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Abstract

The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding
have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association
analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in
homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used
to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment
interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series
of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all
detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new
approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random
sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more
than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were
predicted.
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Introduction

Germplasm resources play crucial roles in genetics, evolution

and breeding, by forming the physical foundation of the study of

genetic diversity [1]–[3], fueling much evolutionary research

[4]–[6] and providing the raw material for breeders to produce

new cultivars or to further improve the existing ones, due to the

existence of many valuable genes in genetic resources [7]–[9]. The

identification of valuable genes and markers associated with traits

of interest will greatly increase the efficiency of plant breeding

programs. However, these beneficial genes are largely unexplored

due to the lack of appropriate statistical techniques. Meanwhile, as

the complexity of the trait increase, breeding problems increase,

for example, favorable alleles in exotic genetic resources are in

unadapated genetic backgrounds and linked to other unfavorable

alleles. This means that methods to utilize these favorable alleles in

crop breeding also need to be further addressed. Accordingly,

there is a critical need for in-depth study of methodologies for

mining elite alleles in germplasm resources and for the utilization

of these elite alleles in crop breeding.

During the past several decades, many attempts have been made

to mine elite alleles for objective traits of interest. In early studies,

many genes for qualitative traits in crop breeding were studied with

morphological and biochemical approaches [10]–[13], and those

for complex diseases in human genetics were identified by both

sibling pair analysis [14]–[18] and pedigree analysis [19]–[21]. The

introduction of molecular markers has facilitated the genetic

association analysis of complex diseases in humans, animals and

plants. Single-marker association analysis [22] and, later, genome-

wide association study (GWAS) have been widely used in human

genetics [23]. There has been substantial research of two aspects of

GWAS: population structure [24]–[29] and mixed genetic models

[30]–[32]. However, only one QTL was analyzed at a time in the

above models. Likewise, although epistasis association analysis has

been utilized in human genetics [33]–[37], all of the main genetic

effects and gene interaction effects have not been simultaneously

included in one genetic model. A full genetic model, including all

the main and epistatic effects, could improve the power of QTL

detection [38]–[41]. Several parameter estimation approaches such

as LASSO [41], [42], empirical Bayes [43], and penalized

maximum likelihood [38], [40] make this full genetic model

possible. Therefore, epistasis association analysis with a full genetic

model is feasible in crop germplasm resources.

In the past, most crop breeding methods were based on

selection for observable phenotypes and breeding efficiency

without markers is simply a function of heritability and choice of

parental material. To date molecular markers have improved

efficiency of selection largely for traits under simple genetic control

and in specific conditions where marker selection is easier/cheaper

than phenotypic selection [44]–[50]. However, this approach is

only feasible for the improvement of one or several independent

genes. If there are interactions among the objective genes,
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breeding strategy must be addressed by the incorporation of the

epistasis [51], [52]. Carlborg and Haley [53] showed that epistasis

is a common response to selection in breeding programs.

Therefore, genetic interaction should be considered in crop

breeding strategies.

One purpose of the genetic analysis of quantitative traits is to

design a suitable breeding strategy, called breeding by design

[54]. However, genetic analysis and crop breeding have

traditionally been performed separately; for example, most genetic

analyses exclusively use biparental crosses, but these are rarely

used alone in commercial breeding. Therefore, the results of these

biparental cross experiments have limited roles in breeding

practice [55]–[57]. However, direct mapping of QTLs in natural

populations, such as crop cultivars, is both economical and

practical because the population being mapped is readily

available, and the identified QTLs are directly applicable [31].

The purpose of this study was to develop an epistatic association

mapping (EAM) approach in homozygous crop cultivars. We

described detailed genetic and statistical models of epistasis

association analysis in crop cultivars. All the parameters were

estimated using the empirical Bayes approach. Our methods were

confirmed by real data analysis in soybean and by a series of

Monte Carlo simulation experiments.

Results

Phenotypic variation
We measured seed length in 215 soybean cultivars. The

minimum, maximum, average, median, standard deviation,

coefficient of variation, skewness and kurtosis values were 5.30,

11.85, 7.94, 7.86, 0.99, 12.43, 0.61 and 0.91, respectively. Results

from ANOVA showed that there is significant difference among

cultivars (P,1024) and there are no significant differences between

years (P = 0.192) and among cultivar 6 year interactions

(P = 0.328). This means that in the cultivar population, there is a

large amount of genetic variation, which exhibits a continuous

normal distribution (Fig. 1).

Epistasis association mapping
Two years of phenotypic observations, along with information

on 134 SSR molecular markers, were used to dissect the genetic

basis of seed length in soybean. In the full model, 9,180 effects

needed to be estimated, 40 times larger than the sample size. We

adopted a two-stage method [58]. Nineteen main-effect QTLs and

3 epistatic QTLs for seed length in soybean were detected by

EAM (Table 1). All of these QTLs were nearly evenly distributed

along the soybean genome, except for chromosomes H, J and L.

Figure 1. Frequency distribution for soybean seed length.
doi:10.1371/journal.pone.0017773.g001
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Among these QTLs, the proportion of the total phenotypic

variance was from 0.25% to 10.44% for main-effect QTLs and

from 5.08% to 7.38% for epistatic QTLs, and each of 12 QTLs

contributed greater than 5.0% of the variance. In addition, five

loci were involved in epistatic interactions, and only one of these

five (sat_342) had a significant main effect. This lack of main

effects may create difficulties in detecting epistasis with other

methods.

To compare the proposed approach with regular genome-wide

association study (GWAS), the GWAS was used to analyze the

above dataset. Results showed that three main-effect QTL, linked

with markers satt382, sat_254 and satt441, respectively, were

detected (Fig. 2a) and no significant environmental and epistatic

interactions were identified (Fig. 2). These results are similar to

those by the proposed approach in two aspects. First, the three

main-effect QTLs detected by the GWAS are also identified by the

proposed method. Second, no significant environmental interac-

tion is detected by the above two approaches. However, there are

some differences as well. The main difference is that the new

approach can detect more main-effect and epistatic QTLs than

the GWAS.

Mining elite alleles
The allelic effects of the cultivars were evaluated for all the

identified loci for soybean seed length. The reduced model that

includes the total mean, the population structure, all the identified

loci and the residual error was a mixed model equation. In the

reduced model, the allelic effects at each locus were estimated by a

maximum likelihood approach. If we want to increase the trait

value, we should take the allele with the largest positive effect per

main-effect QTL as novel allele. If decreasing the trait value is our

selection objective, we should take the allele with the largest

negative effect per main-effect QTL as novel allele. The same is

true for allele combination of epistatic QTL. The summary

statistics for novel allele or allele combination are given in Table 2.

These results show that there is one novel allele for each main-

effect locus or one novel allele combination for each epistatic

QTL. For example, for the locus linked to marker satt656, all the

allelic effects are showed in Fig. 3, and novel allele is the allele

with an effect of 2.63. Similarly, for the interaction between

markers sat_342 and AW277661, novel allele combination is the

allele combination with an effect of 1.29. The novel allele and

allele combination were found in the Zhengzhou 790034 and

Guangxibayuehuang cultivars, respectively.

Predictions for elite cross combination
The elite cross combinations could be predicted from all the

detected loci and their effects by using the method described

below. In a hypothetical cross between two cultivars, all types of

RILs would be produced. In these RILs, seed length could be

predicted by the combined effects of all the detected loci. The best

RIL with maximum seed length in one cross would represent the

Table 1. Detected QTL for seed length in soybean cultivar population.

QTL New method Genome-wide association study

Chr. Marker associated Position (cM) Variance * LOD r2 (%) F P-value {log10P

Main-effect A1 satt382 26.42 0.1155 4.65 6.24 4.31 3.96E-7 6.40**

A2 satt329 110.94 0.0199 2.53 1.08 7.10 1.53E-5 4.81

B1 satt509 32.51 0.0426 7.89 2.30 4.67 3.69E-4 3.43

B2 sat_342 20.31 0.0246 4.81 1.33 2.28 8.35E-3 2.08

B2 satt534 87.59 0.1934 2.65 10.44 3.05 3.16E-5 4.50

C2 sat_252 127.00 0.0962 4.89 5.19 3.73 1.99E-6 5.70

D1b sat_254 46.92 0.0709 4.12 3.83 4.24 1.27E-7 6.90**

D1b satt274 116.35 0.0083 6.93 0.45 10.97 2.27E-5 4.64

D2 satt514 85.69 0.1059 6.33 5.72 2.81 1.31E-5 4.88

D2 sat_365 87.39 0.1232 15.23 6.65 3.08 1.78E-6 5.74

E satt263 45.40 0.0592 5.67 3.20 3.71 1.17E-2 1.93

F satt656 135.12 0.1007 4.71 5.44 2.47 2.29E-3 2.64

G satt352 50.53 0.1307 5.37 7.06 1.74 3.46E-2 1.46

G AF162283 87.94 0.0222 3.77 1.20 6.38 1.86E-3 2.73

I sat_419 98.11 0.0047 6.24 0.25 7.64 2.98E-6 5.22

K satt441 46.20 0.0925 6.59 5.00 5.22 1.04E-7 6.98**

M sat_256 74.53 0.0893 2.56 4.82 2.57 5.01E-3 2.30

N satt022 102.06 0.1113 11.99 6.01 2.16 2.92E-3 2.53

O sat_274 107.58 0.0446 2.64 2.41 2.61 5.21E-4 3.28

Epistasis B2 & C1 sat_342 & AW277661 20.31 & 74.79 0.1367 7.71 7.38 4.04 6.72E-6 5.17

D1a & E sat_160 & satt411 104.28 & 12.92 0.0941 3.06 5.08 3.74 3.07E-4 3.51

D1b & E satt459 & satt411 118.62 & 12.92 0.1224 5.61 6.61 6.73 1.33E-3 2.88

*: Calculated by
Pn
i~1

fia
2
i {(

Pn
i~1

fiai)
2 for main-effect QTL and

Pn
i~1

Pm
j~1

fija
2
ij{(

Pn
i~1

Pm
j~1

fijaij )
2 for epistatic QTL, where f is allelic frequency, a is allelic effect and n and m is the

number of alleles at the ith and jth loci. The same is true for the later tables.
**: QTL identified by genome-wide association study with the critical value at the 0.05 level of significance determined by 1000 permutation experiments.
doi:10.1371/journal.pone.0017773.t001
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cross. The best cross with maximum seed length in all the crosses

could be selected by comparing all the crosses. In this study, the

best three crosses were Daqingdou 6 Zhengzhou790034,

Zhenghe- zhibanzi 6Zhengzhou790034, and Liyangdawuhuang-

dou 6Zhengzhou 790034. The presence of Zhengzhou790034 in

the three best crosses indicated that it contained the best allele or

allele combination.

Monte Carlo simulation studies
Evaluation of the performance of the proposed

approach. The first simulation experiment was designed to

investigate the effect of QTL heritability on QTL mapping in crop

cultivars. The results show that the precision and power of the

detection of QTLs increase with increasing QTL heritability, and

that the false positive rate (FPR) is only 0.0244% (Table S2).

In the second simulation experiment, we investigated the effect

of sample size by randomly sampling 100, 200, or 300 non-

founder lines. The other parameters were the same as those in the

first simulation experiment. As expected, the precision and power

increased with increasing sample size (Table S3). Sample sizes

under 300 yield much better results than those under 200; we

recommend a sample size of 300 for future studies.

The third simulation experiment compared the effect of the

number of alleles on QTL mapping in crop cultivars. We set the

numbers of alleles at 2, 3 and 4; other parameters were the same as

those in the first simulation experiment. The results showed that

precision and power decrease as the number of alleles increases

(Table S4). The results also imply that the SNP or indel markers

are better than the other markers.

In the fourth simulation experiment, the effect of allelic

frequency on QTL mapping was assessed by setting the frequency

ratio of the two alleles as 1:1 (uniform distribution), 1:2 (skewed

distribution) or 1:3 (skewed distribution). The other parameters

were the same as those in the first simulation experiment. The

results showed that skewed distribution decreased the statistical

power (Table S5), indicating that rare alleles should be

preferentially studied in association analyses.

The detection of QTL-by-environment interaction. To

investigate whether environmental effects could be detected, all the

cultivars were evaluated in multiple environments. In the fifth

Figure 2. The ”log10P score profile of the soybean genome scan in the genome-wide association study for seed length in soybean.
(a) Main-effect QTL and QTL-by-environmental interaction, and (b) QTL-by-QTL interaction. The critical values at the 0.05 level of significance,
indicated by horizontal line, were determined by 1000 permutation experiments.
doi:10.1371/journal.pone.0017773.g002

Table 2. The information of novel allele for QTL with r2 larger than 5%.

QTL Chr. Marker associated Position (cM) Novel allele (bp) Effect (mm)
Cultivar with
novel allele

Main-effect A1 satt382 26.42 295 0.64 Qinyan 1

B2 satt534 87.59 185 1.22 Zhenghezhibanzi

C2 sat_252 127.00 276 1.00 Taixinghanludou

D2 satt514 85.69 242 1.11 Caishengzi

D2 sat_365 87.39 286 0.95 Dandou 2

F satt656 135.12 182 or 170 2.63 Zhengzhou 790034

G satt352 50.53 178 0.87 Ya’anguanhualiyuebao

K satt441 46.20 282 1.11 Nannongdahuangdou

N satt022 102.06 277 0.94 Dandongdaliqing

Epsitasis B2 & C1 sat_342 & AW277661 20.31 & 74.79 288 & 301 1.29 Guangxibayuehuang

D1a & E sat_160 & satt411 104.28 & 12.92 190 & 109 0.99 Anbaishuidou

D1b & E satt459 & satt411 118.62 & 12.92 195 or 189 & 106 1.09 Zhengzhou 74064

doi:10.1371/journal.pone.0017773.t002
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simulation experiment, two environments, ten main-effect QTL

and five QTL-by-environment interactions were simulated. The

new method holds greater power for detecting QTL-by-

environment interactions than for the main-effect QTL, and the

FPR is lower than 0.06% (Table 3). To further demonstrate the

performance of the new method, in the sixth simulation

experiment, we designed a large genome with high density

markers. In total, 510 markers were simulated on ten chromosome

segments 1,000 cM long, with an average marker interval of 2 cM.

The other parameters were the same as those in the fifth

simulation experiment. The same trend in the fifth experiment was

obtained (Table 4), indicating that our method works in large

genomes with a high marker density.

The identification of QTL-by-QTL interaction. To

demonstrate whether QTL-by- QTL interactions could be

detected, all epistatic effects between two main-effect QTLs were

included in the full model. In the final simulation experiment, 50

markers were evenly distributed in five linkage groups 450 cM in

length. Five main-effect QTLs, 3 QTL-by-environment

interactions and 5 QTL-by-QTL interactions were simulated.

The results (Table 5) show that the estimates for the positions and

variances of simulated QTLs are close to their true values, and the

power in the detection of QTL is high (e.g., over 80% for the

QTLs with a heritability over 2%), especially for QTL-by-QTL

interactions.

Discussion

The approach proposed in this work has several advantages

over the approaches of previous association analysis studies. First,

main, environmental, QTL-by- environment and QTL-by-QTL

interactions were simultaneously considered in our full genetic

model, improving the statistical power [38]–[41]. Although

multi-locus genetic models have been proposed in plant genetics

[59]–[62], they have difficulty combining both QTL-by-environ-

ment and QTL-by-QTL interactions. Epistasis association

mapping has been developed in human genetics [33]–[37], but

here the epistasis was identified by two-dimensional scan, and

significant effects in the two-dimensional scan were further tested

in one genetic model. Second, epistasis association analysis was

first integrated with crop breeding by design. In the past, the

results from QTL mapping have had limited utility in breeding

practice, due to the use of a simple cross population or the neglect

of epistasis in the detection of QTLs. We designed an elite cross

combination to take these two issues into account. Third, it is

easy to extend the proposed approach to nested association

analysis. The commonality is that all the individuals in the

mapping populations are inbred lines. The difference is that the

pedigree is general for the present study and relatively simple for

nested association analysis. Therefore, the new method is suitable

for nested association analysis and human genetics. Fourth, the

FPR is minimized in the new method. A shrinkage estimation

method, empirical Bayes (eBayes), was adopted to estimate

all types of effects in the full model so that the FPR was less

than 0.06%.

At present the most widely used genome-wide association study

(GWAS) is analysis of variance or mixed model approaches with

the control of false discovery rate. In theory, it is similar to single-

marker analysis for main-effect QTL and two-marker analysis for

epistatic QTL, and the difference is that the GWAS requires the

setting of a significance threshold at the genome-wide level.

However, it does not overcome the shortcomings of marker

Figure 3. Allelic effects for QTL associated with marker satt656 for soybean seed length (mm).
doi:10.1371/journal.pone.0017773.g003
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analysis. If a trait of interest is controlled by multiple QTLs,

whether the QTL under consideration can be detected depends

on the proportions of phenotypic variance explained by both this

QTL and background QTLs. If the proportion by background

QTLs is large, large residual variance will result in a decreased

power in the detection of the current QTL and sometime the

QTL can not be identified. In the new approach, this issue can

be avoided, because a full model that includes all kinds of QTL

in one genetic model results in a small residual variance.

This explains why some main-effect QTLs and all the epistatic

Table 3. Environmental interaction detection in Monte Carlo simulation experiment (200 replicates).

QTL True value Estimate

Chr. Position (cM) Variance r2 (%) Power (%) Position (cM) Variance r2 (%)

Main-effect 1 70.3 0.926 5.0 100.0 70.3(0.0) 0.8934(0.2176) 4.94(1.21)

262.8 0.926 5.0 99.5 262.8(0.0) 0.8912(0.2131) 4.92(1.15)

2 401.4 0.370 2.0 95.0 401.4(0.0) 0.3552(0.1366) 1.96(0.74)

438.8 0.556 3.0 99.0 438.8(0.0) 0.5215(0.1589) 2.88(0.86)

3 601.6 0.926 5.0 100.0 601.6(0.0) 0.8816(0.2125) 4.87(1.15)

8 1653.4 0.185 1.0 58.0 1653.4(0.4) 0.2097(0.0858) 1.15(0.47)

1747.6 0.370 2.0 93.5 1747.6(0.0) 0.3384(0.1372) 1.87(0.76)

9 1944.7 1.852 10.0 100.0 1944.7(0.0) 1.8511(0.3121) 10.22(1.59)

10 2145.2 0.926 5.0 100.0 2145.2(0.0) 0.9322(0.2352) 5.15(1.23)

2181.6 0.926 5.0 100.0 2181.6(0.0) 0.9081(0.2051) 5.02(1.09)

Environment 0.926 5.0 96.0 0.8744(0.2580) 4.82(1.39)

Environmental 1 55.6 0.463 2.5 97.0 55.6(0.0) 0.4229(0.1391) 2.33(0.75)

interaction 2 401.4 0.463 2.5 98.0 401.4(0.0) 0.4465(0.1678) 2.46(0.88)

438.8 0.926 5.0 100.0 438.8(0.0) 0.8867(0.2100) 4.90 (1.12)

3 682.7 0.926 5.0 100.0 682.7(0.0) 0.9016(0.2190) 4.98(1.19)

8 1747.6 1.852 10.0 100.0 1747.6(0.0) 1.8344(0.2903) 10.13(1.47)

False positive rate (%) 0.0550

doi:10.1371/journal.pone.0017773.t003

Table 4. Environmental interaction detection under the situations of large genome and high-density markers (200 replicates).

QTL True value Estimate

Chr. Position (cM) Variance r2 (%) Power (%) Position (cM) Variance r2 (%)

Main-effect 1 40 0.926 5.0 99.5 40.0(0.0) 0.8889(0.2126) 4.92(1.15)

60 0.926 5.0 100.0 60.0(0.0) 0.8813(0.2233) 4.88(1.21)

2 120 0.370 2.0 93.0 120.0(0.0) 0.3579(0.1313) 1.98(0.73)

160 0.556 3.0 97.0 160.0(0.0) 0.5166(0.1869) 2.85(1.01)

3 254 0.926 5.0 100.0 254.0(0.0) 0.8938(0.2097) 4.93(1.07)

5 430 0.185 1.0 63.0 430.0(0.0) 0.1984(0.0801) 1.10(0.45)

460 0.370 2.0 93.0 460.0(0.0) 0.3570(0.1282) 1.98(0.73)

7 656 1.852 10.0 100.0 656.0(0.0) 1.8482(0.3380) 10.23(1.81)

9 842 0.926 5.0 100.0 842.0(0.0) 0.9066(0.2507) 5.02(1.38)

852 0.926 5.0 99.5 852.0(0.0) 0.8996(0.2350) 4.97(1.24)

Environment 0.926 5.0 91.5 0.9654(0.3431) 5.30(1.79)

Environmental 1 58 0.463 2.5 96.5 58.0(0.1) 0.4351(0.1290) 2.41(0.73)

interaction 2 136 0.463 2.5 95.0 136.0(0.0) 0.4469(0.1554) 2.47(0.86)

3 254 0.926 5.0 100.0 254.0(0.0) 0.8787(0.2201) 4.86(1.18)

5 460 0.926 5.0 100.0 460.0(0.0) 0.8878(0.2214) 4.91(1.21)

9 842 1.852 10.0 100.0 842.0(0.0) 1.7989(0.3053) 9.95(1.59)

False positive rate (%) 0.0597

doi:10.1371/journal.pone.0017773.t004
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QTLs can not be mapped in the soybean genome-wide

association study.

Prediction of elite cross combination is based on the assumption

that dominance and dominance-type epistasis effects are absent. If

the breeding objective is the development of inbred lines or

cultivars as often the case in self-pollinated crops, the prediction

may be useful. If these non-additive effects are important, then the

prediction would not reliable. This issue needs to be addressed in

the future.

Xu [41] described a linear model in which the dimensions of

the genotypic value vector and its incidence matrix depend on

the number of genotypes for the locus. In theory, this model

matches the situation under study. However, the model

dimensions will increase rapidly. Therefore, it is preferable to

gather more samples or reduce the number of effects considered

[38], [63] to reduce the dimensions of the model. In this study,

we designed a special incidence matrix such that there is one

variable for each main-effect QTL. Simulation studies show that

this approach works well. If the number of markers is large, the

number of effects in the model is enormous. In this case, the

two-stage method of He and Zhang [58] is recommended. We

adopted this approach in our analysis of real data, and the

results were consistent with those of He and Zhang [58] and

He et al. [64]. The new approach works well if the marker

interval length is approximately 5 cM. However, one must

delete some closely linked markers if the interval length is less

than 5 cM [64].

We compared the QTLs of seed length in soybeans with the

QTLs in previous studies. Although few common markers existed

between their data and ours, some loci that we detected were also

detected in previous studies. Seven QTLs linked to markers

sat_342, satt534, satt514, sat_365, sat_254, sat_419 and sat_274 in

this study were detected by Xu et al. [65]; four QTLs associated

with markers satt411, satt329, satt022 and AW277661 in this

paper were identified by Salas et al. [66]; one QTL close to marker

sat_256 was confirmed by Li et al. [67]; and one QTL next to

marker satt514 was mapped by Liang et al. [68]. The above results

further confirmed the feasibility of the approach proposed in this

study.

Materials and Methods

Soybean samples
We recently assembled a soybean association panel with 215

cultivars provided by the National Center for Soybean Improve-

ment, China. All the cultivars were obtained by stratified random

sampling from six geographic ecotypes in China [69], planted in

three-row plots in a completely randomized design and evaluated

at the Jiangpu experimental station at Nanjing Agricultural

University in 2008 and 2009. The plots were 1.5 m wide and

2 m long. Five individuals and 20 seeds in the middle row of each

plot were randomly picked to measure seed length by digital

vernier caliper. The measurements were averaged over 20 seeds,

and the mean was used in this study.

Approximately 0.3 g of fresh leaves obtained in 2008 from each

cultivar was used to extract genomic DNA using the cetyltri-

methylammonium bromide method as described by Lipp et al.

[70]. To screen for polymorphisms among all the cultivars, PCR

was performed with 134 simple sequence repeat (SSR) primer

pairs. The primer sequences were obtained from the soybean

database Soybase (http://www.ncbi.nlm.nih.gov). PCR was per-

formed as described by Xu et al. [65].

Population structure
For the soybean data, the STRUCTURE program was used to

investigate the population structures of all selected cultivars [26].

The number of subpopulations (K) was set from 2 to 10. In the

Markov chain Monte Carlo (MCMC) Bayesian analysis for each

K, the length of a Markov chain consisted of 110,000 sweeps. The

first 10,000 sweeps (the burn-in period) were deleted, and

thereafter, the chain was used to calculate the mean of log-

likelihood. This process was repeated 20 times, and the total

average for mean log-likelihood at fixed K was used. STRUC-

TURE analysis with 134 SSR molecular markers showed that the

Table 5. Epistatic QTL detection in Monte Carlo simulation experiment (200 replicates).

QTL True value Estimate

Chr. Position (cM) Variance r2 (%)
Power
(%) Position (cM) Variance r2 (%)

Main-effect 1 50 0.4 2 83.5 50.0(0.0) 0.3967(0.1317) 2.04(0.66)

2 100 1.0 5 97.5 100.0(0.0) 0.9441(0.2544) 4.88(1.31)

3 200 2.0 10 99.5 200.0(0.0) 1.9239(0.5039) 9.90(2.35)

4 350 0.4 2 82.0 350.0(0.0) 0.3953(0.1371) 2.03(0.70)

5 400 1.0 5 95.5 400.0(0.0) 0.9741(0.3574) 4.98(1.71)

Environment 1.0 5 99.0 0.9408(0.2294) 4.86(1.14)

Environmental 2 150 0.4 2 98.5 150.0(0.0) 0.3766(0.1255) 1.96(0.67)

interaction 3 270 2.0 10 100.0 270.0(0.0) 1.9703(0.3007) 10.21(1.57)

5 400 1.0 5 99.5 400.0(0.0) 0.9354(0.2261) 4.83(1.12)

Epistasis 1 & 2 10 & 130 0.4 2 97.0 10.0(1.0) & 129.9(1.4) 0.3444(0.1262) 1.78(0.65)

2 & 3 100 & 250 1.0 5 100.0 100.0(0.0) & 250.0(0.0) 0.9825(0.2196) 5.09(1.13)

3 & 5 200 & 400 0.4 2 85.5 200.0(0.0) & 399.9(1.5) 0.3842(0.1275) 1.98(0.66)

3 & 4 270 & 360 2.0 10 100.0 270.1(0.7) & 360.0(1.6) 1.9350(0.3605) 9.99(1.79)

4 & 5 350 & 450 2.0 10 100.0 350.1(0.7) & 450.0(0.0) 1.9814(0.3912) 10.25(1.98)

False positive rate (%) 0.0545

doi:10.1371/journal.pone.0017773.t005
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log-likelihood increased with the increase of the model parameter

K, so a suitable number of K could not be determined. In this

situation, using the ad hoc statistic DK , based on the rate of

change in the log-probability of data between successive K values,

STRUCTURE accurately detected the uppermost hierarchical

level of structure [71]. Here, the DK value was much higher for

the model parameter K~4 than for other values of K. By

combining this high DK value with knowledge of the breeding

history of these cultivars, we chose a value of 4 for K. The Q

matrix was calculated based on SSR markers and incorporated

into the mixed model of epistasis association analysis.

Genetic model
The phenotypic value of a quantitative trait for the ith cultivar

in the jth environment (i~1, � � � ,n; j~1, � � � ,R), yij , may be

described by the following mixed model:

Y~mz
XK{1

l~1

XPlbPlzXEbEz
Xm

s~1

ZQscQsz

Xm

s~1

ZQEscQEsz
Xm{1

s~1

Xm

t~sz1

ZQQstcQQstze

ð1Þ

where Y~ y11, � � � ,y1n, � � � ,yR1, � � � ,yRnð Þ’; XP~ XP1, � � � ,XP,K{1ð Þ
is the Q matrix for population structure; XE,ZQ~

ZQ1, � � � ,ZQmð Þ,ZQE~ ZQE1, � � � ,ZQEmð Þ and ZQQ~ ZQQ11, � � � ,ð
ZQQ(m{1)mÞ are the design matrices of the environment effect,

main effect, QTL-by-environment interaction effect and QTL-by-

QTL interaction effect, respectively; bP~ bP1, � � � ,bP,K{1

� �’
,bE,cQ~

cQ1, � � � ,cQm

� �’
,cQE~ cQE1, � � � ,cQEm

� �’
and cQQ~ cQQ11, � � � ,

�

cQQ,(m{1)mÞ
’
are the corresponding effects; and m is the total average.

The first three terms were viewed as fixed effects and the following

three terms were considered random effects; therefore, model (1)

was rewritten as

Y~XbzZcze ð2Þ

where X~ 1 XP XEð Þ, Z~ ZQ ZQE ZQQð Þ, b~ m,b’P ,b’E
� �’

and

c~ c’Q,c’QE,c’QQ

� �’
.

Parameter estimation
Several methods exist to simultaneously estimate the parameters

in model (2); for example, eBayes [41], [43]. Here, we adopted

eBayes. Briefly, the parameter vector in model (2) is h~ bcs2
� �

.

The priors and the likelihood are not described in detail here. The

iteration process is given below.

The fixed effects were calculated by:

b(tz1)~½XT (V(t)){1X�{1
XT (V(t)){1Y ð3Þ

s2(tz1)~
s2(t)

n
(Y{Xb(t))T (V(t)){1(Y{Xb(t)) ð4Þ

where V~
Pm
j~1

ZjZ
T
j s2

j zIs2. Note that there is not an explicit

solution for the estimation of s2
j , and it is updated by maximizing

L(s2
j D � � � )~{

1

2
ln (ZT

j (V(t)){1Zj(s
2
j {s2(t)

j )z1)z

(s2
j {s2(t)

j )½(Y{Xb(t))T (V(t)){1Zj �2

2(ZT
j (V(t)){1Zj)(s

2
j {s2(t)

j )z1
{

1

2
(tz2) ln s2

j {
v

2s2
j

ð5Þ

where t~{1:0 and v~0:0005.

The random effects, cj , were predicted by best linear unbiased

prediction (BLUP):

E(cj DY)~s2
j ZT

j V{1(Y{Xb) ð6Þ

The posterior variance of cj is

var(cj DY)~s2
j (1{ZT

j V{1Zjs
2
j ) ð7Þ

The proportion of phenotype variance explained by one random

effect may be calculated by

h2
j &s2

Zj
c2

j =s2
P ð8Þ

Likelihood ratio test
The traditional likelihood ratio test (LRT), as described by

Zhang and Xu [38], could not be performed in this study, due to

an oversaturated epistatic genetic model. We proposed the

following two-stage selection process to screen all the effects. In

the first stage, all the effects with Dcj

.
sDw10{6 are picked up. In

the second stage, the full model is modified so that only the effects

that passed the first round of selection are included. Due to the

smaller dimensionality of the reduced model, we can use the

maximum likelihood method to reanalyze the data and perform

the LRT. The procedure for the LRT is below.

The overall null hypothesis is no effect of the QTL at the locus

of interest, denoted by H0 : a1~ � � �~aT~0, where at is the

effect of the tth allele. If we solve the maximum likelihood

estimation of the parameters under the restriction of

H0 : a1~ � � �~aT~0 and calculate the log-likelihood value using

the solutions with this restriction, we obtain L(ĥhDH0). We can also

evaluate the log-likelihood value of the solutions without

restrictions and obtain L(ĥh). Therefore, the LR test statistic is

LR~{2 L(ĥhDLu~0){L(ĥh)
h i

: ð9Þ

Other test statistics can be used in similar ways. The significance

threshold of the LOD score was set at 2.5 for our real data

analysis, whereLOD~LR=4:605.

Genome-wide association study
First, phenotypic values for seed length in 215 soybean cultivars

were corrected using population structure obtained by STRUC-

TURE software. Then, the corrected phenotypes along with SSR

marker information were used to carry out genome-wide

association studies for main-effect QTLs, environmental interac-

tions and QTL-by- QTL interactions by ANOVA. Finally, critical

values at the 0.05 level of significance were determined by 1000
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permutation experiments and thus significant QTL could be

identified.

Simulation design
We performed seven simulation experiments in this study. In

the first, the simulated pedigree was the maize pedigree described

by Zhang et al. [31], [61]. The number of inbred lines within the

maize pedigree was 404(n). Of these, n0(~103) were base

(founder) lines, which were in linkage equilibrium so that the

genotypes for markers and QTLs with two alleles could be

simulated. Non-founders (n1 = 301) were bred via repeated self-

pollination of a hybrid between two inbred lines. Thus, each non-

founder line represents a recombinant inbred line (RIL) with

respect to a known pair of parents. The genotypes of all the non-

founders could be generated from the genotypes of their parents,

analogous to simulating the genotypes of RILs from their parents.

All of the non-founder lines could be used to detect QTLs. To

mimic the actual linkage maps that did not have equally spaced

markers, 153 markers were simulated on ten chromosome

segments of length ,2258.70 cM, with an average marker interval

of 14.86 cM. A total of 20 QTLs, all of which overlapped with the

markers, were simulated; the sizes and locations of the QTLs are

listed in Table 3. The allelic effects were calculated by relating the

genetic variance of the QTL to both the allelic frequencies and the

allelic number. The phenotypic value of each line was the sum of

the corresponding QTL genotypic values and the residual error,

with an assumed normal distribution. Each simulation run

consisted of 200 replicates. For each simulated QTL, we counted

the samples in which the LOD statistic surpassed 3.0. The ratio of

the number of such samples (m) to the total number of replicates

(200) represented the empirical power of this QTL. The false-

positive rate was calculated as the ratio of the number of false-

positive effects to the total number of zero effects considered in the

full model. The other simulation experiments were performed

similarly. All simulated parameters are given in Table S1.
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