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Nano-topography Enhances 
Communication in Neural Cells 
Networks
V. Onesto1, L. Cancedda   2, M. L. Coluccio1, M. Nanni2, M. Pesce2, N. Malara1, M. Cesarelli3,  
E. Di Fabrizio1,4, F. Amato   1 & F. Gentile3

Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information 
in neural networks and cell-substrate interactions have been heretofore studied separately. 
Understanding whether surface nano-topography can direct nerve cells assembly into computational 
efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. 
In this work, we used information theory approaches and functional multi calcium imaging (fMCI) 
techniques to examine how information flows in neural networks cultured on surfaces with controlled 
topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter 
range, Sa = 0–30 nm, information increases with Sa. Moreover, we found that energy density of a 
network of cells correlates to the topology of that network. This reinforces the view that information, 
energy and surface nano-topography are tightly inter-connected and should not be neglected when 
studying cell-cell interaction in neural tissue repair and regeneration.

Neural cell adhesion and interaction with artificial substrates is of fundamental importance in neural tissue engi-
neering; bio computing; biosensors operations and neural cell based sensors; diagnosis and analysis of neurode-
generative disorders; neural development. Since neural cells in the central and peripheral nervous systems form 
functional networks where their efficiency depends on network topology, rational design of synthetic neural 
tissue substrates should attain maximum control over cell assembly and clustering. Properties of neural networks 
emerge more from the complex interplay of simple constituents in tightly connected graphs and less from the 
specialization of individual neurons1–5.

While the search for tissue engineered materials and designs has been limited for a long time to proper-
ties like biocompatibility, biodegradability, porosity, chemical and mechanical properties6, recent advances in 
nanotechnology unearthed the need of understanding the role nano-topography and nano-geometry at the cell 
surface interface7, 8. As the natural extracellular matrix (ECM) provides a natural environment of intricate nano-
fibers to support cells and present an instructive background to guide their behavior9, surfaces with a controlled 
nano-geometry may represent an analogous of EMC to the adhesion and proliferation of neural cells8, 10–12.

The mechanisms of cell-surface interaction and effects thereof have been examined in a number of studies. 
Exploring a variety of geometries, including anisotropic gratings, islands of carbon nanotubes, ridges and pil-
lars, and randomly rough surfaces, researchers demonstrated that a nano-scale architecture may direct, control 
and, in some cases, improve neuronal polarity13, adhesion14, 15, growth16, 17, differentiation18–20, organization or 
self-organization into simple to complex networks21, 22, electrical signaling23. In other reported experiments24, 25, 
some of the authors of the present work demonstrated that the adhesion and proliferation of various cell linages is 
maximized on surfaces with moderate roughness and large fractal dimension. Recently, the adhesive behaviour of 
neuroblastoma N2A cells was verified over porous silicon with a fixed26 or smoothly variable pore size27.

Preliminary analysis on the topological properties of N2A cells networks on nano-structured surfaces was 
conducted in ref. 28. It was demonstrated that N2A cells on a surface modified at the nano-scale have an increased 
ability to create patterns in which the nodes of the patterns form highly clustered groups and the elements of the 
groups are connected by a finite, and generally low, number of steps, in contrast to a nominally flat surface, where 
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neurons are uniformly distributed. Networks with similar characteristics are named small world networks3–5. 
Small world graphs lie between the extremes of order and randomness4, 29. Dynamical systems with a small world 
topology may feature enhanced signal propagation speed and computational capabilities compared to regular 
grids of the same size. Neural networks with a small world topology are compatible with the free-energy principle 
introduced by Karl Friston30 whereby biological systems, and ultimately the brain apparatus, tend to maintain a 
state of high order and to maximize the information that the output signal values convey about the input signals 
values. These findings are consistent with previous reports31, which show that the functional and anatomical con-
nectivity among individual neurons exhibits small-world architectures.

Here, we studied the organization and signaling of neural cells on planar surfaces with details over multiple 
scales. Using conventional wet etching procedures, we produced surfaces with controlled roughness comprised 
in the 0–33 nm interval. We observed that cultured neural networks exhibit topological properties that depend 
on the nano-topography of the substrate. Large roughness values trigger cell assembly into small world networks. 
Using functional calcium imaging techniques, computer simulation and mathematical modelling, we demon-
strated that, 11 days after seeding, small world networks on rough substrates conduct information from 3 to 4 
folds more efficiently compared to random networks on flat surfaces (with an effective roughness Sa ~ 0.6 nm). 
Using an argument based on energy methods and cell-surface interaction analysis we explain the improved ability 
of cells on rough surfaces to create clusters.

Results
Fabrication and characterization of rough Silicon substrates.  Using conventional wet etching pro-
cedures (Methods) we generated rough Silicon substrates with tight control over their topography. Surface 
nano-topography of samples was examined using standard AFM imaging (Fig. 1). Varying the etching time in a 
corrosive bath, we obtained samples with an increasing average roughness ranging from .S nm0 6a

A ~  (nominally 
flat surfaces, Fig. 1a) to S nm33a

D ~  (extremely rough surfaces, Fig. 1d), with intermediate values of roughness 

Figure 1.  Maintaining silicon surfaces in a corrosive bath for up to 300 s, we obtained rough substrates with 
varying roughness. AFM images of etched silicon substrates with roughness in the 0.59–33 nm range (a–d). 
Corresponding Power Spectrum density functions, which describe the information content of the surfaces over 
multiple scales (e–h). From AFM images, average and root mean squared values of roughness were derived (i). 
From Power Spectrum density functions, fractal dimension of surfaces was derived (l). The table in the inset 
recapitulates surface properties for each of the considered time of etching (m).
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~S nm8a
B  (Fig. 1b) and ~S nm22a

C  (Fig. 1c). Root mean squared roughness Sq of the same samples displays 
values that are lightly greater than the arithmetic measure of the roughness profile (Fig. 1i and inset in Fig. 1m). 
Since roughness parameters Sa and Sq reduce all the information in a profile to the deviations from a mean line, 
they may be insensitive to grossly different spatial and height symmetry features of profiles. In certain conditions, 
Sa and Sq may not be representative of the morphology of a sample unless they are not accompanied by an inde-
pendent estimate of topography. Here, we use the fractal dimension Df . The fractal dimension is an index for 
characterizing patterns by quantifying their complexity as a ratio of the change in detail to the change in scale, 
therefore, it can be used to describe intimately the topography of small systems28, 32, 33. For a bi-dimensional sur-
face the fractal dimension can range from 2, representing a flat surface (the Euclidian dimension of a surface is 2) 
to 3, representing a severely corrugated surface (the Euclidian dimension of a solid is 3, in this extreme, one may 
imagine that a surface explodes into fragments that saturate the space in which it is included). From surface pro-
files as in Fig. 1a–d we derived the corresponding power spectrum density functions (Fig. 1e–h). A power spec-
trum (PS) delivers the information content of a surface over multiples scales32. In a log-log diagram, a PS exhibits 
a linear behavior in the central region of the diagram. If the slope of the segment is small (thus the line is horizon-
tal), the PS and the surface are represented over numerous frequencies. Thus fractal dimension and the slope of 
the PS are correlated. From the measure of β one may obtain Df  as described in the Methods. For the present 
configuration ~ .D 2 08f

A , ~ .D 2 23f
B , ~Df

C 2.38, D 2 51f
D .~ , and thus in this dimensional range the fractal dimen-

sion is proportional to the roughness and steadily increases moving from sample A to sample D. High degree of 
fractality of samples −B D, compared to the low fractal dimension of the pristine silicon substrate resembling an 
ideal Euclidian surface, may be responsible for the increased ability of etched substrates to accelerate cells cluster-
ing as commented in the rest of the paper. Contact angle measurements of the samples (Fig. 1m) show that sam-
ples are hydrophilic in the considered range of roughness, with contact angle θ varying from θ = °48  for the flat 
silicon surface, to θ = °33 , 31θ = ° θ = °28  for the nano-structured surfaces.

Cell assemblies in small world networks.  In culturing neural cells on the substrates we observed that 
after 11 days from seeding cells display different ability to create clusters depending on substrate roughness. Cells 
adhering within a region of interest (ROI) of µ×~ m975 750 2 were imaged using fluorescent microscopy follow-
ing the procedure described in the Materials and Methods. For each substrate, more than 30 ROIs were consid-
ered to provide large sample sizes for robust statistical analysis. In Fig. 2 we report fluorescent images of cells 
adhering over a nominally flat substrate (S nm0 6a .~ , a) in contrast to cells cultured on a corrugated substrate 
(S nm22a ~ , d). From fluorescent images, the nuclei of the cells were extracted and used to form the networks 
reported in Fig. 2b (flat Si substrate) and e (rough Si substrate), in which the components of the circuit (the nodes) 
interact through edges which connect doublets of nodes, and the density of connections is larger if inter-nodal 
distance is smaller28, 34. One may observe that cells are uniformly distributed over the smooth surface; differently, 
cells over the corrugated profile form aggregates where in each aggregate cell to cell distance is low and the sepa-
ration between aggregates is high. One way to examine the topology of a group of elements in a plane is using 
variables like the clustering coefficient and the characteristic path length. The clustering coefficient (Cc) describes 
the propensity of the nodes of a graph to form few groups in which the elements of the groups are inter-connected 
by the an elevated number of edges34–36. The characteristic path length (Cpl) indicates the number of passages that 
on average separates two nodes randomly picked in a network36. Cc is comprised between 0 and 1, Cpl is generally 
greater than 1 (Materials and Methods). Cc and Cpl are used to describe and assess the efficiency of complex sys-
tems and dynamical systems3, 5. Networks with high Cc and low Cpl are named small world networks. Small world 
networks typically feature over-abundance of hubs with a high number of connections. Thus networks with a 
small world architecture may mediate information between nodes of the network and function more efficiently 
than equivalent random, periodic or regular graphs3, 5. More precise definition of small world networks is con-
tained in the Methods and in the Supporting Information File 1. The degree of small-world-ness of a network is 
indicated by the sole coefficient SW. Small world networks have SW 1>  (Methods). In the considered range of 
roughness we found that cultured neural networks exhibit (i) increasing Cc, (ii) decreasing Cpl and consequently 
(iii) increasing SW values for increasing roughness (Table in the inset of Fig. 2g and Fig. 3). SW index smoothly 
transitions from 0 4~ .  for the S nm0 6a ~ .  substrate to 1 3.~  for the S nm33a ~  substrate. While cells on flat sub-
strates present no small-world-ness attributes ( .SW 0 4~ ), moderately rough surfaces ( >S nm22a ) boost the 
organization of nerve cells into small world networks (SW 1> ). Crossover between the absence and the presence 
of a small world architecture of neural networks is observed in the intermediate nanometer range. In the Table in 
Fig. 2g the number n of adhering cell is reported as a function of sample preparation. n and thus cell density vary 
in narrow intervals moving from sample A to sample D. This would suggest that networking of neural cells on a 
substrate is not influenced by cell density and is regulated by the sole substrate topography. Cell images as in 
Fig. 2a,d are examples extracted from larger data sets. Full list of wiring diagrams of cells for all considered sub-
strate preparations is reported in a separate Supporting Information File 2.

Simulating information flow in cultured neural networks.  Reported results show that neurons on 
rough substrates form clustered networks in opposition to neurons on flat surfaces. For these configurations, 
neurons are connected by a finite and general low number of steps and information in the grid may be trans-
ported more efficiently. Computer simulations (Methods) confirm this hypothesis. We reproduced artificial neu-
ral networks from confocal images of the cells for all the considered substrates (Fig. 2b,e). Then, elements of the 
networks were excited with a variable function of time. Upon excitation, spikes propagate in cascade in the grid. 
Time spikes are grouped in sets of words, in which a word is an array of on (presence of a spike)/off (absence of a 
spike) events in a binary representation (Supporting Information Figure 3.4). On sorting words in order of 
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decreasing occurrence in the train, we derived the associated entropy using equation (Supporting 
Information S2.3) and the Methods described in the Supporting Information File 3. We repeated this procedure 
in response to an uncorrelated (Supporting Information Figure 3.3a) and time locked (Supporting Information 
Figure 3.3b) signal of time. From the difference of entropies, we derived the information transmitted all over the 
nodes of the grid for cells cultured on flat (Fig. 2c) and etched (Fig. 2f) surfaces. We found that the simulated 
information steadily increases moving from random to small world graphs and thus with substrate roughness 
(Fig. 3d). We measured an augment of information from ~ .I 1 4 bits for the S nm0 6a .~  substrate to .~I 4 3 bits 
for the ~S nm33a  substrate, with a ~3 fold overall increase.

Ensemble Dynamics of Spontaneous Activity.  We used high-speed fMCI to examine the dynamics of 
spontaneous firing activity of neuron populations. The spatio-temporal pattern of spontaneous network activity 
was reconstructed with the millisecond resolution from 37 neurons for each substrate topography. Figure 4 
reports confocal images and associated neural activity for neurons over smooth (a) and moderately corrugated 
~S 22 nma  substrates (b). In cultured neural networks 37 neurons were randomly selected for fMCI recordings. 

Of 37 neurons, a reduced sample of 4 neurons is reported in Fig. 4 for sake of clarity. Spikes of spontaneously 
active neurons were determined as somatic +Ca

2  transients as described in the Methods. Spikes were registered 
throughout a time interval of 40 s and reported in the right hand panel of Fig. 4a,b as variation respect to the 
baseline. Closely spaced spikes are observed in small world networks over corrugated surfaces (Fig. 4b) suggest-
ing that neural small world networks are topologically biased to enhance local connectivity. Data are summarized 
in Fig. 5. Network burst profiles are reported in Fig. 5a for different substrate preparations from sample A with 
S 0 6 nma ~ .  to sample D with S 33 nma ~ . Neuron spiking events are reported in a matrix plot as a function of 
time for all considered neurons in the network. Corresponding spike histograms are shown in Fig. 5b as a func-
tion of neuron index. Within a given 40 s period, on average, only a small number of neurons (24% of the total 

Figure 2.  Confocal images of neural cells on flat (a) and corrugated (d) silicon substrates. Positions of cells 
nuclei were extracted from confocal images and used to construct cell-graphs (b,e). Computer simulations were 
used to derive the Shannon information entropy transported through the networks (c,f). Results show that 
information correlates to surface roughness; surface roughness, in turn, boost cell assembly into small world 
networks (g).
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cells) were active on flat surfaces, whereas on rough surfaces the network exhibited more events that involved up 
to about 50% neurons (Fig. 5b). Both histograms and bursts time representation reveal that neural activity 
increases with surface roughness. To quantify the activity level, we introduce the scalar measure b, which is the 
summation of observed action potentials over all neurons in a time interval, and q, which is b averaged over neu-
rons in the network. Both b (Fig. 5c) and q (Fig. 5d) increase with surface roughness. In particular, q transitions 
from = . ± .q 3 48 0 18 spikes/neuron for Sa ~ 0.6 nm to q = 8.35 ± 0.41 spikes/neuron for Sa ~ 33 nm. Thus ratio of 
density of spikes measured on flat surfaces to that measured on rough surfaces is ~2.4, this proportion is consist-
ent with values predicted by information theory simulations reported in paragraph 3.3. The values of b and q 
correlated positively with Sa (r = 0.21, P < 0.01). For each of the considered substrate, mean and peak firing rate 
of neurons in the networks were extracted from the raster graphs of Fig. 5a as (i) average number of events regis-
tered on a network to the predetermined time interval and (ii) mean ratio of 10 most closely spaced events in a 
grid to their time distance (Fig. 5e). Neurons firing rate f increases with roughness ranging from ~6 Hz for 
Sa ~ 33 nm to ~16 Hz for Sa ~ 33 nm. These data imply that excitatory neurons are specifically wired to ensure 
enhanced neural activity in small world networks over corrugated surfaces.

Discussion
Information in planar neural cultures correlates to network topology.  Using computer simulations 
and fMCI techniques we found that the information in planar neural networks increases with the small-world-
ness of the networks. Network topology, in turn, is influenced by roughness of the substrate. Thus, one can poten-
tially control the organization of nerve cells into computational efficient networks by modulating substrate 
nano-topography. In the considered range of roughness, small-world-ness SW of neural networks varies with Sa 
and the SW(Sa) response recalls the characteristic response of a first order system (Fig. 3c). SW asymptotically 
approaches a steady-state value that for the present configuration is SW 1 32ss = . . We may divide the SW diagram 
into two regions: (i) a transient region (S 0 6 22 nma . −~ ) in which SW varies linearly with Sa, (ii) a steady state 
region (S 22 33 nma ~ − ) in which the system is assumed to have reached its final value SWss. For ~S 22 nma , 

= .SW 1 23 is within 10% of its final value, thus we may choose S 22 nma ~  as the boundary between the transient 
and steady-state responses. Sensitivity analysis shows that network topology is affected largely by surface rough-
ness when Sa is comprised in the first transient regime ( . −~S 0 6 22 nma ). For larger values of S 22 nma > , SW 
varies negligibly with Sa. Remarkably, the observed length scale ~20 nm for which neurons optimize network 
topology, coincides with the extension of neurons’ filipodia and lamellipodia during neuronal differentiation37. 
This suggests that one can attain maximum control over network architecture by tailoring surface 

Figure 3.  Diagrams summarize clustering coefficient (a), characteristic path length (b), small-world-ness (c), 
and simulated information in cultured neural networks (d) as a function of surface roughness.
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nano-topography in the low nanometer range. These findings are in line with previously reported experiments, 
where it was observed that moderately rough surfaces25 enhance adhesion and proliferation of different cell lin-
ages. In28, some of the authors of the present work demonstrated that N2A cells assembly and organization is 
influenced by the porous architecture of mesoporous silicon surfaces. For the present configuration, we found 
that the information and overall cell activity of cultured neural networks varies with network topology and thus 
surface roughness. Information transported in the grid and normalized action potentials release events may be 
increased from 3 to 4 folds moving from random graphs on flat surfaces to small world networks on etched sub-
strates. Described results reinforce the view that, in a network, information flow, topology of the network and 
surface topography are densely correlated. Adjusting roughness, one can modulate the amount of information 
transported through the grid.

Energy landscape of small world networks.  Figure 6 describes the density of energy change Δu as a 
function of small-world-ness associated to a system of 200 cells on a planar surface. Energy density was derived 
by summing the potential energy of interaction between cells over all the possible cell pairs in a network (Methods 
and Supporting Information File 4). A great many of randomly generated networks exhibit varying topological 
properties and SW coefficient that ranges from ~0.7 (random graphs) to ~2.9 (small world graphs). The energy 
landscape in the diagram associates each conformation of the system to its energy levels. Best fit of numerical data 
is given by the quadratic form 0 78 0 189 SW 0 147 SW2 2. + . − . , thus the total free energy smoothly decreases 
from 0 9 pJ/bond.  for SW 0 7= .  to 0 8 pJ/bond.  for SW 1 5= . , to .0 1 pJ/bond for = .SW 2 9. Since physical sys-
tems evolve to maintain their free energy to a minimum, Fig. 6 indicates that, while cells can theoretically exist in 
a nearly infinite number of conformations along their energy landscape, in reality cells would tend to assemble 
into clustered groups that exhibit lower energy levels. In this interpretation, few groups of highly clustered cells 
(elevated SW values) represent the natural conformation of bi dimensional systems of neural cells. Remarkably, 
this conformation is encountered on corrugated nano-scale systems instead that on smooth surfaces. Thus, rough 

Figure 4.  Functional multi calcium imaging (fMCI) techniques were used to obtain the spontaneous activity 
profile of individual neurons in cultured neural networks on flat (a) and corrugated (b) surfaces.

http://4
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surfaces prompt cells to assembling into small world networks that (i) minimize energy and (ii) maximize infor-
mation density:

rough surfaces SW neural networks, (1 1)→ .

Figure 5.  Raster plots describe spontaneous activity of 37 neurons per each considered surface roughness, in 
the plots measured neuron activity is reported as a dot in a binary representation (a). Histograms of neuronal 
activity reveal that more than 50% of neural population is involved in network activity for corrugated surfaces 
(B–D), in contrast to flat surfaces (A) where it is registered a limited neuronal activity (b). Total (c) and averaged 
(d) number of spikes measured in cultured neural networks as a function of substrate preparation. Mean and 
peak firing rate measured in cultured neural networks as a function of substrate preparation (e).

Figure 6.  Calculated energy landscape of neural networks as a function of small-world-ness.
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↔ .low energy density high information flows (1 2)

Figure 6 uses energy variables to recast the organization of cells on a substrate problem in energetic terms and 
along with relations (1) states the equivalence between energy and information in systems of neural cells. The dif-
ferent ability of rough surfaces to boost the spontaneous organization of cells into clusters in contrast to smooth 
surfaces is explained below.

Roughness breaks equilibrium and triggers cells clustering.  Cells motility on a surface is determined 
by cell-cell (1) and cell-substrate (2) interactions (Fig. 7a). To describe the time evolution of cell density, we use a 
revised version of the continuum model described in ref. 38, in which cell density obeys to a partial differential 
equation of time and space (Methods and Supporting Information File 5). For numerical convenience, we con-
sider Equation 4 in a mono-dimensional domain described by the sole spatial x coordinate. In the equation, cell 
density is a function of cell-cell adhesion forces, of intensity ξ, and of the forces induced by substrate instability, 
whereby cells initially seeded on a surface explore near sites to conform to the surface profile and minimize 
energy39. Force induced by substrate instability is proportional to the parameter γ. Thus /γ ξ=  is the relative 
intensity of the substrate instability force to the cell-cell adhesion force. Steady state solution of cell density is 
reported in Fig. 7b for   ranging from 0 to 6. We observe that while for small values of   ( < 2) cells density is 
uniform, when  2>  cells cluster together to form isolated peaks. Diagram in Fig. 7c describes asymptotic cell 
behavior as a function of  . Value Γ in the ordinates is the average ratio of maximum (peaks) to minimum (val-
leys) values of cell density at regime, thus large Γ’s are suggestive of cells clustering. Remarkably, two regions are 
distinguishable in the diagram. When cell-cell adhesion forces dominate over substrate perturbation forces 
( < 2 ) we have isolated cells in the domain, when substrate perturbation forces dominate over cell-cell adhesion 
forces ( > 2) cells create clusters. Similarly to what happens for undercooled liquids40, cells may maintain a state 
of unstable equilibrium and remain uniformly distributed on a surface contradicting the energy landscape in 
Fig. 6. Surface roughness, lumped here in the sole γ parameter, breaks equilibrium and drives cells clustering. In39, 
it was calculated that early energy variation for a cell is in the order of U 1 fJ~  on a substrate with roughness 
S nm20a ~  for an initial surface energy J m1 /c

2~γ µ . Thus, force associated to a similar energy variation is 
= ∂ ∂F U x pN/ 100~ , that is in the same dimensional range of cell-cell adhesion forces41, 42. Data presented in 

Fig. 7 seem to support the notion of rationally designing surfaces by tailoring nano-topography to modulate cell 
clustering.

On the generality of the results and applications.  The findings of the work are descriptive of nerve 
cells especially pertaining information propagation, the profiling of time spikes and simulation of information 
flow in networks using information theory variables. Nevertheless, some other findings are general in nature. Cell 
clustering, the formation of small world networks and energy minimization in those networks are universal 

Figure 7.  Cells on a corrugated surface experience cell-cell interactions and an instability force generated by 
surface roughness, whereby cells, at the early time of adhesion, move and deform their membrane to adapt to 
surface profile (a). Initial and steady state solution of cell density for different values of surface instability force 
relative to cell-cell adhesion force (b). Cells form isolated groups of cells if the surface instability force relative to 
cell-cell adhesion force is greater than one (c).

http://5
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mechanisms that can be applied to the large majority of cell types. This is due to the fact that cell clustering is 
activated by cell-cell and cell-surface interactions that are not exclusive of nerve cells. In deriving free energy 
landscapes of small world networks, we used a chemical potential that describes the chemical interaction energy 
between cells due to specific and non-specific adhesion forces. In determining the time evolution of cell popula-
tion on a substrate, we introduced a term ( ) that reflects the relative intensity of the substrate instability forces to 
the cell-cell adhesion forces. Thus one can use these methods to describe the behavior of diverse cell types using 
precise combinations of the chemical potential of interaction and  .

As regarding the equivalence between cell organization and networking, information and energy in a grid 
(Equations 1.1–2): this may represent a tool for addressing the problem of cell growth and assembling under dif-
ferent perspectives in a variety of disciplines, including regenerative medicine, tissue engineering, the diagnosis 
or therapy of neurodegenerative disorders. Assuming that the main drivers for neural cells organization in the 
plane are

	 (i)	 Energy optimization, whereby cells create networks which minimize thier free energy;
	(ii)	 Neural morphogenesis, whereby cell positioning on the substrate is determined by the morphology and 

biology of neurons, and from cell-cell and cell-surface interactions;
	(iii)	 Information propagation, whereby nerve cells form networks which maximize information in a grid;

In establishing the correspondence between the energy, biology and information criteria, we suggest that these 
criteria can be used interchangeably. That is to say that the same problem can be addressed from different sides. 
Thus, making experiments or studies in one of those domains, one would obtain the information necessary to 
design strategies in the remaining domains. Similarly in concept to the Fourier transform that, on transforming 
a signal from the time to the frequency domain, allows to solve a problem in the more convenient conditions and 
then to transfer the solution to the original domain. Possible applications of this method may be (but not exclu-
sively) in (i) neuro-tissue engineering and scaffold design, (ii) the analysis and diagnosis of neurodegenerative 
disorders; (iii) bio-computing. In the first case (i): on determining the surface energy density of a substrate, one 
can anticipate and predict cell-organization and clustering on that substrate. In the second case (ii): scientists may 
correlate the lack of information in a network to an anomalous production/depletion of specific neurotransmit-
ters or biomarkers in that network. If detected in the body, similar biomarkers would reveal the occurrence and 
progression of neurodegenerative diseases. In the third case (iii): equivalence between information, energy and 
biology, may help in the design of scaffolds and 2 to 3D substrates that, in optimizing cell clustering, maximize the 
computational capabilities of biological systems.

Conclusions
We cultured neural networks on rough surfaces. On varying the roughness of the surfaces over a significant range, 
we found that the topological properties of the networks show a very high sensitivity to surface topography. Cells 
on corrugated surfaces (S nm22a > ) exhibit small world attributes, whereas cells on nominally flat surfaces 
( <S nm10a ) are uniformly distributed without clustering effects. Using computer simulations and fluorescent 
multi calcium imaging techniques, we found that small world networks on corrugated surfaces are computational 
efficient. Information in small world networks is enhanced up to 4 times compared to information exchanged in 
unstructured networks over flat surfaces. Using energy methods, we found that cells in small world groups mini-
mize their energy, thus systems of cells would spontaneously evolve into clustered geometries if they surpass an 
initial energy barrier. Nano-scale structure of the surface provides the energy necessary to overcome this barrier. 
Presented results show that nano-topography, information and energy are intimately correlated, and should be 
jointly considered in the rational design of neural tissue substrates.

Materials and Methods
P-doped (111) wafers with 5–10 Ohm/cm resistivity were used as substrates (Si-Mat, Kaufering, Germany). 
De-ionized (D.I.) water (Milli-Q Direct 3, Millipore) was used for all experiments. Potassium hydroxide (KOH), 
ethanol, methanol were purchased from Sigma Aldrich (Milan, Italy). All culture media and reagents were from 
Invitrogen (Milano, Italy), unless otherwise specified. All chemicals, unless mentioned otherwise, were of analyt-
ical grade and were used as received. Experiments were performed on day 11 in vitro.

Realizing rough silicon surfaces.  Planar Silicon surfaces with a roughness Sa comprised in the − nm0 30  
range were fabricated using the methods described in ref. 24. Smooth silicon surfaces with a residual roughness 
of about 5 Angstroms were used as a control. Silicon wafers were etched in diluted potassium hydroxide solutions 
(KOH: DI water 1:4= ) to obtain corrugated profiles. Varying the etching time from 0 to 300 s, we obtained 
surfaces with an average roughness Sa ranging from .~ nm0 6  (nominally flat surfaces) to ~ nm33  (Fig. 1l–m).

AFM sample characterization.  Atomic force microscopy (integrated Raman AFM system, Alpha 300 RA, 
Witec) was used for sample characterization. All the measurements were performed in a dry environment in 
intermittent contact mode over a sampling area of 5 × 5 μm2. Room temperature was hold fixed for all the acqui-
sitions. Ultra-sharp Si probes with a nominal tip radius less than 5 nm were used for achieve high resolution. 
Multiple measurements were done in different scan directions to avoid artefacts. At least four images in height 
mode (trace and retrace) were recorded per each sample. The images had a resolution of 512 × 512 points and 
were acquired at a scanning rate of 1 Hz. Images were processed using either flattening or plane fit according to 
the relief characteristics, with the minimal polynomial order needed. The characteristic average surface roughness 
Sa was thus de-convolved for each substrate. Fast Fourier transform (FFT) algorithms were used for data process-
ing and fractal extraction of the characteristic dimension of the samples surface.
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The etching of the structure is extremely homogeneous compared to the whole surface. Silicon chips are 
square surfaces with an edge of approximately mm10 . Chips are immersed in a corrosive KOH bath that guaran-
tees uniformity of etching over the entire surface. AFM measurements on randomly picked regions on the chip 
surface reveal that the measured profile is regular over the entire surface. Moreover, individual AFM measure-
ments reveal that roughness is periodic and regular within the windows of measurement. Considering that the 
characteristic wavelength of etched surface is smaller than nm100  for all considered cases, lateral resolution of the 
structures is about = −mm nm100 /10 107 5 times the maximum length of the chips. Thus, rough surfaces are 
smooth and homogeneous at the macroscale. Even considering not the entire chip but the region of interest (ROI) 
within which confocal analyses were performed, that is about 1 mm in length, the ratio of the profile wavelength 
to the ROI size is still extremely small: = −mm nm100 /10 106 4. Thus, while nanoscale architecture of the sub-
strate influences cell behavior and clustering, cells distribution would not depend on spatial irregularities of sur-
face nano-structuring, that is uniform over the substrate.

Deriving the fractal dimension of the surfaces.  AFM profiles of the surfaces were processed using the 
algorithms developed and described in references32. We derived the characteristic power density function for 
each surface (Fig. 1e–h). In a log-log plot, the power spectrum density appears as a line with a slope β. The slope 
β is related to the Hurst parameters as β = +H2( 1). The fractal dimension Df  of the surface can be equivalently 
derived as D (8 )/2f = − β  or D H3f = − . The fractal dimension Df  of a surface ranges from 2 (Euclidean 
dimension of a flat surface) to 3 (representing an extremely rough surface).

Surface contact angle measurement.  Surface hydrophilicity of the samples was determined by measur-
ing the water contact angle with one drop of about l5 µ  of DI water using an automatic contact angle meter (KSV 
CAM 101, KSV Instruments LTD, Helsinki, Finland) at room temperature. Four measurements were performed 
on each substrate to evaluate the average contact angle at s5 .

Substrate preparation.  Silicon rough substrates ( cm1 2) were individually placed in 35 mm tissue culture 
dishes (Corning Incorporated), sterilized by immersion in ethanol, washed twice in H O2 , dried in a laminar flow 
hood and further sterilized by UV irradiation for h2 . To coat the substrates, Poly-D-lysine (PDL) (Sigma-Aldrich, 
Milan, Italy) was diluted in sterile H O2  to a final concentration of g ml1 /µ . Substrates were let in the PDL solution 
overnight in a cell culture incubator (37 °C, CO5% 2, 5% humidity).

Primary neuronal cultures on the substrates.  Whole brains were extracted from C57B/L6 mouse 
embryos at day 18 (E18). All procedures were carried out in accordance with the guidelines established by the 
European Communities Council (Directive of November 24th, 1986) and approved by the National Council on 
Health and Animal Care (authorization ID 227, prot. 4127, 25th March 2008). Pregnant females were deeply 
anesthetized with CO2 and decapitated. Embryos were removed and brains were placed in cold Hank’s Balanced 
Salts solution (HBSS). After removal of the meninges, the hippocampus was carefully dissected, incubated with 
0.125% trypsin for 15 min at 37 °C and mechanically dissociated. Neurons were plated on a PDL coated surface in 
complete cell-culture medium, supplemented with 10% fetal bovine serum (FBS, Invitrogen), 5% penicillin G 
(100 U/ml) and streptomycin sulfate (100 mg/ml) (Invitrogen). Neurons were incubated for 18 days in vitro (DIV) 
at 37 °C in a humidified 5% CO air/2  atmosphere with an initial density of 105 cells/ml. Neurons were plated at the 
same density on PDL-coated smooth silicon substrates serving as a control. Cells were sub-confluent throughout 
the duration of the experiment.

Sample preparation for fluorescence imaging.  After incubation, cell culture medium was removed and 
the cells were washed twice in PBS and fixed with 4% PFA (paraformaldehyde) and were incubated for 30 min at 
room temperature (RT). The cells were washed twice PBS and made permeable with 0.05% triton (Invitrogen) for 
5 min at RT. All cells fixed and made permeable were stained with µl100  DAPI (40, 6-Diamidino-2-phenylindole, 
Sigma Aldrich) solution for 10 min at 4 °C at dark. Finally, the DAPI solution was removed and each sample was 
washed with PBS.

Imaging adhering cells on the substrates.  An inverted Leica TCS-SP2® laser scanning confocal micros-
copy system was used to image cells adhering on the substrates. All measurements were performed using a ArUv 
laser. The pinhole ( m80 µ ) and laser power (80% power) were maintained throughout each experiment. Confocal 
images of blue (DAPI) fluorescence were collected using a 405 nm excitation line and a 10° dry objective. For each 
substrate, a large number of images was taken for statistical analysis. Each image was acquired over a region of 
interest of µ× m975 750 2, and averaged over 4 lines and 10 frames to improve quality and reduce noise. Images 
were digitalized into 1=280 × 960 pixels.

Network analysis of neural cells.  Confocal images of cultured neural networks were processed to extract 
the topological parameters of the networks. Using algorithms described in28 and recapitulated in a separate 
Supporting Information File 1, the average cluster coefficient (Cc) and characteristic path length (Cpl) of the net-
works were derived as a function of surface roughness. The core of the algorithms is the Waxman model, which 
makes a decision on whether two nodes in a grid u v( , ) are connected or not34. The model makes use of a proba-
bility function P u v( , ) which decays exponentially with the Euclidean distance d u v( , ) between u and v: 

∝ β−P u v e( , ) d u v L( , )/ , where L is the largest possible Euclidean distance in the grid and β is a parameter. If a ran-
domly generated number between 0 and 1 is smaller than P, then nodes shall be connected. Notice that if β is 
large then it is very likely that two nodes in the grid may be connected. If β=d u v L( , ) , then = −P e 1, and 
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P e 1< −  for every β>d u v L( , ) . Thus L dpβ =  has the significance of a probabilistic cut off distance, which deter-
mines with which probability P nodes are joined, in contrast to the classical concept of deterministic cut off dis-
tance dc, whereby after network conditioning, maximum edge length in the network is set as dc.

Quantitative measure of the small-world-ness of a network is based on the knowledge of Cc and Cpl43. A net-
work G with n nodes and m edges is a small-world network if it has a similar path length but greater clustering of 
nodes than an equivalent Erdos-Rényi (E–R) random graph with the same m and n (Supporting Information 
File 1). Let Cplrand and Ccrand be the mean shortest path length and the mean clustering coefficient for the E–R 
random graphs, and Cplgraph and Ccgraph the corresponding quantities for the graphs extracted from neural cells 
networks on rough silicon surfaces. If

γ = ϕ =Cc Cc Cpl Cpl/ , / (2)graph rand graph rand

then the small-world-ness coefficient is defined as43

SW / (3)= γ ϕ

The categorical definition of small-world network above implies 1ϕ ≥ , 1γ  , which, in turn, yields SW 1> .

Simulating information in cultured neural networks.  We used a generalized leaky integrate and fire 
model44, 45 to simulate information flow in bi-dimensional neural networks as described in Reference46 and in 
separate Supporting Information File 3. Here, the nodes of the grid represent the nuclei of the cells and are 
extracted from confocal images of cultured neural networks at DIV 11. The temporal sequence of spikes that 
propagate along the grid encodes the information transmitted over that grid. Resulting patterns of multiple spike 
trains were interpreted using information theory approaches47–49. We represented the variability of individual 
neurons in response to a long random stimuli sample with the total entropy H. Similarly, the noise entropy N is 
the variability of the spike train in response to a sample of repeated stimuli. The information content provided by 
the different spike trains is the difference between entropies I H N= − .

Functional multi-calcium imaging.  Samples were incubated in 1 ml of dye solution (Fluo4, Life 
Technologies/Thermo Fisher diluted 1:2000 in Tyrode solution) at room temperature for 20 mins in dark condi-
tions, washed once with Tyrode solution and immediately transferred to a recording chamber. Images were 
acquired with a Confocal upright microscope Leica SP5 AOBS; Leica Microsystems Srl) coupled with 
water-immersion objective lens (IRAPO 25X, 0.90 NA, Leica Microsystems Srl), and LAS AF software (Leica 
Microsystems Srl). Fluorophores were excited at 488 nm with an argon laser and visualized with a 510 nm–600 nm 
band pass emission filter. In each cell body, the fluorescence change ΔF/F was calculated as F F F( )/t o o− , where Ft 
is the fluorescence intensity at frame time t, and Fo is baseline31. Spike timings were determined as the onsets of 
individual +Ca

2  transients. Calculation of calcium imaging signals from a region of interest was performed using 
the methods reported in ref. 50.

Deriving the energy landscape of small world graphs.  We generated bi-dimensional networks 
where the nodes of the network are sampled from normal distributions (Supporting Information File 4). On 
varying the number, position and standard deviations of the normal distributions over a significant range, 
we obtained networks with values of small-world-ness ranging from ~0.5 to ~3. Therefore, we associated an 
harmonic potential e k /2s

2δ=  to each of the cell cell pairs in the ensemble. ks is the effective spring constant 
of the structural linkages between cells, δ is their separation. The potential describes the chemical interac-
tion energy between cells due to specific (cell adhesion molecules, CAM, mediated adhesion) and not spe-
cific (electrostatics, electrodynamics, van der Waals) adhesion forces41, 42, 51. Summing the potential 
interaction energy over all the possible cell cell distances, we derived the total energy of cells clusters as a 
function of their degree of small-world-ness.

Time evolution of cell density.  The time evolution of neural cell density u in a mono-dimensional domain 
is described by the partial differential equation38
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∂
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x t u( ) ( ) ( ) ( )
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where x  and t  are the space and time coordinates, u K u( ) is the cell-cell adhesive force proportional to ξ 
(Supporting Information File 5). γη α Λx t u( ) ( ) ( )2  represents the perturbation (instability) force that is related to 
surface roughness. In the term Λ, it is lumped the dependence on the position on the substrate and cell density, 2α  
describes how rapidly the cell-substrate force component decays with time, η reflects the random nature of the 
substrate, γ is the intensity of the substrate instability force. Thus / γ ξ=  is the relative intensity of the substrate 
perturbation force to the cell-cell adhesion force. Equation (4) was solved using a numerical scheme as described 
in a separate Supporting Information File 5.

Data representation.  We reported all averaged values as means ± standard deviations.

Data availability.  All data are available on contacting the corresponding author.
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