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Abstract

Dynamic functional connectivity (DFC) analysis can capture time-varying properties

of connectivity. However, studies on large samples using DFC to investigate trans-

diagnostic dysconnectivity across schizophrenia (SZ), bipolar disorder (BD), and major

depressive disorder (MDD) are rare. In this study, we used resting-state functional

magnetic resonance imaging and a sliding-window method to study DFC in a total of

610 individuals (150 with SZ, 100 with BD, 150 with MDD, and 210 healthy controls

[HC]) at a single site. Using k-means clustering, DFCs were clustered into three func-

tional connectivity states: one was a more frequent state with moderate positive and

negative connectivity (State 1), and the other two were less frequent states with

stronger positive and negative connectivity (State 2 and State 3). Significant 4-group

differences (SZ, BD, MDD, and HC groups; q < .05, false-discovery rate [FDR]-

corrected) in DFC were nearly only in State 1. Post hoc analyses (q < .05, FDR-

corrected) in State 1 showed that transdiagnostic dysconnectivity patterns among SZ,

BD and MDD featured consistently decreased connectivity within most networks

(the visual, somatomotor, salience and frontoparietal networks), which was most

obvious in both range and extent for SZ. Our findings suggest that there is more com-

mon dysconnectivity across SZ, BD and MDD than we previously expected and that
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such dysconnectivity is state-dependent, which provides new insights into the patho-

physiological mechanism of major psychiatric disorders.
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transdiagnostic study

1 | INTRODUCTION

The traditional view of psychiatry holds that major psychiatric disor-

ders (e.g., schizophrenia [SZ], bipolar disorder [BD], and major depres-

sive disorder [MDD]) are separate diagnostic categories with distinct

etiologies and clinical presentations. However, existing diagnostic cat-

egories are not clearly associated with distinct neurobiological abnor-

malities (Insel & Cuthbert, 2015; Xia et al., 2018), which may hinder

the search for biomarkers in psychiatry (Singh & Rose, 2009). Major

psychiatric disorders have common abnormalities in many characteris-

tics, including genetic risk and etiology (Consortium, 2013; Lee

et al., 2013), neural alterations (Goodkind et al., 2015; McTeague

et al., 2017; Sha, Wager, Mechelli, & He, 2019), and clinical symptoms

(Barch & Sheffield, 2014; Lee et al., 2015; Levit-Binnun,

Davidovitch, & Golland, 2013). In addition, comorbidity among psychi-

atric disorders is very common, with 22% of patients having 2 diagno-

ses and 23% having 3 or more diagnoses (Kessler, Chiu, Demler, &

Walters, 2005). Taken together, the abovementioned findings suggest

that no clear boundaries exist between different mental disorders. In

contrast, each distinct psychiatric disorder is hypothesized to have

broadly shared etiologies and mechanisms relative to the other psy-

chiatric disorders (Cuthbert & Insel, 2013; Lahey, Zald, Hakes,

Krueger, & Rathouz, 2014). Transdiagnostic studies are necessary

because they focus on fundamental processes underlying multiple

psychiatric disorders, help to explain comorbidity among disorders,

and may lead to improved assessment and treatment of disorders

(Caspi et al., 2014; Husain, 2017; Nolen-Hoeksema & Watkins, 2011).

An important application of transdiagnostic models of psychopa-

thology is to uncover shared (common) neurobiological abnormalities

across multiple psychiatric disorders. The vast majority of previous

studies, however, have merely compared patients with one specific

group of psychiatric disorders to healthy controls (HC). Of the small

number of transdiagnostic studies, many were meta-analyses based

on individual studies using different methodologies (Brandl

et al., 2019; Goodkind et al., 2015; Sha et al., 2019; Wise et al., 2017).

For example, a previous study found that gray matter loss in the

salience network is a common abnormality across six diverse psychiat-

ric disorders (Goodkind et al., 2015). Recently, a small but rapidly

growing number of original transdiagnostic studies have been con-

ducted to directly investigate the shared abnormalities in brain struc-

ture, functional connectivity and regional brain activity across multiple

mental disorders (Baker et al., 2014, 2019; Chang et al., 2017; Elliott,

Romer, Knodt, & Hariri, 2018; Gong et al., 2019; Wei et al., 2018; Xia

et al., 2018). For example, a previous study reported that disruptions

within the frontoparietal network may be a shared feature across both

SZ and affective psychosis (Baker et al., 2014); this finding was vali-

dated and extended by a recent study (Baker et al., 2019). In addition,

a recent study found that the risk of common mental illnesses mapped

onto hyperconnectivity between the visual association cortex and

both the frontoparietal and default-mode networks (Elliott

et al., 2018). Our previous studies (Chang et al., 2017; Wei

et al., 2018; Xia, Womer, et al., 2018) also found broad common struc-

tural and functional differences across SZ, BD and MDD and

suggested that SZ was the most serious in extent.

Despite the contribution of advancing transdiagnostic research

with regard to studies using functional connectivity, these studies

assumed that the functional properties of the brain during the entire

functional magnetic resonance imaging (fMRI) scan were static rather

than dynamic. In fact, interactions among large-scale brain networks

are highly dynamic, and time-averaged or static connectivity provides

limited information about the functional organization of neural circuits

(Allen et al., 2014; Calhoun, Miller, Pearlson, & Adalı, 2014). There-

fore, using time-varying or dynamic methods to investigate shared

patterns of dysfunction in large-scale functional connectivity net-

works across major psychiatric disorders may provide further informa-

tion about their psychopathology. Correspondingly, a few

transdiagnostic studies have used dynamic functional connectivity

(DFC) to investigate the dynamic functional architecture of brain net-

works in healthy young adults or the neurobiological abnormalities

associated with psychiatric disorders (Han et al., 2019; Liao, Cao,

Xia, & He, 2017; Liu, Liao, Xia, & He, 2018; Pang et al., 2018; Rashid,

Damaraju, Pearlson, & Calhoun, 2014; Reinen et al., 2018; Wang

et al., 2019). For example, a previous study showed that DFC can

reveal state-dependent connectivity abnormalities that are not

observed in static functional connectivity, suggesting that DFC is

more sensitive than static functional connectivity (Rashid et al., 2014).

Recently, another transdiagnostic study demonstrated that DFC was

quite reliable within participants (within and across visits) and could

act as a fingerprint, identifying specific individuals from within a larger

group (Reinen et al., 2018). Although these studies that used DFC

were very important, all of them had relatively small sample sizes

(especially the patient groups) or studied only two diseases (i.e., SZ

and BD or MDD and BD).

Here, we employed a widely used sliding-window approach (Allen

et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; Hutchison

et al., 2013) to characterize DFC networks among patients with SZ

(N = 150), BD (N = 100), or MDD (N = 150) and HC (N = 210). We

aimed to investigate differences in dynamic connectivity between HC
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and patients with SZ, BD or MDD. Based on previous findings (Baker

et al., 2014, 2019; Goodkind et al., 2015; Rashid et al., 2014), we

hypothesized that the three disorders share dysconnectivity in the

salience and frontoparietal networks as well as that this dys-

connectivity is state-dependent.

2 | MATERIALS AND METHODS

2.1 | Participants

The study was approved by the Institutional Review Board of China

Medical University. All participants provided written informed consent

after receiving a detailed description of the study. Eight hundred and

fifty-one individuals participated in this study, including 332 HC,

183 SZ patients, 132 BD patients and 204 MDD patients. After head

motion control, we excluded 41 HC, 30 SZ, 18 BD and 25 MDD

patients (see Section 2.4 for details). To match the four groups by age

and sex, we further excluded 81 HC patients (including 2 HC patients

who lacked age and gender information), 3 SZ patients, 14 BD

patients and 29 MDD patients. Therefore, we finally included 610 par-

ticipants (see Section 2.4 for details), including 210 HC, 150 SZ

patients, 100 BD patients and 150 MDD patients. The demographic

characteristics, clinical characteristics, cognitive function and head

motion information of the included participants are summarized in

Table 1. All participants with SZ, BD, and MDD were recruited from

the inpatient and outpatient services at the Shenyang Mental Health

Center and the Department of Psychiatry at the First Affiliated Hospi-

tal of China Medical University, Shenyang, China, between February

2009 and April 2018. HC were recruited from the local community by

advertisement. Please refer to the Supporting Information for the

detailed inclusion and exclusion criteria.

2.2 | MRI acquisition

MRI data were acquired using a GE Signa HD 3.0-T scanner (General

Electric, Milwaukee, WI) with a standard 8-channel head coil at the

First Affiliated Hospital of China Medical University. Functional imag-

ing was performed using a gradient-echo-planar imaging (EPI-GRE)

sequence. The following parameters were used: repetition

time = 2,000 ms, echo time = 30 ms, flip angle = 90�, field of

view = 240 mm × 240 mm, matrix = 64 × 64, slice thickness = 3 mm

with no gap, and number of slices = 35. The scan lasted 6 min and

40 s, resulting in 200 volumes. The participants were instructed to

rest and relax with their eyes closed but to remain awake during

the scan.

2.3 | Data preprocessing

All images were preprocessed using SPM12 (www.fil.ion.ucl.ac.uk/

spm/) and Data Processing & Analysis of Brain Imaging (Yan, Wang,

Zuo, & Zang, 2016). The volumes from the first 10 time points were

discarded to allow the signal to reach equilibrium. The subsequent

preprocessing steps included slice-timing correction and head motion

correction. The corrected functional images were spatially normalized

to the Montreal Neurological Institute space using the EPI template in

SPM12, resampled to 3-mm × 3-mm × 3-mm isotropic voxels, and

further smoothed via a Gaussian kernel. Considering that spatial

smoothing with a large kernel may blur the subtle information hidden

in the fMRI data (Zeng, Shen, Liu, & Hu, 2014) and that using a Gauss-

ian kernel with a 4-mm full width at half-maximum, we obtained sta-

ble results in our previous work (Xia, Womer, et al., 2018), we set the

Gaussian kernel to 4-mm full width at half-maximum. Then, we per-

formed linear detrending and temporal bandpass filtering

(0.01–0.1 Hz) to reduce low-frequency drift and high-frequency noise.

Next, several confounding covariates, including the Friston-24 head

motion parameters, white matter, cerebrospinal fluid, and global sig-

nals, were regressed out of the blood oxygen level-dependent (BOLD)

time series for all voxels.

2.4 | Head motion control

Because excessive head motion can significantly affect dynamic con-

nectivity analysis (Hutchison et al., 2013; Van Dijk, Sabuncu, &

Buckner, 2012), we carried out head motion control and excluded par-

ticipants with excessive head motion before dynamic connectivity

analysis. We excluded participants if they had mean framewise dis-

placement (FD) values >0.2 mm, if the outliers of FD accounted for

>30% of all volumes (190 volumes), or if head motion exceeded 3 mm

or 3�. According to these criteria, we excluded 41 HC, 30 SZ, 18 BD

and 25 MDD patients. The mean FD, percentage of outliers and maxi-

mum head motion are presented in Table 1.

2.5 | DFC analysis

The average BOLD time series of 114 nodes within the 17-network

functional atlas of Yeo et al. (2011) were extracted. Dynamic connec-

tivity was estimated from these time series with a widely used sliding-

window approach in the software GIFT (Calhoun, Adali, Pearlson, &

Pekar, 2001; Erhardt et al., 2011). The window was a rectangular win-

dow of 17× the repetition time (TR) convolved with a Gaussian of

sigma 3 × TR to obtain a tapered window and slid in steps of 1 TR. A

previous study (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012)

suggested that a sliding window width range of 30–60 s was appropri-

ate for dynamic connectivity analyses. This previous study also rev-

ealed consistent state solution stability across varying sliding window

sizes of 33–63 s. Consequently, a width of 17 × TR (i.e., 34 s) was

chosen to maximize signal estimates while still capturing the proper-

ties of transient functional connectivity. As previous studies suggest

that covariance estimation using shorter time series can be noisy, we

estimated covariance from the regularized precision matrix (inverse

covariance matrix) (Smith et al., 2011; Varoquaux, Gramfort, Poline, &
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Thirion, 2010). Furthermore, we imposed a penalty on the L1 norm of

the precision matrix to promote sparsity using the graphical least

absolute shrinkage and selection operator method (Friedman, Hastie, &

Tibshirani, 2008). For each participant, the regularization parameter

lambda was optimized by evaluating the log-likelihood of unseen data

from the same subject in a cross-validation framework. For each par-

ticipant, we obtained a total of 173 windows, each of which had

(114 × 113)/2 = 6,441 unique functional connectivity measurements.

Finally, Fisher r-to-z transformation was performed for all functional

connectivity measurements. All analysis code is available here:

https://github.com/lichao312214129/lc_rsfmri_tools_matlab/tree/

master/Workstation/code_workstation2018_dynamicFC.

2.6 | State clustering analysis

The k-means algorithm can identify sets of time-varying network con-

figurations in different windows that have common features, grouping

TABLE 1 Demographic characteristics, clinical characteristics, and the cognitive function of the healthy controls and patients with
schizophrenia, bipolar disorder, and major depressive disorder

HC SZ BD MDD

Variable (n = 210) (n = 150) (n = 100) (n = 150) F/χ2 values p values

Demographic characteristic

Age at scan (years) 24.37 (5.74) 23.67 (8.77) 24.56 (5.95) 25.53 (8.30) 1.663 .174

Male 86 (41%) 59 (39%) 36 (36%) 43 (29%) 6.269 .099

Clinical characteristic

Duration (months) N/A 23.27 (34.97) 36.61 (36.09) 20.57 (28.10) 7.745 .001

First episode (yes) N/A 96 (64%) 48 (48%) 122 (81%) 30.599 2.267E-7

Medication (yes) N/A 111 (74%) 65 (65%) 85 (57%) 9.941 .007

Antidepressants N/A 12 (8%) 30 (30%) 58 (39%) 39.395 2.788E-9

Antipsychotics N/A 71 (47%) 28 (28%) 6 (4%) 72.958 1.110E-16

Mood stabilizers N/A 5 (3%) 39 (39%) 2 (1%) 99.370 .000

Anxiolytics N/A 14 (9%) 7 (7%) 31 (21%) 12.762 .002

Other drugs N/A 9 (6%) 0 (0%) 0 (0%) N/A N/A

HAMD-17 (n = 194) (n = 121) (n = 94) (n = 147)

1.06 (1.71) 6.82 (6.14) 11.92 (9.78) 19.18 (9.84) 187.866 4.151E-84

HAMA (n = 194) (n = 113) (n = 94) (n = 135)

0.92 (2.15) 5.99 (6.22) 9.56 (9.33) 15.99 (9.78) 127.235 3.937E-62

YMRS (n = 192) (n = 113) (n = 97) (n = 135)

0.17 (0.66) 1.93 (4.70) 6.72 (9.71) 1.27 (2.88) 40.150 2.095E-23

BPRS (n = 162) (n = 147) (n = 86) (n = 98)

18.40 (1.24) 33.82 (13.11) 26.20 (9.45) 27.18 (7.39) 78.791 1.362E-41

Cognitive function

WCST (n = 173) (n = 107) (n = 87) (n = 114)

Correct responses 33.09 (10.43) 19.79 (11.44) 28.10 (11.30) 26.11 (11.20) 33.111 1.865E-19

Categories completed 4.46 (1.90) 1.88 (1.93) 3.57 (1.97) 3.15 (1.97) 39.934 4.874E-23

Total errors 14.95 (10.59) 28.21 (11.44) 19.54 (11.23) 21.85 (11.24) 32.645 3.308E-19

Perseverative errors 5.30 (6.46) 11.36 (9.71) 7.74 (8.50) 8.79 (8.71) 12.624 5.919E-8

Nonperseverative errors 9.58 (5.55) 16.79 (8.15) 12.09 (6.15) 13.06 (6.50) 27.310 2.598E-16

Head motion parameters

Mean FD (mm) 0.10 (0.03) 0.10 (0.04) 0.11 (0.04) 0.10 (0.03) 1.923 .125

Percentage of excessive FD 0.07 (0.07) 0.06 (0.06) 0.08 (0.08) 0.06 (0.06) 1.805 .145

Max translation (mm) 0.44 (0.46) 0.53 (0.55) 0.50 (0.47) 0.50 (0.44) 1.080 .357

Max rotation (degree) 0.38 (0.34) 0.40 (0.38) 0.46 (0.37) 0.46 (0.46) 1.919 .125

Notes: Data are presented as either a number (%) or the mean (SD).

Abbreviations: BD, bipolar disorder; BPRS, Brief Psychiatric Rating Scale; FD, framewise displacement; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton

Depression Scale; HC, healthy control; MDD, major depressive disorder; N/A, not available/not applicable; SZ, schizophrenia; WCST, Wisconsin Card

Sorting Test; YMRS, Young Mania Rating Scale.
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them into clusters that are more similar to each other than to configu-

rations in other clusters. We used the Manhattan distance (L1 dis-

tance) as a similarity measure in clustering, as it has been

demonstrated to be the most effective measure for high-dimensional

data (Aggarwal, Hinneburg, & Keim, 2001). To reduce the computa-

tional demands and to diminish redundancy between windows, fol-

lowing a previous study (Allen et al., 2014), we first used the subject

exemplars as a subset of windows with local maxima in functional

connectivity variance to perform k-means clustering with varying

numbers of clusters k (2–10). The optimal number of clusters k = 3

was determined based on the Davies–Bouldin criterion as suggested

by a recent work (Vergara, Salman, Abrol, Espinoza, & Calhoun, 2020).

The resulting three cluster centroids were used as starting points to

cluster all DFC data (610 subjects × 173 windows = 105,530 matrices)

into three clusters. The final resulting cluster centroids were regarded

as functional connectivity states at the group level. For each partici-

pant, each state was regarded as the median of the windowed func-

tional connectivity with the same cluster index (i.e., 1, 2 and 3).

2.7 | Statistical analysis

Group effects on dynamic connectivity were examined using one-way

analysis of covariance (ANCOVA), with age, sex and the mean FD as

covariates. Regarding post hoc analyses, two-sample t tests were per-

formed on significant group effects identified by ANCOVA. We used

the false discovery rate (FDR) to correct for multiple comparisons in

both the ANCOVA and the post hoc analyses (q < .05). Shared dys-

connectivity was defined as a situation in which all three patient

groups had abnormal connectivity compared with the HC group.

To highlight those regions with significantly different connectivity

when comparing patients with HC, we calculated the “abnormal

score” for dysconnectivity. Specifically, any two brain regions that

formed a dysconnectivity were assigned a weight equal to the T value

of this dysconnectivity. The T value was set to 1 for shared dys-

connectivity due to its binary matrix (0 indicated normal connectivity,

and 1 indicated dysconnectivity). Since a brain region may be involved

in many dysconnectivities, the total weight of the brain region was

defined as 1-norm of the vector of multiple single weights. Therefore,

we took the total weight value as the “abnormal score.” We only cal-

culated the “abnormal score” for State 1 because significant 4-group

differences occurred only in State 1 (please see Section 3).

In addition, we also identified unique dysconnectivity related to

each disorder. A unique dysconnectivity was defined as dys-

connectivity that occurs only in one disorder. Additionally, we exam-

ined the effect of patient medication on dynamic connectivity in each

state (Supporting Information).

In addition, we performed temporal property analyses. Temporal

properties included the mean dwell time, the fraction of time and the

number of transitions. The mean dwell time is defined as the average

number of consecutive windows belonging to the same state, the

fraction of time is defined as the proportion of total windows belong-

ing to one state, and the number of transitions is defined as the

number of state transitions and represents the reliability of each state.

Group effects on temporal properties were examined using one-way

ANCOVA, with age, sex and the mean FD as covariates. Two-sample

t tests were performed on significant group effects identified by

ANCOVA, which were compared in a pairwise fashion with the HC

group as the common comparison group. We used the FDR to per-

form multiple-comparison correction for both the ANCOVA and post

hoc analyses (q < .05). Associations between temporal properties and

disease symptoms or cognitive performance were investigated by

using Pearson's correlation analysis.

2.8 | Validation analyses

We carried out additional validation analyses (please see Supporting

Information for details). For example, we additionally chose a 20 × TR

window size to validate our findings of 17 × TR (Supporting Informa-

tion); we repeated the analyses for all subjects with good head motion

(737 subjects). Overall, our main conclusions were not influenced.

3 | RESULTS

3.1 | Three DFC states

We used a sliding-window approach to construct the dynamic con-

nectivity network. Then, we identified three patterns of dynamic con-

nectivity network states (State 1, State 2 and State 3) using the k-

means clustering method. State 1 was more frequent (the percentage

of total occurrence was 55%) and featured relatively moderate posi-

tive and negative connectivity. States 2 and 3 were the less frequent

(the percentage of total occurrence was 24 and 21%) and featured

stronger positive and negative connectivity. The three states (repre-

sented by the centroids of the clusters) are shown in Figure 1. We

aggregated the 17 networks into 7 major networks to better visualize

the subsequent results (Figure 2).

3.2 | Differences in DFC

Significant 4-group differences occurred only in State 1 (Figure 3e;

ANCOVA, FDR q < .05).

Post hoc analyses in each state identified significant dys-

connectivity between the patient groups (i.e., SZ, BD and MDD) and

the HC group (Figure 4a–c; two-sample t test, FDR-corrected q < .05).

The effect size for the post hoc two-sample t test among the four

groups is shown in Figures S2 and S3. In general, SZ was more broad

in range (Figure 4) than BD and MDD, given that the numbers of

dysconnectivities were 134, 65 and 67 for SZ, BD and MDD, respec-

tively. Furthermore, SZ was more serious in extent (please see

Figure 8). To illustrate the pattern of differences at the level of the

brain network, we present the average T values of the dysconnectivity

within and between networks for each disorder in State 1 (Figure 5).
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Based on the post hoc analyses, we further identified significant dys-

connectivity common to the SZ, BD, and MDD groups (Figure 4d).

The shared dysconnectivity within networks presented a consistent

pattern of decreased connectivity, while the shared dysconnectivity

between networks presented a mixed pattern of increased and

decreased connectivity. Specifically, patients shared decreased con-

nectivity within the visual, somatomotor, salience and frontoparietal

control networks. Several patterns of dysconnectivity between net-

works were also common to these disorders. Specifically, connectivity

was increased between the visual network with the frontoparietal

(State 3), salience and limbic networks and between some pairs of

regions in the frontoparietal and default-mode networks, while

decreased connectivity was found between the salience and

frontoparietal control, default mode and somatomotor networks, and

some pairs of connectivity were found between the frontoparietal

and default-mode networks.

To highlight those regions with significantly different connectivity

when comparing patients with HC, we calculated the “abnormal

score” for dysconnectivity (Figure 6).

We also identified the unique dysconnectivity for each disorder

based on the post hoc analyses. Interestingly, we found that almost

only patients with SZ had unique dysconnectivity and only showed in

State 1 (Figure 7).

The comparison among the patients' groups showed that the SZ

was the most serious in extent among the three diseases in most net-

works. For example, connectivity in salience network of these three

F IGURE 1 The cluster medians for each state. (a–c) The percentage of total occurrences is listed above each cluster median. The color bar
represents the z value of dynamic functional connectivity. (d) Davies–Bouldin values for k-means clustering from 2 to 10 clusters. Note that
optimal clusters are minimal for Davies–Bouldin. Control, frontoparietal control; Default, default mode; DorsAttn, dorsal attention; OFC,
orbitofrontal gyrus; Sal/VentAttn, salience/ventral attention; SomMot, somatomotor; TempPole, temporal pole

F IGURE 2 The cluster medians for each state that aggregated the 17 networks into 7 major networks. The percentage of total occurrences is
listed above each cluster median. The color bar represents the z value of dynamic functional connectivity. Control, frontoparietal control; Default,
default mode; DorsAttn, dorsal attention; Sal/VentAttn, salience/ventral attention; SomMot, somatomotor
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disorders were decreased compared with HC (Figure 3). Meanwhile,

SZ had further weaker connectivity than both BD and MDD in

salience network (Figure 8a,b). Most of the other dysconnectivity

were similar.

3.3 | Differences in temporal properties and their
correlations with disease symptoms or cognitive
performance

As reported in Figure 9, significant group differences were identified

in the fraction of time in State 1 and State 2. Post hoc analyses rev-

ealed that the patients with SZ and MDD showed significantly shorter

fractions of time in State 1 compared with HC. Patients with SZ

showed significantly longer fractions of time in State 2 compared with

HC. Patients with MDD showed significantly longer fractions of time

in State 2 compared with BD. Correlation analyses showed that the

mean dwell time and fraction of time in State 1 and State 2 of MDD

were correlated with non-perseverative errors (Figure 9d,f; p < .05,

uncorrected). The fraction of time in State 1 and State 2 of SZ were

correlated with perseverative errors (Figure 9e; p < .05, uncorrected).

4 | DISCUSSION

The present study was the first to examine alterations of DFC in SZ,

BD and MDD with a relatively large sample size at a single site. We

identified three distinct functional connectivity states during resting-

state scanning across the entire group: State 1, a more frequent mod-

erate state with weaker connectivity, and States 2 and 3, less frequent

F IGURE 3 Group mean
dynamic functional connectivity
and significant 4-group
differences. (a–d) Group mean
dynamic functional connectivity
for each group. (e) Four-group
differences among schizophrenia,
bipolar disorder, and major
depressive disorder patients and

healthy controls (analysis of
covariance [ANCOVA], false-
discovery rate [FDR]-
corrected q < .05)
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“extreme” states characterized by stronger positive and negative con-

nectivity. However, the group differences in DFC were expressed

only in State 1. Post hoc analyses identified that shared patterns of

dysconnectivity were marked by consistently decreased connectivity

within most networks (visual, somatomotor, salience and

frontoparietal networks), which was most obvious in both range and

F IGURE 4 Significant
differences in dynamic functional
connectivity between patients
and healthy controls. (a–c) Group
differences between patients and
healthy controls (two-sample
t test, FDR-corrected q < .05).
(d) Transdiagnostic
dysconnectivity across the three

disorders. The red dots indicate
increased connectivity, and the
blue dots indicate decreased
connectivity

F IGURE 5 The average T values of the dysconnectivity between patients and healthy controls in State 1. BD, bipolar disorder; control,
frontoparietal control; default, default mode; DorsAttn, dorsal attention; HC, healthy control; MDD, major depressive disorder; Sal/VentAttn,
salience/ventral attention; SomMot, somatomotor; SZ, schizophrenia
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extent for SZ. Please note that we placed greater emphasis on dys-

connectivity within the visual, somatomotor, salience and between

frontoparietal and default-mode networks, given that these networks

showed statistically more dysconnectivity (see Figure S15). However,

our discussion tended to be descriptive for networks that did not

show statistically more dysconnectivity. These findings suggest that

decreased connectivity within both lower-order (visual and

somatomotor) and higher-order (salience and frontoparietal) networks

may serve as a transdiagnostic marker of SZ, BD and MDD and that

such dysconnectivity is state-dependent. This study sheds new light

on the current transdiagnostic knowledge for these disorders.

In the present study, we also analyzed static functional connectiv-

ity (see Supporting Information). The transdiagnostic dysconnectivity

in the static connectivity was consistent with that in the dynamic con-

nectivity. However, dynamic analysis showed that dysconnectivity

was state-dependent (Damaraju et al., 2014; Rashid et al., 2014),

F IGURE 6 Regions with
significantly different
connectivity. Abnormal score
maps for SZ (a), BD (b), MDD
(c) and shared dysconnectivity (d).
Ranking of abnormal scores for
SZ (e, the top 30%), BD (f, the
top 30%), MDD (g, the top 30%)
and shared dysconnectivity (h,

the top 50%). Showing the top
ranking for better visualization.
Color bars in abnormal score
maps indicate abnormal scores.
BD, bipolar disorder; MDD, major
depressive disorder; SZ,
schizophrenia
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F IGURE 7 Unique
dysconnectivity for each
disorder. The red dots indicate
increased connectivity, and the
blue dots indicate decreased
connectivity. Patients with
schizophrenia had obviously
more unique dysconnectivity
than patients with bipolar and

major depressive disorders, and
these unique dysconnectivities
were only observed in State 1

F IGURE 8 Significant
differences in dynamic functional
connectivity among patient
groups. The comparison among
the patient groups showed that
schizophrenia was the most
serious among the three diseases
in most networks. Two-sample
t test, false-discovery rate (FDR)-
corrected q < .05
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which cannot be found via static connectivity analysis. Moreover,

temporal property analyses of dynamic connectivity additionally

showed that patients with SZ and MDD showed an abnormal fraction

of time, which was correlated with cognitive performance.

Comparison of the findings with those of other studies

(Fu et al., 2019; Kim et al., 2017; Reinen et al., 2018; Tu et al., 2019,

2020) confirms that humans spent more time in a weak connectivity

state (or states) but spent less time in a strong connectivity state

(or states) in a resting state. Although the underlying mechanisms of

DFC states have not been fully clarified, some studies (Teng

et al., 2019; Wang, Ong, Patanaik, Zhou, & Chee, 2016) that investi-

gated the relationship between states and behavior suggest that such

a weak connectivity state (State 1) is a low attentional state, but the

strong connectivity states (States 2 and 3) are high attention or task-

ready states.

In the present study, SZ and MDD patients spent less time in the

weak connectivity states than HC patients. SZ patients also spent

more time in the strongly connectivity states compared with

HC. These observations were consistent with previous findings on

temporal characteristics of the DFC states in neuropsychiatric disor-

ders (Kim et al., 2017; Reinen et al., 2018; Tu et al., 2019, 2020):

patients spent less time in a weak connectivity state but spent more

time in a strong connectivity state. We speculated that this phenome-

non may be due to the out-off balance of the time allotment of

dynamic connectivity states in neuropsychiatric disorders, which

might be an essential characteristic of neuropsychiatric disorders.

F IGURE 9 Significant 4-group differences in temporal properties and their correlations with cognitive performance. Error bars represent the
SE. ** indicates p < .01, *** indicates p < .001. BD, bipolar disorder; HC, healthy control; MDD, major depressive disorder; SZ, schizophrenia
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Importantly, we found that the fraction of time in State 1 and State

2 of SZ and MDD were correlated with cognitive performance. Our

findings support that dynamic characteristics may be a potential bio-

marker for neuropsychiatric disorders.

Interestingly, dysfunctional connectivity in the patients was found

only in the low arousal state (State 1), a more frequent moderate state

with weaker connectivity. This observation was consistent with previ-

ous studies (Rashid et al., 2014; Reinen et al., 2018). Reinen

et al. (2018) found that psychosis shows the most dysconnectivity in

“State A4”, a more frequent moderate state with weaker connectivity.

Rashid et al. (2014) found that SZ shows the most dysconnectivity in

“State 3,” still one of the most frequent states with weaker connectiv-

ity. We speculate that the reason why the dysconnectivity was largely

only shown in the low attentional state while there was almost no dif-

ference in the high attentional or task-ready states was that patients

with psychiatric disorders can successfully reach the connectivity pat-

tern of the high attentional state, but they cannot return to the pat-

tern of the low attentional or baseline states. However, a previous

study (Damaraju et al., 2014) found that most of the abnormalities of

SZ are found in those “strong” states, rather than in “weak” states. We

speculate that such inconsistencies may be due to the differences

between transdiagnostic and nontransdiagnostic studies.

Interestingly, all shared dysconnectivity patterns within networks

were consistently decreased. Specifically, we found decreased con-

nectivity within the visual, somatomotor, salience and frontoparietal

networks across these psychiatric disorders. The finding of dys-

connectivity in the frontoparietal network was consistent with previ-

ous studies showing transdiagnostic disruptions in this network across

multiple psychiatric disorders (Baker et al., 2014, 2019) as well as in

SZ patients (Barch, Carter, MacDonald, Braver, & Cohen, 2003; Mac-

Donald et al., 2005; Perlstein, Carter, Noll, & Cohen, 2001; Sui

et al., 2018), BD patients (Anticevic et al., 2013) and MDD patients

(Holmes & Pizzagalli, 2008a, 2008b; Pizzagalli, 2011). The

frontoparietal network is the core hub for cognitive control, adaptive

implementation of task demands and goal-directed behavior (Cole

et al., 2013; Diamond, 2013; Ptak, 2012; Zanto & Gazzaley, 2013). In

addition to the frontoparietal network, we also found decreased con-

nectivity in the salience network, another network that is important

for executive function. These findings also matched those of earlier

studies showing abnormalities in the salience network (Goodkind

et al., 2015; Yang et al., 2019). Reduced intranetwork integration

(or intranetwork modularity [van den Heuvel & Sporns, 2019]) in cog-

nitive networks may be responsible for cognitive dysfunction, one of

the most prominent transdiagnostic characteristics of psychiatric dis-

orders (Caspi et al., 2014; Sha et al., 2019).

Although abnormalities in higher-order brain networks such as

the frontoparietal network were the dominant findings in previous

studies, a recent study (Kebets et al., 2019) suggests that the focus of

psychiatric neuroscience should be expanded beyond these networks

to some lower-order networks, such as the somatomotor and visual

networks. The present findings of dysconnectivity within the

somatomotor and visual networks corroborated earlier studies show-

ing abnormalities in these networks in psychiatric disorders (Chang

et al., 2019; Elliott et al., 2018; Xia, Womer, et al., 2018). Together,

these findings suggest that intranetwork integration was decreased in

patients with psychiatric disorders not only within higher-order brain

networks but also within lower-order brain networks. Future research

should direct additional attention toward lower-order networks.

In contrast, the internetwork connectivity of patients versus HC

was not consistently decreased but instead increased for some con-

nections and decreased for others. Increased connectivity was found

between the visual network and the frontoparietal, salience and limbic

networks. Although dysconnectivity between the visual network and

others was not often considered primary to psychopathological dys-

function in early studies, this finding was in line with that of a recent

study (Elliott et al., 2018) showing that hyperconnectivity between

the visual association cortex and the frontoparietal and default-mode

networks was correlated with increased p-factor scores (a single gen-

eral transdiagnostic factor associated with the risk for all common

forms of mental illness). Considering that the patient groups in the

present study were all psychiatric patients, our findings support and

expand on that recent study, suggesting that dysconnectivity exists

between the visual network and other networks not only in individ-

uals who are at a high risk for psychiatric disorders but also in individ-

uals who already suffer from psychiatric disorders. This shared feature

represents the possibility of a trait common to multiple psychiatric

disorders.

Decreased connectivity was mainly driven by dysconnectivity

between the salience network and the frontoparietal network. Con-

nectivity between the salience network and default-mode network

showed a mixed pattern of dysconnectivity with both increased and

decreased connectivity. The salience, frontoparietal and default-mode

networks are the three most important high-order cognitive networks.

Many studies have indicated that the salience network plays a role in

switching between the frontoparietal and default-mode networks to

improve performance on cognitively demanding tasks (Seeley

et al., 2007; Sridharan, Levitin, & Menon, 2008). Abnormal communi-

cation between these networks may be one of the factors underlying

cognitive impairment in psychiatric disorders. Our findings are consis-

tent with a recent review (Sha et al., 2019) and an original work

(Wang et al., 2019) that found BD and MDD showed abnormal DFC

variability between default-mode and frontoparietal networks.

Strikingly, the shared patterns of dysconnectivity across these

disorders were all in the same direction, that is, they were either

higher or lower than the patterns of the HC. Although speculative,

this finding may support the idea that SZ, BD and MDD may lie along

a transdiagnostic continuum of major endogenous psychoses

(Pearlson, 2015).

Our study has several limitations. The first limitation is the choice

of window size for sliding-window analysis. In this study, we used an

empirically validated fixed sliding window of 17 TRs (34 s) as

suggested by previous studies (Reinen et al., 2018; Shirer et al., 2012)

to maximize signal estimates while still capturing the properties of

transient functional connectivity. Future work should evaluate DFC

across a variety of window sizes. Second, we did not record respira-

tory and cardiac events or use them for denoising, which may have
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had an impact on our results. Third, this is a cross-sectional study, and

a longitudinal study is needed to better understand the trans-

diagnostic pathophysiological mechanisms for these psychiatric disor-

ders. Fourth, to explore the biological significance of different states,

we need to combine electrophysiological methods such as electroen-

cephalogram to study dynamic connectivity (Stevner et al., 2019).

Fifth, spatial group independent component analysis (ICA) (Calhoun &

Adali, 2012) is a very important data-driven method to extract brain

networks, and future studies should try to use ICA to define nodes in

DFC networks. Finally, our study should investigate socioeconomic

status to ensure that this factor is not a major confounder since brain

connectivity is also associated with poverty and adversity (Sripada,

Swain, Evans, Welsh, & Liberzon, 2014).

In conclusion, to our knowledge, we performed the first time-

varying functional connectivity analyses in HC and SZ, BD and MDD

patients in a single study with a relatively large sample size. Functional

connectivity disruptions in psychosis were state-specific and intermit-

tent. The patterns of shared dysconnectivity were marked by consis-

tently decreased connectivity within both higher-order and lower-

order brain networks, while a mixed pattern of increased and

decreased connectivity was observed between distributed networks.

Our findings expand the current understanding of the transdiagnostic

pathophysiological mechanisms for these three psychiatric disorders.
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