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Abstract: Though surgical techniques profoundly influence in vivo experiments, significant hetero-
geneity exists in current surgeries for inducing rat femoral bone defects. Such variations reduce
the reproducibility and comparability of preclinical studies, and are detrimental to clinical trans-
lation. The purposes of this study were: (1) to conduct a systematic review of rat femoral defect
models, summarizing and analyzing the surgical techniques; (2) to analyze surgical design and
potential pitfalls via 3D anatomy and virtual surgeries for fostering future precision research; and
(3) to establish a surgical classification system, for improving the reproducibility and comparability
among studies, avoiding unnecessary repetitive experiments. The online database PubMed was
searched to identify studies from January 2000 to June 2022 using keywords, including rat, femur,
bone defect. Eligible publications were included for a review of surgical methods. Anatomical
analysis and virtual surgeries were conducted based on micro-CT reconstruction of the rat femur
for further investigation and establishment of a classification system. A total of 545 publications
were included, revealing marked heterogeneity in surgical methods. Four major surgical designs
were reported for inducing defects from the proximal to distal femur: bone tunnel, cortical window,
segmental defect, and wedge-shaped defect. Anatomical analysis revealed potential pitfalls hindering
efficient clinical translation. A classification system was established according to the anatomical
region, surgical design, and fixation devices. This systematic review in combination with 3D analysis
and virtual surgery provides a general overview of current surgical approaches to inducing femoral
defects in rats, and establishes a surgical classification facilitating preclinical research of quality and
translational value.

Keywords: rat; femur; bone defect; animal model; systematic review; virtual surgery; classification
system

1. Introduction

Bone defect in the lower extremities is a common clinical situation resulting from
trauma, infection, revision arthroplasty, tumor resection, or other disorders [1]. Orthope-
dic surgeons routinely use bone grafts to re-establish skeletal integrity and avoid tragic
amputation surgeries, and bone grafting has become the second most common transplant
procedure in the world after blood transfusion [1,2]. However, the current widely used auto-
and allografts have the disadvantages of a limited supply, high postoperative complications,
and risk of disease transmission [3]. Therefore, the development of safe artificial graft
materials with a stable supply and bone-promoting activity has been a research priority in
line with the clinical needs of replacing autologous or allogenic transplants.

As current in vitro experiments are still unable to mimic the complex and sequential
in vivo bone regeneration process, animal experiments remain essential for preclinical
assessment of novel biomaterials [4,5]. Historically, large animals were preferred for
experiments, considering the application of surgical instruments with the same dimensions
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for human surgeries and thus better simulating the disease treatment process [6]. In
recent years, with the development of fine surgical instruments and the application of
multimodal high-resolution imaging techniques, the translational potential of the bone
defect model in the rat femur has been markedly enhanced, facilitating the development
of biomaterials [7–10]. Moreover, rat femoral defect models allow the introduction of
complex comorbidities such as osteoporosis, diabetes, and infection at weight-bearing sites,
providing superior simulation of clinical situations than calvarial defect models [11–13].

However, though it is well recognized that surgical techniques can profoundly influ-
ence study results, significant heterogeneity exists in current surgical methods for inducing
femoral defects, and such variations undoubtedly reduce the reproducibility of experi-
ments and are detrimental to clinical translation [14–16]. The relatively low translational
potential and the corresponding large number of lab animals sacrificed have raised social
and ethical concerns [17,18]. This pressure prompted investigators to carefully consider
how to enhance the translational value of preclinical studies during experimental planning.

One feasible approach is the application of software tools to conduct virtual surgery
by simulating operative procedures on skeletal models reconstructed from radiological
data [19,20]. This allows precise simulation of operative treatment in a time-saving and
cost-effective manner, supporting direct visualization of the surgical results, such as bone
tunnel drilling and osteotomy [21]. In clinical practice, virtual surgeries have been adopted
for preoperative planning of orthognathic and limb operations. For preclinical research,
virtual surgery based on micro-CT reconstruction was developed to simulate hepatectomy
in rats to improve the translational prospects [22–24].

To promote the clinical translation of novel biomaterials and musculoskeletal research,
the authors conducted this evidence-based study, aiming: (1) to conduct a systematic
review of the rat femoral defect model, summarizing and analyzing the surgery-related
details; (2) to analyze surgical designs and potential pitfalls via 3D anatomical analysis and
virtual surgeries in order to foster future precision preclinical research; and (3) to establish
a surgical classification system to improve the reproducibility and comparability among
studies and avoid unnecessary repetitive experiments.

2. Materials and Methods
2.1. Literature Search Strategy, Criteria, and Study Selection

The online database PubMed was first searched for systematic reviews focusing on the
surgical techniques of rat femoral defects, with no specific publications identified. Then,
the authors searched for in vivo studies published in the English language from January
2000 to June 2022 involving bone defects in the rat femur using the following keyword
combination: rat, femur, bone defect. The workflow used for literature retrieval, screening,
and selection is shown in Figure 1. No restrictions were set regarding comorbidities such as
osteoporosis or diabetes. The literature search followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines [25] and was registered in the Center
for Open Science (osf-registrations-n74ve).

The inclusion criteria were: (1) in vivo studies involving surgical procedures inducing
femoral defects in rats; and (2) reporting of intra-operative details for the preparation of
bone defects, with radiological or histological evidence or textual descriptions supporting
reproduction of the surgeries. The exclusion criteria were: (1) reviews, commentaries, or
pure abstracts; (2) in vitro tests without in vivo experiments; and (3) in vivo studies using
bone defects in other animal species or at other anatomical sites in rats instead of femur. The
authors first browsed the titles and abstracts within the search results to screen and enroll
publications based on the above criteria. Enrolled papers were further carefully checked
for data extraction of the following general and surgery-related details: publication year,
rat strain, gender, age, body weight, follow-up period, anatomical position of bone defect,
modeling techniques (surgical procedures), and fixation devices. The preliminary search
first identified 6254 publications potentially related to rat bone defects. After excluding
non-relevant studies without induction of femoral defects in rats through abstracts or full
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texts, 545 publications were included for further analysis in this systematic review (Figure 1
and Table S1 in the Supplementary Materials).
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Figure 1. Flow diagram of the literature search and screening.

2.2. Micro-CT Data and Image Processing

In order to visualize and analyze the surgical approaches used in the included stud-
ies, the authors performed 3D reconstruction of the rat femur using micro-CT data. The
radiological data was obtained with whole femur samples from a previous study in-
volving Sprague-Dawley (SD) rats. The experimental protocols were applied via local
authority (Ministry for Energy Transition, Agriculture, Environment, Nature and Digital-
ization, Schleswig-Holstein, Germany, application number: V242-30912/2020 and V242-
6462/2021) [10]. An ex vivo scan of the bone samples was performed using a VivaCT
80 scanner (Scanco Medical AG, Brüttisellen, Switzerland) at a voltage of 70 kVp, with a
beam current of 114 µA and isotropic voxel size of 39 µm. For anatomical analysis and
3D rendering of virtual surgery, the image data was obtained from a male SD rat with a
body weight of 400 g. To render the difference in the bone size between genders, the image
data was obtained from another two SD rats of close age (male aged 20 weeks with a body
weight of 560 g, female aged 24 weeks with a body weight of 338 g).

Data files from the micro-CT scanner were processed using Fiji (https://imagej.net/
software/fiji/, accessed on 25 August 2022) with the BoneJ plugin and 3D slicer (http:
//www.slicer.org, accessed on 25 August 2022) to obtain 2D slice measurements for bone
size comparison and STL files for 3D processing [26–28]. Anatomical analysis and virtual
surgeries (simulating bone drilling, osteotomy, and bone fixation) were conducted using
the Boolean Difference function in Autodesk MeshMixer (https://www.meshmixer.com,
accessed on 25 August 2022) for the preparation of bone defects and establishment of the
surgical classification system.

https://imagej.net/software/fiji/
https://imagej.net/software/fiji/
http://www.slicer.org
http://www.slicer.org
https://www.meshmixer.com
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3. Results
3.1. Systematic Review of the Literature Search Results

The included 545 studies were published from 2001 to 2022, with Sprague-Dawley
and Wistar rats being the most frequently selected strains, accounting for 51% and 29% of
all studies, respectively (Figure 2). Gender bias was detected, with a predominate focus on
male rats (68%). To facilitate summarization and comparison, the authors pooled the data
by stratifying the animal information by age, body weight, and longest follow-up period.
The result showed that young mature rats were predominantly used (87%), and 61% of the
studies selected small rats with a body weight of less than 350 g. Regarding the setting of
the post-operative follow-up period, 66% were categorized as middle-term (6-16 weeks)
research and only 3% as long-term research (>16 weeks).
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Figure 2. Summarized information of the included studies. (a) Number of publications; (b) rat
strains involved; (c) gender; (d) age; (e) body weight; (f) longest follow-up; (g) modeling method;
(h) fixation devices. Note: * including 6 weeks; ** including 6 months; *** including 12 months;
# other rat strains: Long-Evans, Brown Norway, Dark Agouti, BB/OK, Zucker diabetic fatty;
spontaneously hypertensive.

Among all included studies, bone defects were induced at various anatomical sites, in-
volving the whole length of the femur, from the proximal femoral neck to the distal condyle.
According to the descriptions of the surgical procedure, the authors summarized four major
types of surgical methods used to induce femoral defects: (1) bone tunnel: cylindrical defect
prepared by drilling, transversely involving either single or two cortical layers, or longitu-
dinally along the femoral axis into the intramedullary cavity [29–33]; (2) cortical window:
rectangular or rounded-rectangular defect involving one single cortex [34–36]; (3) seg-
mental defect: complete segmental bone resection with parallel osteotomy [37–44]; and
(4) wedge-shaped defect: removal of the bone block via opening wedge osteotomy [45–47].

Fixations were routinely applied for segmental and wedge-shaped defects, and the
studies could be categorized into five major types according to the fixation status: (1) in-
tramedullary internal fixation, without a locking mechanism [38,39]; (2) intramedullary
internal fixation, with locking pins [40,48–51]; (3) plating with screws or wires for internal
fixation [52–58]; (4) external fixation [37,43,44,59]; and (5) no fixation [29–33].

Bone tunnel defects without fixation were the most frequently used surgical method
(48%), followed by segmental defects with all types of fixation devices involved (44%).
Cortical window and wedge-shaped defects were relatively less selected, accounting for
only 6% and 2%, respectively. As to bone fixation, plating was most frequently used (32%),
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followed by external fixation (10%). Intramedullary nail with a locking mechanism, though
with high clinical relevance, was only adopted by 1% of all included studies [40,48–51].

3.2. Establishment of the Surgical Classification System with Exemplar Illustrations
3.2.1. Identification of Anatomical Landmarks with Micro-CT Reconstruction

Most enrolled studies described the anatomical locations using less precise terms such
as “proximal femur”, “distal condyle”, or “diaphysis”. The exact surgical site needed
to be determined by referring to the imaging or histology images in the Methods or
Results sections. To avoid ambiguities in anatomical locations, which may lead to reduced
reproducibility, the authors conducted a 3D reconstruction of the femur from a male SD rat
(400 g) and then defined major surface landmarks in the ventral-dorsal and medial views
(Figure 3). A precise anatomical definition would not only support establishment of the
surgical classification system but also facilitate the standardization of surgical practice in
preclinical research.
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3.2.2. Definition of Anatomical Locations

After defining the surface landmarks, the authors established a classification for
anatomical regions (Figure 4). The femur was divided into Region I (proximal femur),
Region II (middle femur), and Region III (distal femur), using the tip of the third trochanter
and the top of the trochlear groove as markers for boundaries. Next, Region I was subdi-
vided into Region I.a and I.b, bounded by the proximal end of the lesser trochanter and
its junction site with the femoral neck. Region II was subdivided into Region II.a and II.b,
with the proximal Region II.a occupying one-third of the total femoral length, and II.b as
the distal part of Region II. Region III was also divided into two parts, III.a and III.b, using
the proximal top of the posterior condyle to define the boundary line.

The above regions were also characterized by different anatomical and tissue com-
ponents. Region I.a comprised the femoral head and neck. Surgical exposure in this area
could be difficult due to the adjacent strong muscles, tendons, and joint capsule. Only
few studies involved this area, preparing bone tunnels within the femoral neck canal or
greater trochanter [60–63]. Region I.b could be viewed as the intertrochanteric area between
the lesser and third trochanters. The narrow cortical surface surrounding the medullary
cavity was also not conducive to surgical operation. Region II.a was the main surgical
site for cortical windows and segmental defects, with cortical bone as the main tissue
component. Starting from Region II.b, the gradual expansion of the femoral size facilitated
drilling operations, and II.b, III.a, and III.b were commonly selected in bone tunnel defect
models [30–33]. As shown in the micro-CT reconstructions, Region II.b contained more
cancellous bone than Region II.a. For surgeries at the distal femur, it was noted that surgical
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procedures in Region III.a could lead to growth plate injuries while operations in Region
III.b could cause penetration of the femoral condyles or even fractures (Figure 4).
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Figure 4. Anatomical regions in the surgical classification. (a) Ventral-dorsal view; (b) frontal plane;
(c) sagittal plane; (d) medial view. Note: I: proximal femur, including I.a (femoral head and neck) and
I.b (above the tip of the third trochanter); II: middle femur, including II.a (one-third of the femoral
length) and II.b (between II.a and III.a); III: distal femur, including III.a (from the top of the trochlear
groove to the top of the posterior condyles) and III.b (below the top of the posterior condyles).

3.2.3. Classification of Modeling Methods and Fixation Devices

Based on micro-CT data, the authors performed virtual surgeries to realize 3D repre-
sentation of the classification of surgical methods and fixation devices (Figures 5 and 6).
For surgical methods, the authors adopted the framework, including four categories, as
mentioned in Figure 2: bone tunnel (BT); cortical window (CW); segmental defect (SD); and
wedge-shaped defect (WD). In addition, due to pronounced variability in the bone tunnel
models, a sub-classification was provided according to the number of cortex penetrated or
whether only the intramedullary cavity was involved: BT.i: bone tunnel along the direction
of the intramedullary cavity; BT.u: bone tunnel with uni-cortical penetration; and BT.b:
bone tunnel with bi-cortical penetration.
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locking; IF.IM.L: internal fixation, intra-medullary, locking; IF.PS: internal fixation, plate-screw; EF:
external fixation.

For surgical devices, the authors also used the information mentioned in Figure 2 with
the following five categories: IF.IM.N: internal fixation using intramedullary non-locking
nails; IF.IM.L: internal fixation with intramedullary locking nails; IF.PS: internal fixation
with a plate-screw system; EF: external fixation; and NF (no fixation): for situations when
no fixation devices were applied.

To further explain the classification system for application, the authors performed
five virtual surgeries involving preparation of the bone tunnels and cortical window, in
addition to segmental osteotomy. More details are described in Figure 7 and Table 1. Each
surgery was categorized with a classification code, in the following format: [Anatomical
location]-[Modeling method]-[Fixation device]-[Defect quantity; Defect size].
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Table 1. Detailed explanation of the classification coding for virtual surgeries in Figure 7.

Figure Classification Code

Detailed Explanation

Anatomical
Region

Surgical
Method

Fixation
Device

Defect Quantity;
Defect Size

7a II.a-BT.u-NF-(3; 2 mm) II.a BT.u:
uni-cortical tunnel

NF:
no fixation

Quantity: 3;
Diameter: 2 mm

7b II.b-BT.b-NF-(1; 2 mm) II.b BT.b:
bi-cortical tunnel

NF:
no fixation

Quantity: 1;
Diameter: 2 mm
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Table 1. Cont.

Figure Classification Code

Detailed Explanation

Anatomical
Region

Surgical
Method

Fixation
Device

Defect Quantity;
Defect Size

7c II.a-CW-NF-(1; 6 mm, 2 mm) II.a CW:
cortical window

NF:
no fixation

Quantity: 1;
Length: 6 mm,
width: 2 mm

7d II.a-SD-IF.PS-(1; 6 mm) II.a SD:
segmental defect

IF.PS:
internal fixation,

plate-screw

Quantity: 1;
Gap size: 6 mm

7e II.a-SD-EF-(1; 6 mm) II.a SD:
segmental defect

EF:
external fixation

Quantity: 1;
Gap size: 6 mm

3.3. Analysis of Potential Surgical Pitfalls

For the visualization of complication risks at the distal femur, the authors prepared
bone tunnel defects (3 mm in diameter) with virtual surgeries in Region II.b, III.a, and
III.b (Figure 8a–c). The following potential pitfalls could be identified through the surgical
simulation in combination with normal anatomical images (Figure 8d–f): (1) Transverse
bone tunnels in Region III could penetrate the growth plate area (indicated by yellow
arrows in Figure 8e,f), a situation close to the physeal injury model, rather than common
lesions at the distal femur in human adults [64]; (2) transverse bone tunnels in Region III.b
could cause penetration or even fracture in the femoral condyle (red arrows in Figure 8d),
and lead to concurrent intra-articular ligament (attachment site also indicated by red
arrows) injury, causing persistent joint instability and degeneration [33,65]. In addition,
surgical procedures in Region III may result in persistent inflammation and biochemical
changes in the local environment of synovial joints, affecting research outcomes related
to the degradation and tissue compatibility of biomaterials [66,67]. Region II.b could be a
relatively safe area for the preparation of bone tunnels, without the above risks.
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Figure 8. Virtual surgery and anatomical demonstration of potential surgical pitfalls in the distal
femur. (a–c) Virtual surgery simulating the preparation of bone tunnels in anatomical Region II.b, III.a,
and III.b; (d–f) three-dimensional reconstruction of the distal femur, showing the risk of growth plate
(indicated by yellow arrows) injury in Region III, and condyle and ligament (indicated by red arrows)
injury in Region III.b. Note: (a) Oblique-lateral view for surgical design; (b) ventral-dorsal view for
surgical design; (c) ventral-dorsal view after virtual surgery; (d) oblique-frontal plane; (e) frontal
plane; and (f) sagittal plane.

3.4. Detection of Gender-Related Bone Size Difference

For female and male SD rats of close age, the body weight and geometric bone
parameters would be higher in the male rat as reported in the literature [68–72]. To render
the gender difference in bone that might influence the surgical design of femoral defect
models, the authors conducted measurements on micro-CT images, at the middle level
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of the whole femoral length (in Region II.a; Figure 9a,d), and near the boundary level
between Region III.a and III.b (Figure 9b,e). The CT images and measurements provided
a direct visualization of the relatively wider operating space in the male rat for surgical
procedures such as drilling (Figure 9c,f). The gender difference in bone size should be
taken into account when selecting surgical instruments and the defect size for a bone tunnel
and cortical window to avoid potential complications such as postoperative pathological
fractures. Future imaging measurements of bone tissue specifically for rats of different age
and gender could further support the precise design of femoral defect surgeries.
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Figure 9. Comparison of bone size between male and female rats. Geometric parameters in the male
SD rat (a–c, age 20 weeks, 556 g) were higher than in the female SD rat (d–f, age 24 weeks, 338 g).
(a,d) Transverse micro-CT scans of the femoral shaft, at the middle level of the whole femur length:
Bone perimeter, male 14.99 mm, female 13.42 mm; minimum caliper width, male 3.70 mm, female
3.33 mm; maximum caliper width, male 5.33 mm, female 4.73 mm. The dashed lines indicate the
direction for the measurement of the minimum and maximum caliper width; (b,e) transverse scans
of the distal femur and transverse width of the femoral condyle: male 7.69 mm, female 6.86 mm. The
dashed lines indicate the direction of measurement; (c,f) sagittal scans of the distal femur, with the
dashed circles indicating the size of bone tunnels with a diameter of 3 mm.

4. Discussion

Early research using animal models to study bone defect and grafting dated back to
the 19th century, and surgical treatment of bone defects in the lower extremities using
bone grafts has also been practiced for more than a century [73,74]. However, despite the
numerous publications of animal experiments, the status of autograft as the gold standard
has remained unchanged [75]. This situation obliges researchers to reflect on how to avoid
non-translatable experiments, and to effectively find solutions for challenges in clinical
treatment. Evidence-based literature research such as systematic review and meta-analysis
can provide objective and comprehensive evaluations for current in vivo studies and
identify deficiencies in methodology as good practice of the 3R and 6R principles [76,77].

The fact that surgical techniques have a profound impact on experimental results
has long been recognized and is clearly articulated in the ISO standard [14]. However,
the guidelines are generally limited to basic surgical preparation such as the aseptic tech-
nique and more detailed standardization is needed in real-world studies to minimize
the methodological heterogeneity in animal surgeries. Although there were systematic
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reviews on bone defect models for biomaterials research, the researchers tended to focus
on the selection of animal species, evaluation methods, and the comparison of the final
results [15,16,78]. To the authors’ knowledge, there were no previous systematic reviews
focusing specifically on the surgical techniques of rat femoral defect models. Despite the
lack of meta-analysis due to the limitation in data properties, with a systematic review it
was still possible to comprehensively analyze the anatomical location, modeling techniques,
and fixation devices, thus promoting the standardization of future studies [79,80].

It is noteworthy that more than half of the studies selected relatively simple surgical
methods without bone fixation, especially at distal sites (Region II.b and III) [30–33]. In
contrast to human adults, the cartilaginous growth plates remain open in adult rats [81].
When region III is selected for the preparation of bone defects, the pattern of injury and
subsequent tissue repair would match more closely to clinical physeal injuries, rather than
distal femoral defects in adults [64]. Though these areas are large in size, simple for surgical
exposure, and do not require retraction of thick muscle groups, the clinical relevance should
be carefully weighed. Such growth plate injuries could be avoided when preparing bone
defects in Region II. However, researchers need to be aware that a cylindrical defect at
Region II may bring about difficulty in bleeding control or filling with adequate graft
materials [34]. The cortical window would be more convenient for hemostasis and material
filling. In addition, the cortical window is viewed as a better simulation of skeletal tumor
resection than the bone tunnel model [3,82].

When possible, both female and male rats should be included in preclinical studies to
avoid the translation being affected. However, there were notable sex differences in terms
of growth curves and bone size within the same rat strain [14,70–72]. A safe and effective
size of a bone tunnel or cortical window in male rats might lead to a high incidence of
postoperative pathological fractures in females due to the smaller skeletal dimensions. To
the authors’ knowledge, there were no previous studies specifically addressing defect size
and postoperative complications for reference, and for ethical reasons, such experiments
might be difficult to perform. Comprehensive and objective reporting of postoperative com-
plications, in combination with preoperative surgical simulation or finite element analysis
based on imaging data, could provide beneficial support during experimental planning.

In addition, gender differences were reported in the capacity for bone regeneration,
which could be more rapid in male rats than in females [83]. This should be taken into
account when setting the follow-up period for female rats with reference from previous
studies in males. A longer follow-up period might be reasonable for female rats with
reduced bone repair capacity such as osteoporosis, and similar situations also exist for
animal studies with diabetes or other comorbidities [84,85].

There were variations in the gap size of segmental (2−10 mm) and wedge-shaped de-
fect (3−5 mm) models [37–39,45–47]. Although the application of fixation devices ensured
bone stabilization, the defect size and follow-up setting should be taken into consideration
when comparing results from different studies. However, given the variability in defect
sizes and animal status, there was also no specific consensus on the setting of follow-up for
reference. Based on the information from the included studies, the authors recommend
the selection of a critical gap size larger than 4 mm [43,44], a maximum follow-up of no
less than 6 weeks for bone tunnel or cortical window models, and no less than 8−12 weeks
for the osteotomy defects [29–32,34–36,38–40]. The impact of gender and defect size on the
setting of follow-up periods might be further addressed in future animal studies.

The fixation device was also a main source of heterogeneity in animal studies. The sur-
gical instrumentation for rodent femoral defect studies has been optimized in recent years,
allowing effective simulation of clinical treatment in humans. However, intramedullary
nailing with a locking mechanism has not been widely used in published studies [40,48–51].
Some plating fixation involved only metal wires instead of screws to provide stabil-
ity [57,58], and external fixators with higher technical difficulty were selected less often
than internal fixation [86]. The application of fine instruments that highly mimic clinical
treatments might also be limited by the potential high price of standardized devices. As
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3D printing devices become more available, fixation devices that can be prepared by rapid
manufacturing may contribute significantly to the standardization of preclinical animal
models. Moreover, the application of non-locking intramedullary pins without rotational
stability should be avoided, as this is no longer a standard technique for adult lower
extremity fractures [87–89].

Regardless of the research purpose or surgical strategy, explicit clinical relevance
is the fundamental prerequisite before conducting preclinical animal studies. Although
routine descriptions were generally available in publications, however, most were overly
generalized statements about clinical problems without an effective connection between
surgical methods and specific patho-physiological mechanisms [90,91]. Moreover, due to
the various purposes of the included research, the reporting of surgical details was relatively
limited and fragmented in different sections of papers, making it difficult to extract related
information for an evidence-based analysis. In order to improve the limited translational
prospects and to better implement the surgical classification system, the authors established
an application workflow incorporating the classification system and surgery-related details
for experimental planning, in particular regarding the clinical relevance (Figure 10).
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This systematic review in combination with 3D analysis and virtual surgery provided
a detailed overview of current surgical approaches for inducing rat femoral defects, and
established a classification system to facilitate future preclinical research with improved
quality and translational value.
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