenes is attributed to their ability to inhibit peptidyl transferase activity of 60S 
ribosomes [52]. Additional impacts of trichothecene toxicity (reviewed in [51, 53, 54] include 
disruption of nucleic acid synthesis [55, 56], mitochondrial function [55, 57], membrane integrity [58, 
59], and cell division. Trichothecenes have been shown to induce apoptosis in animal cells [60-62], 
and may induce programmed cell death in plants [51]. 



Int. J. Mol. Sci. 2008, 9             
 

152

Scheme 1. Trichothecene biosynthesis pathways. Steps in the pathway are catalyzed by 
Tri-gene products (see Table 1 for more details), and have been identified in either F. 
graminearum (Fg), F. sporotrichioides (Fs), or both. OAc = acetyl function; IsovalO = 
isovalerate function. Diagram is modified from [33, 50, 169, and 172].  
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Scheme 1. Cont. 
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It is pertinent that regulations be put into place to control the allowable quantities of trichothecenes 
entering the food chain. Ingestion of contaminated grain can cause alimentary toxic aleukia (ATA); a 
condition characterized by an initial stage of intestinal irritation causing emesis and diarrhea, followed 
by aleukia and anemia, and which may ultimately lead to death. The first recorded Fusarium-related 
ATA outbreak occurred in Siberia in 1913, but the human impacts of ATA may go as far back as the 
1730s, when symptoms of a reported disease epidemic in New Hampshire are reminiscent of ATA 
(reviewed in [8]). The most devastating outbreak occurred in Russia between 1942 and 1948, where at 
least 100,000 people died. In this case, over-wintered grain had become contaminated with T-2 
producing F. sporotrichioides or F. poae, during mild winters [63, 64]. It was not until 1950 that the 
connection between Fusarium toxins and ATA was established.  

The most abundant source of trichothecene contamination in cereal grains today is due to FHB, 
which is primarily caused by type-B trichothecene-producers. Trichothecene accumulation occurs 
when spikes are infected during or post-anthesis [65], although significant yield losses are more 
relevant in early infections (anthesis to early stages of kernel development) [66-67]. Trichothecene-
contaminated grain is readily distinguished owing to its shriveled and discolored appearance. Several 
studies have shown that percentage of Fusarium damaged kernels (FDK) serves as a reliable estimate 
of DON content [31, 33]. This allows for rapid visual screening of Fusarium damaged kernels (FDK) 
in order to prevent contaminated grain entering the food chain in unsafe quantities—although FDK 
screening for toxin contamination should be used with caution since reduced physical damage is 
observed if infection occurs past the soft dough stages of kernel development [65, 68]. FDK can be 
used as a preliminary screen when sorting and grading grain, but quantitative trichothecene testing is 
advisable before the grain enters the food chain. In Canada, maximum FDK limits are in place for 
different wheat classes and varieties, and are enforced by the Canadian Grain Commission at licensed 
grain elevators. DON-testing is carried out on end-products by the Canadian Food Inspection Agency 
and Health Canada to ensure the maximum allowable in quantity of this trichothecene in food-stuffs is 
not exceeded. Currently, the maximum limit of DON is set at 2 ppm for Canadian soft wheat (1 ppm 
for use in baby food), and the establishment of maximum limits of DON in hard wheat is currently 
being evaluated (Tom Nowicki and Randy Clear, personal communications). The established DON 
limits are also being reviewed, and more rigid standards may be imposed to harmonize the standards 
with those of the European Union. DON tolerance in China, Hungary, Russia, Switzerland, and the 
United States is 1 ppm; and in Austria, Germany, and the Netherlands is 0.5 ppm [69]. Standards are 
also put into place for grain that is used in animal feed, as the trichothecenes cause similar ailments in 
farm animals as in humans [70].  

2.3. Trichothecenes as Aggressiveness Factors in Fusarium Head Blight 

Different levels of aggressiveness and pathogenicity have been observed in different isolates of a 
given Fusarium species. These differences can be attributed only in part to fitness, suggesting that 
aggressiveness factors may contribute to disease outcomes. Toxins have long been implicated as 
aggressiveness factors in pathogen systems. Examples include host selective toxins (HSTs), which are 
produced by the pathogen, are only toxic towards the target host, and are necessary for causing disease 
[reviewed in 71]. These include AK-toxin of Alternaria alternata, victorin of Cochliobolus victoriae, 
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and T-toxin of C. heterostrophus, the causal agents in black spot of Japanese pear [72], Victoria blight 
of oats [73], and corn leaf blight [74], respectively. Other examples of toxins involved in pathogen 
aggressiveness or pathogenicity in plants include botryane of grey mould causing Botrytis cinerea [75] 
and zinniol of Alternaria species [76]. Over the past few decades, evidence of trichothecenes as non-
HSTs involved in aggressiveness of Fusarium-related diseases has been accumulating. Observations 
by Beremand et al. (1991) suggested a link between trichothecene production, fertility and 
pathogenicity of F. sambucinum isolates [77]. Correlations between fungal biomass (measured by 
ergosterol quantification) and DON accumulation in cereal grains have been observed [31, 78-79]. A 
link between DON accumulation and disease outcomes has also been observed [68, 80]. The 
trichothecene-chemotype of isolates [32] and the cumulative impact of multiple trichothecenes 
produced either by a single isolate [81] or by a composite of isolates [82] may increase disease 
severity. In addition, some FHB-resistant sources have been shown to have the ability to detoxify 
DON, primarily by glycosylation [reviewed in 83]. Together, these data suggest that the ability of 
Fusarium species to cause disease is linked to trichothecene accumulation in the host, and that reduced 
aggressiveness may be observed by either reduced toxin production by the pathogen, or 
removal/degradation of the toxin by the host. 

In 1995, Proctor et al. developed a trichothecene non-producing strain of F. graminearum (Tri5-; 
wild-type Tri5+), prepared by gene disruption of trichodiene synthase (Tri5) [6]. A series of studies 
have been conducted using these strains, in order to clarify the role of trichothecenes in FHB-
aggressiveness, and results are generally consistent with a role for trichothecenes in disease spread in 
Triticeae [3, 5-6, 84-85) and in maize [4]. Trichothecenes are not necessary for initial infection [84], or 
infection of the wheat fruit coat, but they are required for entry into the rachis and subsequently for 
disease spread [86]. In the absence of trichothecene-production, F. graminearum is shown to be 
contained in point-inoculated spikelets by cell wall thickening at the rachis node [86]. 

3. Fusarium Head Blight Resistance 

3.1. Mechanisms of Resistance 

FHB resistance is dominant and quantitative. A gene-for-gene resistance interaction has not been 
identified in FHB-resistance, and immunity to the disease has not been observed. Stability of 
resistance is dependent on environmental-factors at the time of infection and/or aggressiveness-factors 
associated with the invading Fusarium strain—although resistance has been shown to be stable in 
genotypes with very high levels of resistance [31-32, 87]. Several different forms of resistance have 
been identified (Table 2). These mechanisms of resistance can interact with each other to improve the 
overall resistance. 

Due to the physiological differences between maize and other cereals, resistance in maize is 
described separately. Two major forms of resistance in maize include: (1) silk-resistance, where the 
fungus cannot penetrate the silk channel to infect the kernels [88]; and (2) kernel-resistance, where the 
fungus cannot penetrate the rachis, or ‘cob’, and hence does not spread from kernel to kernel [89]. 
These two forms of resistance in maize are somewhat similar to resistance to initial infection (type I) 
and disease spread (type II), respectively, in other cereal grains. Type I and type II resistances, first 
described by Schroeder and Christensen, are the best documented forms of resistance, since they are 
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the most readily ascertained [90]. Type I resistance can be measured as the percentage of spikelets 
exhibiting symptoms upon exposure to the pathogen. Plants are typically sprayed during anthesis with 
macroconidial (or ascosporic) suspensions and high-humidity is maintained (by bagging infected heads 
or by mist-irrigation) for a few days after inoculation. Alternatively, the grain spawn method, where 
infected wheat or corn is dispersed in the field, can be used to better mimic natural conditions of 
infection [91-92]. Resistance is measured 7 to 21 days after anthesis, typically reported as a ‘disease 
index’, where ‘incidence’ (percentage of diseased spikes) is multiplied by ‘severity’ (percentage of 
infected spikelets on diseased spikes). Acquiring accurate assessments of type I resistance is impeded 
by several factors: (a) the amount of inoculum that actually reaches the spikelets is immeasurable, 
resulting in variability in the exposure of different spikes or plants within and between experiments; 
(b) environmental conditions are difficult to control, especially in field experiments; and (c) ‘disease 
index’ is not a measure of type I resistance alone, but rather a combination of resistance to initial 
infection, disease spread and tolerance [92-93]. Some researchers equate ‘incidence’ with type I 
resistance and ‘severity’ with type II resistance, while others equate ‘disease index’ as an estimate of 
both type I and II resistances [92]. These inconsistencies in evaluation standards stress the need to 
review our definition of type I resistance, as is proposed by Mesterházy [94].  

Evaluation of type II resistance is a little more straightforward [92]. A quantifiable amount of 
inoculum is injected into individual spikelets at anthesis, and high-humidity maintained for several 
days. Resistance is measured as the number of infected spikelets below the inoculation point; note that 
the disease typically spreads down the spike through the rachis. Delayed hyphal colonization of the 
vascular bundles in the rachis is observed in type II resistant genotypes [95]. Recent work presented by 
Ilgen et al. shows that trichodiene synthase expression is induced when the growing hyphae comes in 
contact with the ovaries [96]. It is likely that metabolite(s) present in the ovaries induces expression of 
trichothecene synthesis. We already know that trichothecenes are necessary for disease spread [3, 5-6, 
84], but they do not appear to play a role in establishing initial infection by spray or point inoculation 
[84]. The data presented by Ilgen et al. effectively demonstrates that trichothecene synthesis does not 
begin until the fungus has successfully invaded the spikelet [96]. In other words, trichothecenes, which 
are necessary for disease spread, do not accumulate until after initial infection has been established.  

If trichothecenes are not necessary for establishing initial infection, and since evaluation methods 
for resistance to initial infection is confounded by resistance to disease spread, then perhaps a more 
accurate estimate of resistance to “initial infection” would be by spray inoculation with Tri5-, or even 
by using grain spawn infected with Tri5-. This would eliminate the interference of type II and III 
resistances in our evaluation of resistance to initial infection. On the other hand, in addition to the 
remaining problems or difficulties in quantifying spore exposure and controlling environmental 
conditions, using Tri5- to test for type I resistance would be accompanied with its own set of 
constraints. The Tri5- strain is a valuable tool for addressing fundamental research questions, but is not 
as functional in applied research. Breeders will still need to address the other components of 
resistance, and while the evaluation of type I resistance is confounded by other forms of resistance, 
breeders and farmers may be interested in these other forms of resistance—they want cultivars that are 
resistant to spray inoculation and to all that entails. They want crops that are resistant to the disease, 
not to components of the disease. While good type I resistance may be the most effective means to 
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prevent the disease from occurring, these genotypes are not immune to the disease, and the additional 
components of resistance will therefore play an important role in crop protection. 

Table 2. FHB resistance mechanisms in cereals. 

Resistance Description 

Resistance in Small Grain Cereals (as defined in reference 99) 

 Type I Resistance to initial infection [90] 
 Type II Resistance to disease spread [90] 
 Type III Resistance to kernel infection [87] 
 Type IV Tolerance against FHB and trichothecenes [87] 
 Type V Resistance to trichothecene accumulation [97] 
 class 1  by chemical modification of trichothecenes [83] 
 class 2  by inhibition of trichothecene synthesis [83] 

Resistance in Maize 

 Silk Resistance Resistance to silk penetration [88] 
 Kernel Resistance Resistance to kernel disease spread [89] 

 
The three remaining forms of resistance (type III, IV, and V) cannot be quantified directly. This is 

in part, because the nature of these forms of resistance is often intermingled with each other and/or 
with type I and II resistances. Type III resistance can be assessed by FDK evaluation. Type IV 
resistance is defined as tolerance to FHB, meaning that yield and quality is maintained despite disease 
presence. Type IV resistance may also be defined as tolerance to DON, in which case it can be 
evaluated by comparing FDK values to DON content; if FDK is low but DON content is high, 
tolerance to DON and FHB would be observed. Type V resistance (resistance to toxin accumulation) 
can be estimated by DON quantification of FHB-infected plants or by an in vitro tissue assay [97-98]. 
Type V resistance can be subdivided into two classes (types V-1 and V-2) as recently defined by 
Boutigny et al. [83]. In type V-1 resistance, plants are able to chemically modify trichothecenes, 
resulting in toxin degradation or detoxification. Type V-2 resistance refers to genotypes that have the 
ability to inhibit trichothecene biosynthesis in the invading fungus.  

3.2. Sources of Resistance 

The development of FHB-resistant cultivars has proven to be a difficult task. While cereal breeders 
worldwide have invested a considerable effort in the development of FHB-resistant germplasm [9, 12, 
99-102], relatively few resistant cultivars have been generated by conventional breeding methods. 
Moreover, most of the work has focused on wheat and barley breeding. This is a direct result of the 
FHB-impact on wheat and barley (especially wheat) in comparison to other cereals. Wheat is one of 
the most heavily FHB-affected crops and accumulates the largest economic damage. Rye is generally 
more resistant than wheat and barley [5, 100]. Oats are also more resistant than wheat and barley [5], 
but DON accumulation in oats is more severe than in wheat [103]. T-2 and HT-2 toxin accumulation 
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has been observed in oats in Norwegian countries, due to infection with head blight causing F. 
langsethiae [104]. Higher apparent FHB-resistance in oat is, in part, due to difficulties in screening for 
resistance. Disease symptoms of Fusarium-infected standing oat are not as readily discernable as in 
wheat or barley where symptoms are clearly visible [102].  

Barley has an inherent type II resistance [5], but unconventional disease spread can be observed 
externally from spikelet to spikelet without penetration of the rachis [5]. Six-row barley, which is more 
susceptible than two-row barley and is preferred for malting, is nearly as susceptible as wheat [101]. 
Chevron, the major source of resistance in six-row barley, is not well-liked in the brewing and malting 
industries due to elevated protein content [105]. QTL for FHB-resistance have been found on all seven 
barley chromosomes [106-108]. Resistance in two-row barley is attributed to a QTL that is associated 
with the Vrs1 locus, which controls spike type. It is not clear whether resistance is linked to Vrs1, of if 
there is a pleiotropic effect at play. 

Durum wheat (Triticum turgidum subsp. durum) is one of eight subspecies of tetraploid (AABB) 
wheat [109], and is far more FHB-susceptible than hexaploid (AABBDD) bread wheat [9]. Breeders 
have screened for resistant sources in various T. turgidum subspecies. Wild emmer wheat (T. turgidum 
subsp. dicoccoides) has been the major focus for alternative tetraploid wheat resistance; however, poor 
agronomic traits have prevented its use in breeding programs. Recently, Oliver et al. took on the task 
of systematically screening seven T. turgidum subspecies, and have identified some with promise as 
type II resistant sources [109]. Four QTL have been identified for FHB-resistance in tetraploid wheat: 
3AS and 7AS from different accessions of T. turgidum subsp. dicoccoides, and 2BS and 6BS from 
durum wheat [110]. 

Over 100 QTL have been reported from FHB-resistant wheat sources—22 of which have been 
found in multiple mapping populations, and are nicely summarized in a recent review by Bürstmayr et 
al. [110]. The best characterized and most widely used source of resistance in hexaploid wheat is the 
Chinese cultivar, ‘Sumai3’ [110-111]. ‘Sumai3’-derived resistance is attributed to the Fhb1 locus on 
chromosome 3BS, the major QTL conferring type II resistance. Positional cloning of Fhb1 is 
underway, and gene identification may become available within the next year or so [112]. Additional 
QTL from ‘Sumai3’ include Fhb2 (6BS) and Qfhs.ifa-5A (5A), the latter being associated with type I 
resistance and found in different germplasm from around the world [110]. Another popular resistance 
source comes from the Brazilian cultivar, ‘Frontana’, with moderate resistance, and QTL mapped to 
3A, 5A, 2B, 3AL, and 7AS [110, 113-115]. An interesting set of QTL for FHB-resistance may be 
associated with Rht plant height regulators. Some studies have shown that plant height is correlated 
with FHB-resistance [115-117], although rare exceptions may be found (A. Comeau, unpublished 
data). Rht-D1 co-localizes with FHB-resistant QTL on 4DS, found in the European winter wheat 
cultivar, Arina [118]. Rht-B1 is on the same chromosome as an FHB-resistant QTL on 4B, and Rht8 is 
close to a QTL on 2D. Rht-B1 and Rht-D1 are derepressors of gibberellin-signaling, and Rht8 is 
gibberellin-responsive. The so-called semi-dwarfing alleles, Rht-B1b and Rht-D1b, confer gibberellin-
insensitivity [119]. Rht-D1b, but not Rht-B1b, also confers FHB-susceptibility [118, 120]. It has not 
yet been determined whether or not there is a pleiotropic effect at play in this interaction [118]. 

Research in fusarium ear blight (FEB; FHB of maize)-resistance in maize is less extensive than in 
wheat and barley, and few resistant cultivars have been generated. Canadian inbred lines with 
resistance include CO272 [moderate silk resistance; 89], CO325 [moderate kernel resistance; 89] and 
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CO441 [with both silk and kernel resistance; 121]. To our knowledge, only two studies have been 
published in the identification of QTL for FEB-resistant maize [122-123]. Ali et al. identified 11 QTL 
for silk-resistance and 18 QTL for kernel-resistance, two of which were also associated with silk-
resistance [122]. Microarray-based comparative genomic hybridization is currently underway to 
identify genes corresponding to those QTL [124]. It is essential that more research be put into FEB-
resistance in maize, maize is a major staple food and production has increased in the United States due 
to the biofuel initiatives. As a result of increased maize production we should expect to see an increase 
in inoculum build-up in the soil, and maize is one of the worst culprits for harbouring ascospores. By 
improving maize resistance to FEB, we will not only protect maize crops, but indirectly protect other 
crops that would be affected by the aforementioned potential increase in inoculum build-up. This is, in 
fact, an issue of food security. The increase in maize production for non-food products is already 
taking away valuable farmland for food production, thus reducing the quantity of wheat and barley, 
among other crops. If the soil-borne inocula were to increase, this would threaten the already 
dwindling food supply of wheat and other grains. This issue also reiterates the importance of 
producing highly resistant cultivars of all the other susceptible cereals. 

3.3. Breeding for Resistance 

Some of the challenges breeders are confronted with include: (1) poor agronomic traits associated 
with highly-resistant germplasm, which are often derived from exotic sources, (2) the polygenic nature 
of resistance, and (3) variability in disease rating such as those described in section 3.1. Unfortunately, 
breeders have been limited in their choices of resistant sources, and some of these problems perpetuate 
themselves. For example, while gene-for-gene resistance is presented with its own set of difficulties 
[such as the development of an arms-race between host and pathogen; 125], the lack of vertical 
resistance in FHB-host interactions precludes the prospect of immunity. As a consequence, when 
breeders find stable, highly-resistant sources, they use this source of resistance—as they should. 
However, if there are only a handful of these resistant sources available, then they will be used over-
and-over again, ultimately leading to the arms-race scenario observed in gene-for-gene resistance. 
Limiting breeding programs to one (or a few) resistant sources can initiate the selection of highly 
pathogenic strains with the ability to disarm or dilute the resistant strategy of cultivated lines. This 
limitation brings us back to the original problem: FHB-resistance is quantitative. Therefore, the use of 
only a limited number of resistant sources in the development of resistant germplasm is not terribly 
effective. In addition, most of these resistant sources have poor agronomic traits—and so you can see 
the cycle continuing. ‘Sumai3’ is the prime example of a stable resistant source that is used in breeding 
programs around the world. The stability and level of resistance is higher than in any other registered 
cultivar. Other popular resistant sources exist (ex. ‘Frontana’), but there are only a few of them. In 
addition, ‘Sumai3’ is blighted with several agronomic fallacies, including susceptibility to kernel 
shattering and reduced yields [126].  

In the past few decades, several tactics have emerged in an effort to enhance, or as an alternative to, 
traditional breeding methods. Traditional breeding is a long and tedious process, requiring many 
generations of screening, which can be costly and time consuming. Breeders often screen thousands of 
lines, narrowing them down every year, for up to ten years, before one or two lines are ready for the 
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application process to register a cultivar. Screening for FHB-severity alone is time consuming, but 
screening for trichothecene accumulation (which is a necessary step) is both time-consuming and 
costly. Several studies have shown that percent FDK serves as a reliable estimate of DON content [33, 
127]. For this reason, and because it is rapid and inexpensive, FDK is frequently used to screen for 
resistance to DON accumulation in breeding programs. Since FHB-severity is highly correlated with 
seed quality and DON content (127), it is recommended that breeders screen only for FHB-severity in 
the early years, and then use DON quantification when the number of breeding lines has been 
narrowed down [31].  

The use of QTL (such as those described in section 3.2) as molecular markers for resistance can 
facilitate breeding in the early stages of screening, and can effectively attenuate some of the error in 
the disease rating variability. Other methods have been proposed to decrease the occurrence of these 
errors in rating disease, in particular indoor spray inoculation which mimics natural infection [128]. 
The indoor spray inoculation method using a mist-irrigated greenhouse allows for a relatively rapid 
screening of advanced material, as well as screening of earlier F2-4 generations and doubled haploid 
genotypes. Indoor spray inoculation also offers the possibility of running phenotypic evaluations 
throughout the calendar year, which is not possible in a nursery, and is more likely to prevent 
competing organisms (e.g., Bipolaris sorokiniana (Sacc.) Shoemaker) from confounding  
the evaluations. 

The idea of using trichothecenes as factors for early selection of resistant cereal lines, or reduced 
accumulation of mycotoxins, is very attractive. Large cell samples can be evaluated in Petri dishes, 
where environmental conditions are uniform. Bruins et al. suggested that single-cell microspores might 
be better suited for in vitro selection since a large proportion of the plant genome is expressed in both 
the sporophyte and the gametophyte [129]. Fadel and Wenzel were the first to report a mixed culture 
filtrate of 99 F. graminearum isolates co-cultured in 10-day old anther cultures [130]. However, they 
did not report successful selection for resistance among regenerated plants. In a similar study, Eudes et 
al. also co-cultured crude trichothecenes in an anther culture assay to report effective selection for 
reduced mycotoxin accumulation when using the more defined selection agent [131]. This in vitro 
selection process was successful using source of resistance Frontana, and was genotype dependant.  

3.2. Engineering for Resistance 

Several reviews have been published on the advantages of genetic engineering toward improvement 
of crop resistance to various pathogens, including FHB [132-134]. Genetic engineering towards FHB-
resistance can be effective in reducing mycotoxin accumulation in cereals. Transgenic crops can 
directly reduce trichothecene accumulation when the modifications include expression of genes or 
pathways within the host that inhibit trichothecene synthesis, detoxify trichothecenes, or remove them 
from the cell by efflux. Boutigny et al. recently published a review summarizing the known methods 
naturally expressed by plants to reduce trichothecene accumulation [83]. Examples of enzymes that 
may be involved in detoxification include epoxidases, acetyltransferases, and glycosyltransferases 
[83]. While there is no evidence of de-epoxidation in planta [83], the epoxide group has been shown to 
be essential for trichothecene toxicity [135]. Trichothecene 3-O-acetyltransferase activity of TRI101, 
which leads to DON-acetylation, has been shown to reduce toxicity of trichothecenes in F. 
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graminearum [136]. It has also been demonstrated that 3-ADON is less cytotoxic than DON [137]. 
Transgenic expression of TRI101 in plants has shown improved FHB- and trichothecene-resistance 
[138-140]. Another Fusarium gene, Tri12, is a major facilitator superfamily (MFS) transporter 
responsible for trichothecene efflux from F. sporotrichioides [141], also has the potential to reduce 
trichothecene accumulation in plants. 

UDP-glucosyltransferase has been shown to detoxify DON, by condensation of a glucose molecule 
on the hydroxyl group at C-3 [142], and glycosylated-DON derivatives have been observed in 
Fusarium-infected cereals [143-145]. It has been hypothesized that Fhb1 of ‘Sumai3’ is in fact a UDP-
glucosyltransferase [145]. Fine-mapping of Fhb1 by James Anderson’s research group in Minnesota 
have narrowed it down to a few candidate genes. Surprisingly, none of these encode UDP-
glucosyltransferase, but this does not eliminate the possibility that Fhb1 is involved in the regulation of 
UDP-glucosyltransferase expression [112]. Differential accumulation of UDP-glucosyltransferase 
transcript and protein has been observed in wheat (Foroud et al., in preparation) and maize (Harris et 
al., in preparation), respectively. Transgenic expression of UDP-glucosyltransferase might lead to 
improved FHB-resistance and reduced toxin accumulation; however, this approach may be 
dangerously misleading. Studies have shown than glycosylated-ZON can be reconverted to ZON in the 
intestinal tract of swine [146].  

4. Conclusions  

Trichothecene contamination of cereals represents a threat to the economies and food supplies of 
cereal growing regions around the world. More importantly, in countries where there is limited or no 
screening for trichothecene contamination, it represents a significant health threat. We would like to 
make three recommendations to breeders and scientists to help reduce the threat of trichothecene-
induced damages. The first of these is already a goal most breeders strive towards, and that is to breed 
for highly-resistant cultivars with good agronomic traits. Highly-resistant cultivars express stable 
resistance under epidemic conditions, moderate FHB-resistance is not good enough. Highly-resistant 
cultivars are of little use if farmers choose not to grown them, and so good agronomics in combination 
with resistance is essential.  

Our second recommendation is one recently made by Boutigny et al., and that is to breed for type V 
resistance [83]. While trichothecene screening is costly and time consuming in breeding programs, 
resistance to DON-accumulation is of utmost importance. Most other forms of resistance may be 
improved in the presence of type V resistance, and type V resistance may be a consequence of other 
forms of resistance; however, all other forms of resistance are irrelevant if trichothecenes accumulate 
in the grain. Moreover, breeding for type V-2 (by inhibition of trichothecene biosynthesis) is preferred 
over type V-1 (chemical modification of trichothecenes), since it is unclear whether the modified 
trichothecenes remain detoxified upon ingestion. While distinguishing between the two classes of type 
V resistance may present more time and cost to breeders, these inconveniences can be reduced 
following recommendations by Miedaner et al. [31]. That is to screen first for FHB-severity, and once 
the breeding lines have been narrowed down screen for resistance to trichothecene accumulation. DON 
quantification by ELISA is much more affordable than GC-MS or LC-MS/MS, but the advantage of 
mass spectrophotometry-based techniques is that multiple trichothecenes can be detected, and 
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glycosylated derivatives can also be detected [147-153]. In vitro selection is a very effective method to 
select for good resistance to trichothecenes, though sources of resistance have to be adequately 
identified. As well, these early screening methods should be used in combination with disease rating in 
controlled environments and could be applied with molecular marker assisted selection for the  
major QTLs.  

Finally, our third recommendation to reduce the impact of trichothecene contamination in the food-
supply is to breed for resistance in “other crops”—that is to say in addition to wheat and barley. Most 
breeding efforts/successes have been reported in wheat and barley, especially wheat, but there are 
many other crops (such as maize, oats, rye and triticale) which are affected by FHB and accumulate 
trichothecenes that do not get as much attention as they may deserve. Breeding for resistance to FEB 
in maize is of particular importance, since maize crop residue is known to be a major source of soil-
borne inoculum. The presence of type A trichothecenes (which are not usually screened for in food 
products) in oat and oat products as a result of infection with F. langsethiae [104, 173] emphasizes the 
need to breed more resistant oats—even though this crop is not typically seen as highly susceptible in 
comparison to wheat, barley and corn. Disease in these crops leads not only to contamination in the 
food chain, but also to inoculum build-up in the soil, which subsequently leads to increased epidemics 
and increased risk of trichothecene contamination within our food supply. The development and the 
farming of highly resistant cultivars (resistant to the disease and to trichothecene accumulation), in all 
cereal crops affected by this disease, will go a long way in protecting the consumer from health 
hazards associated with ingestion of trichothecene-contaminated grain, and in protecting farmers from 
the economic impacts of this disease.  
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