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Differential expression of transcriptional regulatory units
in the prefrontal cortex of patients with bipolar disorder:
potential role of early growth response gene 3
B Pfaffenseller1,2, PV da Silva Magalhães1,3, MA De Bastiani2, MAA Castro4, AL Gallitano5, F Kapczinski1,3 and F Klamt2

Bipolar disorder (BD) is a severe mental illness with a strong genetic component. Despite its high degree of heritability, current
genetic studies have failed to reveal individual loci of large effect size. In lieu of focusing on individual genes, we investigated
regulatory units (regulons) in BD to identify candidate transcription factors (TFs) that regulate large groups of differentially
expressed genes. Network-based approaches should elucidate the molecular pathways governing the pathophysiology of BD and
reveal targets for potential therapeutic intervention. The data from a large-scale microarray study was used to reconstruct the
transcriptional associations in the human prefrontal cortex, and results from two independent microarray data sets to obtain BD
gene signatures. The regulatory network was derived by mapping the significant interactions between known TFs and all potential
targets. Five regulons were identified in both transcriptional network models: early growth response 3 (EGR3), TSC22 domain family,
member 4 (TSC22D4), interleukin enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1) and MAP-kinase-activating death
domain (MADD). With a high stringency threshold, the consensus across tests was achieved only for the EGR3 regulon. We identified
EGR3 in the prefrontal cortex as a potential key target, robustly repressed in both BD signatures. Considering that EGR3 translates
environmental stimuli into long-term changes in the brain, disruption in biological pathways involving EGR3 may induce an
impaired response to stress and influence on risk for psychiatric disorders, particularly BD.
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INTRODUCTION
Bipolar disorder (BD) is a severe mental illness with a strong
genetic component. Heritability is high, as evaluated by mono-
zygotic and dizygotic twin concordance, albeit not perfect.1,2

Nevertheless, current molecular genetic studies indicate that no
particular locus of large effect is involved in its etiology. The
candidate gene approach has not delivered robust results and
genome-wide association studies also often fail to show strong
positive signals.2 Current polygenic analyses are consistent with
hundreds or thousands of susceptibility variants of weak effect,
with the variation in single-nucleotide polymorphisms explaining
20 to 30% of the heritability shown in family and twin studies.3,4

The generally low yield of pure genetic association studies has
generated interest in alternative approaches.5 Gene expression
studies move the discussion beyond statistical associations into
the realm of neurobiology. RNA analysis can be more informative
of the status of the cell, as it reflects a functional state not only
influenced by genetic polymorphisms, but also by transcriptional
modulation. Using high-throughput technologies, such as micro-
arrays, the differential expression of genomic DNA in the form of
mRNA has the potential to lead to disease signatures.6 One major
caveat is that gene expression is tissue specific. For BD studies, this
means obtaining brain tissue from postmortem donors, and few
brain bank collections exist for this illness.7

Given the difficulty of obtaining brain tissue, the data on gene
expression in BD is quite limited (compared with cancer research,
for example). To get an idea of the sparseness of existing data in
BD, a recent systematic review of gene expression studies
revealed publicly available data from only 57 unique BD cases.8

Furthermore, gene expression varies depending on the area and
structure under study.9 This underscores the importance of
selecting the appropriate brain regions and using a methodolo-
gical framework to extract biologically meaningful information
from large-scale data. Although the neurocircuitry involved in the
mood disorders is expected to be complex, there are major areas
of interest that could be fruitfully explored in postmortem studies.
Overall, interest has focused on the limbic–cortical–striato–
pallido–thalamic circuits. The prefrontal cortex is a relevant nexus,
where recent research points to areas in the medial prefrontal and
orbitofrontal cortex.10

In the field of systems biology, approaches to identify candidate
master regulators (MRs) have focused on transcription factors (TFs)
that exert large influences on a phenotype. Recently, a number of
computational methods have been developed to identify groups
of genes, and even entire pathways, coordinated by a small
number of TFs. These approaches have successfully identified
gene units that are impaired in diseases such as cancer and
diabetes.11–15 As in other traditional medical fields, psychiatry is
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currently focusing on the study of biological pathways. Reverse
engineering algorithms are used to reconstruct cell type-specific
regulatory networks from high-throughput data. This approach
efficiently reduces the complexity of the network, allowing the
identification of MR TFs with tissue-specific signatures.
Here we query the genetic regulatory signature of BD through a

series of steps. First, we analyze a large gene expression data set
from healthy human prefrontal cortex across the lifespan16 to
construct a regulatory network of known TFs and all potential
targets. As gene expression is tissue specific, this empirical
approach has the benefit of being a more realistic representation
of prefrontal cortex functioning. Next, we identify genes that are
differentially expressed in the prefrontal cortex of patients and
healthy controls from two separate data sets of postmortem tissue
samples. We reasoned that if the BD gene expression signature in
the prefrontal cortical regulatory units is influenced by the
activation (or repression) of specific TFs, then both the down-
stream targets, as well as the upstream regulators, of these TFs
should be among the most differentially expressed genes in the
BD phenotype. The use of network-based approaches to elucidate
biological mechanisms of complex diseases may allow a clearer
view of the molecular networks governing the pathophysiology
and reveal potential targets for drug design and therapeutic
intervention.

MATERIALS AND METHODS
Microarray data
The data used to reconstruct the transcriptional associations in the human
prefrontal cortex was obtained from a large-scale microarray study
describing an extensive series (n= 269) of brain tissue samples from fetal
development through aging,16 downloaded from GEO (accession number
GSE30272). Two studies using independent microarray platforms (Affyme-
trix Human Genome 133A GeneChips and Codelink Expression Assay
arrays) were used to obtain the BD gene expression signatures (accession
numbers GSE12679 and GSE5388). The two selected data sets were the
best and most interesting sets available to our goal. As we aimed to
evaluate differential expression of transcriptional regulatory units in the
prefrontal cortex of bipolar disorder patients, we sought the most specific
samples available (data set 1—data from pyramidal neurons) and other
presenting more sensibility (data set 2—data from all cortical cells), both
data sets from the same prefrontal area (Brodmann area 9—BA9). As such,
the samples and raw data were independently processed and generated,
contributing to check the consistency of the regulatory units characterized
in our study.
For the first data set, the samples were obtained using laser-capture

microdissection17 and included 1000 pyramidal neurons isolated from
region BA9 of prefrontal cortex from five individuals with BD and six
control subjects. For the second data set, fresh-frozen prefrontal cortex
tissue (region BA9) was obtained from the Neuropathology Consortium of
the Stanley brain collection (Stanley Medical Research Institute, Chevy
Chase, MD, USA)18 and included 30 BD and 31 control samples. The
demographic variables for the samples have been scrutinized in the
original studies that produced the public data. For the first data set, the
information available includes age (years): patients—43.4 ± 6.3, controls—
41.2 ± 7.2; gender (F/M): patients—1/4, controls—2/4; postmortem interval
(hours): patients—28.2 ± 5.4, controls—30 ± 18.6. The study related to the
second data set presents more detailed information that is summarized
below. Age (years): patients—44.5 ± 10.7, controls—43.8 ± 7.3; gender (F/
M): patients—14/16, controls—7/24; brain pH: patients—6.48 ± 0.27,
controls—6.62 ± 0.27; postmortem interval (hours): patients—37.2 ± 17.7,
controls—29.1 ± 13.1; suicide (Y/N): patients—12/18, controls—0/31; alco-
hol abuse (none or light/moderate to severe): patients—13/17, controls—
27/4. Regarding treatment of patients, lithium (Y/N): 8/22; valproate (Y/N):
10/20; electroconvulsive therapy history (Y/N): 2/28. Some potential
confounding issues are not available to be controlled; however, they are
addressed in the discussion.

Transcriptional network inference
The transcriptional networks were constructed using the R package RTN.19

Regarding the code availability used in this study, it is publicly available

from Bioconductor in the R packages RTN (http://bioconductor.org/
packages/RTN/). Gene probes (complementary sequences to the target
mRNAs used in microarray to assay gene expression) were filtered based
on their coefficient of variation and mutual information was calculated in
the R package minet.20 The regulatory structure of the network is derived
by mapping the significant interactions between known TFs and all
potential targets in the gene expression matrix. The interactions that are
below a minimum mutual information threshold are eliminated by
permutation analysis. Unstable interactions are additionally removed by
bootstrap analysis using 1000 bootstrap samples to create the consensus
bootstrap network (that is, the relevance network). In an additional step,
the Data Processing Inequality (DPI) algorithm is applied with tolerance =
0.0 to eliminate interactions that are likely to be mediated by another TF.11

As the DPI removes the weakest edge of each network triplet, the vast
majority of the interactions that are likely to be indirect are eliminated in
this step. The resulting DPI-filtered transcriptional network is subsequently
interrogated in the enrichment analysis. Both DPI-filtered and unfiltered
transcriptional networks are used to visualize the final results. The analysis
pipeline, resampling procedures and methods used to reconstruct the
transcriptional networks are summarized in Supplementary Figure 1.

MR and gene set enrichment analysis
The MR analysis is described elsewhere.15 Briefly, the gene set enrichment
analysis (GSEA) is used to assess whether a given transcriptional regulatory
unit (regulon) is enriched for genes that are differentially expressed among
two classes of microarrays. The GSEA uses a rank-based scoring metric
obtained from the differentially expressed signatures to test the
association between gene sets and the ranked phenotypic difference.
The current analysis treats regulons as gene sets, and the BD signatures as
the phenotype, in an extension of the GSEA analysis as previously
described.21 The GSEA was performed in the R package RTN using 1000
permutations.

Two-tailed GSEA
The two-tailed GSEA assesses the direction of inferred connection between
a given MR and the differentially expressed signatures, a proxy for induced
or repressed associations. The method is based on the Connectivity Map
procedure.22 The regulon is split into two subgroups, positive targets (A)
and negative targets (B) using Pearson's correlation, whereas genes in the
phenotype are ranked using the differentially expressed signatures (that is,
top-down phenotype). The distribution of A and B are then tested by the
GSEA statistics in the ranked phenotype, producing independent
enrichment scores (ES) for each subgroup. A good separation of the two
distributions and maximum deviation from zero near opposite extremes is
desirable for a clear association. Therefore, an additional step is executed
testing the differential enrichment (ESA− ESB). A high positive differential
score indicates that the phenotype induced the regulon, whereas a high
negative differential score indicates that the phenotype repressed the
regulon. The two-tailed GSEA was performed in R using the function tni.
gsea2 in the RTN package with 1000 permutations.

Analysis of gene expression data
The Bioconductor package limma23 was used to call differentially
expressed genes, and the log fold change (logFC) metric was used to
obtain the ranked phenotypes required for the GSEA analysis.

RESULTS
A tissue-specific regulatory network for the human prefrontal
cortex
We first established a tissue-specific transcriptional network model
computed from a large-scale human prefrontal microarray data
set (transcriptional network reconstruction summarized in
Figure 1a). The microarray data were pre-processed and probes
with low variation were removed from the analysis. Two
transcriptional networks (TN1 and TN2) were then derived by
computing the mutual information between annotated TFs and all
potential targets in the data set. TN1 represents the totality of the
269-microarray samples in the study, whereas TN2 is derived from
a subsample with adult human prefrontal cortex only (see
Supplementary Figure 1 for additional details of the resampling
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procedures). The association map in Figure 2a summarizes the
transcriptional network TN1 and shows the degree of similarity
among the inferred regulatory units (regulons). The node size
represents the number of targets in a given regulon, whereas
edge width corresponds to the number of common targets
between any two regulons assessed by the Jaccard coefficient
(JC). In this reference network, each target can be linked to
multiple TFs and regulation can occur as a result of both direct
(TF–target) and indirect interactions (TF–TF–target). To preserve
the dominant TF–target pairs for the subsequent enrichment
analyses, we additionally applied the DPI algorithm, which
removes the weakest interaction in any eventual triplet formed
by two TFs and a common target gene (see methods and
computational pipeline summarized in Supplementary Figure 1).

MRs in BD prefrontal cortex
The inferred transcriptional network model was next used to
query regulons enriched for the BD gene expression signatures.
These signatures were obtained by differential expression analysis
using microarray data from the two independent case–control
sets (Figure 1b). Signature 1 (Sig1) is derived from laser-capture
microdissected human neurons isolated from postmortem dorso-
lateral prefrontal cortex, whereas signature 2 (Sig2) is derived from
human postmortem brain tissue from adult subjects. The MR
analysis13 aims to identify regulons associated with the gene

expression signatures (Figure 1c). Therefore, our primary goal here
is to generate hypotheses regarding the transcriptional regulation
in BD, identifying the MRs responsible for coordinating the activity
of the signature genes. We used the GSEA statistics to test the
enrichment of the signature genes in each regulon. Figure 2b
presents the results of the GSEA analysis using TN1 and Sig1 and
shows the distribution of the BD phenotype onto the transcrip-
tional association map.
Among the several candidates identified, 10 regulons were

significantly enriched for both gene expression signatures
(Figure 3a), five of which are consensus in both TN1 and TN2
transcriptional network models: early growth response protein 3
(EGR3), TSC22 domain family, member 4 (TSC22D4), interleukin
enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1)
and MAP-kinase-activating death domain (MADD). When a high
stringent threshold is applied, the overall consensus across all the
tests is only obtained for the regulon of the EGR3. The GSEA plots
in Figure 3b shows the distribution of the top-five consensus MRs
in the BD phenotype.

Mode of action of the computationally defined regulons
To visualize the five MRs, we show in Figure 4a the correlation
pattern observed between the TFs (square nodes) and its inferred
targets (round nodes) assessed by the Pearson's correlation on
TN1. This network graph shows all interactions inferred for each

Figure 1. Master regulator (MR) analysis flowchart. (a) Data source used to reconstruct the transcriptional regulatory units in normal human
prefrontal cortex. A large-scale microarray study (GSE30272) describing an extensive series of brain tissue from fetal development through
aging was used to compute the transcription factor-centric regulatory networks (regulons). The transcriptional network TN1 represents the
totality of the 269-microarray samples in the study, whereas the TN2 derives from a subsample with adult human prefrontal cortex only. The
analysis pipeline, resampling procedures and methods used to reconstruct the transcriptional networks are further detailed in the
Supplementary Figure 1. (b) Flowchart summarizing the microarray data used to obtain two independent bipolar disorder gene expression
signatures (bipolar phenotypes). Signature 1 (Sig1; GSE12679) is derived from laser-capture microdissected human neurons isolated from
postmortem dorsolateral prefrontal cortex, whereas signature 2 (Sig2; GSE5388) is derived from human postmortem brain tissue from adult
subjects. (c) The enrichment analysis aims to identify transcriptional regulatory units associated with the gene expression signatures.
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a

b

Figure 2. A systems model of the human prefrontal transcriptional network. (a) Association map showing the degree of similarity among
regulons in the transcriptional network TN1. The node size represents the number of transcription factor (TF)–targets in the relevance
network, whereas edge width corresponds to the overlap between regulons assessed by the Jaccard coefficient (JC). Unconnected regulons
are not shown. (b) Enrichment analysis using gene expression signature 1 (Sig1) showing the distribution of the bipolar phenotype onto the
association map (adjusted P-value o0.05 are shown in red-color scale).
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regulon, whether positive (red targets) or negative (blue targets).
Using this information, we extended the gene set enrichment
analysis in order to access how the mode of action of these
regulons are connected with the BD gene signatures. We used a
two-tailed GSEA statistics on regulons split into positive (red) and
negative (blue) targets (Figure 4b), and the resulting distributions
were tested against the BD phenotype ranked from the highest (+)
to the lowest (− ) differential expression values.
Accordingly, EGR3 and MADD negative targets are associated

with the positive phenotype (that is, most induced genes),
whereas the positive targets are associated with negative
phenotype (that is, most repressed genes), providing a high
negative differential score with adjusted P-value o0.001. It
suggests that both EGR3 and MADD regulons are repressed in
the BD gene signature, whereas the other three regulons appear
to be increased.

DISCUSSION
The primary goal of this study was to generate hypotheses
regarding transcriptional regulation in BD, and to identify putative
regulatory units that are dysfunctional in the prefrontal cortex of
patients. To that end, we sought differentially expressed
signatures that converged from two available gene expression
data sets with distinctive strengths and weaknesses. Using MR
analysis, our major finding was that the EGR3 regulon was robustly
repressed in both BD gene expression signatures. Four additional
MRs showed a lower level of association with the BD phenotype.
EGR3 is a member of the EGR gene family of immediate early

genes transcription factors. These genes are expressed at basal
levels throughout the brain, including the cortex, hippocampus
and other limbic areas, and the basal ganglia.24 EGR expression is
induced at high levels in response to environmental events and
stressful stimuli across a range of intensities. In the brain, this
activation is triggered by neurotransmitter-receptor stimulation or
depolarization.24 Numerous behavioral and electrophysiologic
studies in animals have shown that the EGR family has a role
in memory acquisition and consolidation and hippocampal
synaptic plasticity.24–29 EGR3, in particular, is required for the

normal response to stress as well as in the neuroplasticity induced
by this responsivity, ultimately regulating neuronal gene
expression.27,30,31

Of particular relevance are studies demonstrating that mice
lacking functional EGR3 display behavioral and physiologic
abnormalities consistent with models of mental illness. These
include a heightened response to stress (evidenced behaviorally
and by elevated release of corticosterone), hyperactivity and
failure to habituate to environmental stimuli and social cues.27 The
hyperactivity, a rodent psychosis phenotype, is reversible with
antipsychotic medications used to treat BD.32,33 EGR3 regulates
expression of important plasticity associated genes, such as those
encoding the activity regulated cytoskeletal associated gene
(Arc)30,34 and GABA receptor subunit 4 (GABRA4),35 and other
member of the EGR family regulates the synaptic vesicle
associated proteins synapsin 136 and synapsin 2.37 Thus, require-
ment of EGR3 in processes of memory, learning and synaptic
plasticity is likely to be mediated by these, and presumably other
as-yet unidentified, target effector genes.
The neuronal expression of EGR3 is regulated by synaptic

activity and is coupled to MAPK-ERK signaling.24,28 Gallitano-
Mendel and colleagues noted that EGR3 is activated downstream
of numerous proteins associated with risk for psychotic illness,
including neuregulin 1 (NRG1), calcineurin (CN) and N-methyl-D-
aspartate (NMDA) receptors.27,32,38–41 Moreover, drugs that induce
psychosis via serotonin 2A receptors (5-HT2ARs) regulate expres-
sion of EGR3.42 They have hypothesized that these genes, together
with targets of EGR3, comprise a pathway of proteins which, when
disrupted at any level, increases risk for psychotic illness. In
addition, brain-derived neurotrophic factor (BDNF) has been
shown to induce EGR3 expression via a PKC/MAPK-dependent
pathway.35 These are all interesting links, as BDNF has been
proposed as a critical factor in the reduced cellular resilience
associated to BD.43,44 A growing body of data has shown that
peripheral BDNF levels are decreased during BD episodes and with
the illness progression.45,46 Despite limitations in the studies and
conflicting results in this area, it is intriguing to speculate that
reduced peripheral BDNF levels, whether related to its decreased
expression in the brain, may influence the EGR3 repression as this

Figure 3. Consensus master regulators enriched for the bipolar disorder signatures. (a) Gene set enrichment statistics showing the regulatory
units consistently enriched for the expression signatures Sig1 and Sig2 on the transcriptional network TN1, together with the results obtained
for the same regulons on TN2. (b) Gene set enrichment plots showing the distribution of the top-five master regulators (that is, the consensus
regulatory units) across the ranked bipolar phenotype represented by the absolute differential expression values (absolute logFC) derived
from Sig1. The enrichment score is obtained based on the distribution of the hits: the x axis indicates the position of all genes ranked by the
phenotype, and the hits indicate the position of each gene of a given regulon (see methods for additional description on the GSEA statistics).
ns, not significant.
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TF is regulated by BDNF. Obviously, further research is warranted
for substantially improving the knowledge regarding the link
between BDNF and EGR3 in a shared biological pathway and their
role in BD.
Downstream, EGR3 targets the promoter region of genes

involved in neuroplasticity or stimuli response. So far, experi-
mental studies show effects on NMDA receptor subunits NR1 and
NR2B, and type A GABA receptor, and possibly on genes involved
in microglia deregulation associated with psychiatric disorders,
such as the triggering receptor expressed on myeloid cells 1
(TREM-1).27,35,47,48 EGR3 also regulates the expression of NGFR
(p75NTR),49 a receptor for neurotrophins that is involved in the
regulation of axonal elongation.50 Perhaps most intriguing is the
recent findings that the EGR3 target gene ARC, which modifies

synapses in response to environmental stimuli,51 is implicated in
risk for psychotic disorders.41,52–54 Altogether, EGR3 targets trigger
different downstream genes and pathways involved in processes
such as synaptic plasticity, axon extension, regulation of BDNF and
receptors expression, among others.55

EGRs translate environmental events into long-term changes in
neural gene expression. This has led to the hypothesis that
dysfunction in EGRs may account for both the genetic and
environmental influences on risk for psychiatric illnesses.32,41,56

The EGR family has been more closely scrutinized in schizophrenia,
with fewer and less-consistent studies in BD.47,56–58 EGR3 has been
significantly associated with schizophrenia in the Japanese,40

Korean and Han Chinese populations,59,60 and recently in a
population of European descent.41 Although not all studies have

Figure 4. Regulatory units associated with the bipolar disorder phenotype. (a) The regulatory network shows the transcription factor (TF)–
target interactions of the five master regulators, each one comprising one TF (square nodes) and all inferred targets (round nodes). The mode
of action represented in red/blue colors corresponds to the correlation pattern observed between a given transcription factor and its targets,
assessed by the Pearson's correlation on TN1. (b) Two-tailed gene set enrichment analysis. The enrichment plots show the distribution of the
genes in each regulon across the ranked phenotype derived from Sig1. Regulons are split in positive (red) and negative (blue) targets, whereas
the phenotype is ranked from the highest (+) to the lowest (− ) differential expression values (logFC), that is, from the most increased to the
most decreased gene expression values.
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found significant associations,57,61,62 a meta-analysis of the studies
in Asian populations supported association between EGR3 and
schizophrenia.60 In addition, the AA genotype of the rs35201266
SNP was recently associated with the hemodynamic state of the
prefrontal cortex in both patients with schizophrenia and healthy
participants, possibly suggesting a pathway from neurodevelop-
ment to brain function.63 Furthermore, a study involving an entire
network of TFs and microRNAs related to schizophrenia identified
EGR3 as the central gene in the regulatory network.55

Studies examining a potential role for EGR3 in BD identified
nominal associations that did not meet the threshold for
significance following the strict Bonferroni correction for multiple
comparisons. In the first study, examining association of genes
involved in circadian rhythms with BD, EGR3 was to sole gene that
achieved a significance level of Po0.05.57 A second investigation,
a family-based association study identified a nominal association
of EGR3 with risk for child with BD I.56 These findings suggest that
EGR3 may be a fruitful gene for future genetics studies to identify
mechanisms by which environment and genetic predisposition
interact to influence BD. Although the statistically significant
findings supporting an association between EGR3 and psychiatric
illness have been in schizophrenia, research has increasingly
demonstrated that the molecular and genetic processes under-
lying BD and schizophrenia are highly coincident.64

The possible effects of mood stabilizers, psychotropic medica-
tions and substance use on the EGR3 regulon are also an
interesting point to be discussed. However, there are few studies
on this matter, most of them evaluating other EGR genes. To our
knowledge, there are no studies showing association between
lithium or valproate effects and EGR3 expression. In this context,
studies observed that the expression of EGR1 was increased by
lithium in mouse frontal cortex,65 and by valproate in neural stem
cells.66 Considering that lithium has been associated with
neurogenesis, it is conceivable that it induces EGR genes as well.
Nevertheless, our results point to the repression of this regulon in
bipolar disorder, suggesting that lithium treatment did not
influence our findings. Studies in rodents have shown that other
psychoactive medications induce immediate early genes in the
brain. For instance, chronic treatment with aripiprazole induces
differential gene expression of EGR1, EGR2 and EGR4 in the rat
frontal cortex;67 EGR1 is differentially expressed also in rat striatum
after haloperidol and clozapine treatments.68 Though less studied
than EGR1, expression of EGR3 is induced by several of the same
stimuli of EGR1, including antipsychotic medications or drugs that
induce psychosis.25,42 Other factors that might possibly affect the
EGR3 regulon is alcohol or substance use; a relationship between
drug intake or withdrawal and induction of EGR genes has been
reported. For instance, amphetamine and cocaine increase EGR1
mRNA expression in the striatum,69 cocaine also induce EGR3 in
the striatum25 and amphetamine or alcohol withdrawal induce
EGR1 expression.70 Considering these observations, it seems
unlikely that antipsychotic treatment, alcohol or other substances
are responsible for our findings, as they induce EGR3 and other
growth response genes, whereas our results pointed to the
repression of the EGR3 regulon in BD signatures.
Our data suggest that decreased function of EGR3 may be

involved in BD. As a MR of a network of genes and pathways that
mediate critical neurobiological processes, dysfunction in EGR3
indicates a possible explanation for both the influence of
environment, as well as the role of numerous genes in the
pathogenesis of BD. The identified network thus provides
potential targets for follow-up experimental evaluation and
development of novel therapeutics for this severe mental illness.
The results presented here are both innovative and exploratory,
and are therefore in need of confirmation before more definitive
assertions regarding the relevance of EGR3 in BD can be made. A
new generation of bioinformatics methods has been developed to
deal with the notorious limitations of functional genomics data.12

Nevertheless, further validation through basic science laboratory
approaches, including mRNA expression of EGR3 and key
interacting genes in BD postmortem PFC tissue using PCR with
reverse transcription, is an important step towards firmly
confirming our results. However, studies in EGR3-deficient mice
demonstrating psychosis-like phenotypes and hyperactivity that
can be reversed with antipsychotic medications that are used in
treatment of BD already provide important support for our
findings.27,32,33

Limitations of this study include the fact that only two
microarray sets were used to obtain the signatures. Although we
do not intend to perform an exhaustive analysis of all regions and
all available data sets, our bioinformatics approach is constrained
by the availability of a unique cohort study with a large sample
size (to compute the regulatory unities) and the gene expression
signatures interrogating the tissue under study. The starting point
for our analysis was the public availability of a unique study, which
sampled prefrontal cortex from people with bipolar disorder
obtained using laser-capture microdissection. As this study was
limited by sample size, and there are no other analyses using this
technique, we next sought the largest available data set that used
brain homogenates from the same prefrontal area (BA9), and we
found just one study with these criteria. Hence the two data sets
were formed not by all sets, but by the best and most interesting
sets available. Other limitation is that the analysis was restricted to
prefrontal cortex (BA9) and gene expression profiles might look
different in other laminar and brain regions. Future studies should
aim at evaluating laminar and regional specificity of our results,
and validating our findings with biochemical/molecular analyses
in independent biological samples, as well as studying EGR3
targets, their role in BD and in the mechanisms of action of drugs.
When it comes to the means of modulation of EGR3, it is likely that
genetic and epigenetic mechanisms might be underlying the
alterations seen in BD, which warrants further studies on this
matter as well.
In conclusion, we have used an innovative approach based on

MR analysis to study transcriptional regulation in BD. This method
identified the EGR3 gene as a potential key target, with the EGR3
regulon robustly repressed in both of the two BD gene expression
data sources we examined from postmortem prefrontal cortex.
Considering that EGR3 is activated throughout the brain in
response to stressful environmental stimuli, the possible disrup-
tion in biological pathways involving EGR3 may result in an
impaired response and adaptation to stress. This could result in
reduced neurobiological resilience and ultimately lead to the
symptoms of executive and cognitive dysfunction seen in BD. The
bioinformatics approach used in this work may give insights for
identifying targets possibly involved with the risk for psychiatric
disorders and inspire drug-discovery programs that can affect
these disorders.
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