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Abstract
Parametric and nonparametric kernel methods dominate studies of animal home ranges

and space use. Most existing methods are unable to incorporate information about the

underlying physical environment, leading to poor performance in excluding areas that are

not used. Using radio-telemetry data from sea otters, we developed and evaluated a new

algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or

“PHRE”) that reflects habitat suitability. We began by transforming sighting locations into

relevant landscape features (for sea otters, coastal position and distance from shore).

Then, we generated a bivariate kernel probability density function in landscape space and

back-transformed this to geographic space in order to define a permissible home range.

Compared to two commonly used home range estimation methods, kernel densities and

local convex hulls, PHRE better excluded unused areas and required a smaller sample

size. Our PHREmethod is applicable to species whose ranges are restricted by complex

physical boundaries or environmental gradients and will improve understanding of habitat-

use requirements and, ultimately, aid in conservation efforts.

Introduction
Home range estimates are useful tools for answering critical questions in studies of habitat
selection [1–3], mating systems [4,5], and carrying capacity [6], and in identifying the biotic
and abiotic features with which individuals interact. Statistical methods for estimating home
ranges, defined as the particular area to which an animal restricts its movements over time
[7,8], use sighting locations to estimate the probability of an individual occurring at any point
in space, and to delineate a boundary encompassing some cumulative probability of occur-
rence. These boundaries denote the location, shape, and size of the home range [9].

A notable limitation of existing methods is their inconsistent performance across species
and habitats [10,11]. Current methods typically perform well for animals that make indiscrimi-
nant use of open, uniform habitats, but poorly for animals that concentrate space use around
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patchy resources (e.g., tawny owls [Strix aluco] in woodland patches [12] and red-capped rob-
ins [Petroica goodenovii] in woodland remnants [13]) or are restricted by complex boundaries
[6] (e.g., river otters [Lontra candensis] at the aquatic-terrestrial interface [14], flathead catfish
[Pylodictis olivaris] in streams [15], weasels [Mustela nivalis] inhabiting field edges [16], and
raccoons [Procyon lotor] along habitat edges [17]). In the latter case, existing methods generally
fail to exclude unusable habitat [18–21]. This positive bias (type II error) causes an overesti-
mate of home range area and affects our ability to understand patterns of resource use and
exposure to sources of mortality.

Current methods derive home range estimates from sighting locations anchored in “geo-
graphic space,” generally defined using a two-dimensional Cartesian coordinate system such as
latitude and longitude. However, animal space use is often determined by ecological character-
istics, which are defined by environmental features and/or the space use of conspecifics and
other species. Hence, there is often a mismatch between how we estimate home ranges and
how animals actually choose their home ranges, so we should not be surprised that our meth-
ods sometimes perform poorly. A number of modifications to traditional home range analyses
have been proposed to address this issue; for example, Horne et al. [22] created a synoptic
model of animal space use that produces home ranges informed by habitat covariates.
Although this method can be applied to animals whose home ranges track a linear habitat fea-
ture [23], the accuracy of the so-called “null distribution” of the synoptic model decreases as
the linear feature becomes more tortuous. Take, for example, the case of a strictly marine spe-
cies that uses one side of a peninsula. Although the presence of water (1) or land (0) can be
added as a binomial habitat covariate, the null distribution will cause points on one side of the
peninsula to influence probability values on the other side of the peninsula, even if the animal
is only found on a single side. This is because the two sides of the peninsula are close to each
other in geographic coordinate space, but are far apart from the perspective of an animal travel-
ing through the water. Home range analysis in such cases remains problematic; in particular, it
remains difficult to derive home range estimates that do not violate known habitat restrictions
for species with tortuous linear boundaries in their habitat.

Mechanistic movement models offer a sophisticated method for incorporating environmen-
tal covariates (e.g. coyote prey and conspecific scent marks [24]) into animal movement deci-
sions. Home range estimates can be derived from such movement models, as employed in
Mechanistic Home-Range Analysis (MHRA) [24]. This powerful approach confers the ability
to predict future movements, but may be unnecessarily complex for obtaining descriptions of
past home ranges. As pointed out in Moorcroft’s review [9], MHRA is challenging to imple-
ment as it requires programming expertise, is computationally expensive, and/or requires
familiarity with formulating and solving systems of differential equations. These challenges
may explain the persistent and widespread use of simpler descriptive methods of home range
estimation. We aimed to provide an accessible method with the explicit purpose of describing
the observed space use of an animal.

As with many coastal species, sea otter (Enhydra lutris, Linnaeus 1758) space use is
restricted by the complex coastal boundary and the heterogeneous habitats that characterize
nearshore environments. Sea otters live predominantly in aquatic areas, and avoid hauling out
more than a few meters inland due to poor motility on land, vulnerability to terrestrial preda-
tors, and their requirement for frequent feeding bouts in the ocean. In addition, physiological
limits in diving capabilities restrict sea otters to areas where benthic invertebrate prey are acces-
sible (generally<40 meters depth) [25,26]. Despite the>76,000 radio-telemetry sighting loca-
tions of individual sea otters collected to date from studies in central California [27] and the
wealth of knowledge about sea otter habitat requirements, a suitable home range estimator is
lacking. Home ranges created using kernel density estimation (KDE) [28,29] and adaptive
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Local Convex Hull analysis (a-LoCoH) [19] typically overlap with terrestrial areas that are too
far inland to be accessible to sea otters and/or include aquatic areas that are too far offshore or
too deep, leading to incorrect expectations about access to resources and home range size and
shape. To address this problem in sea otters and other species with similar restrictions to move-
ment, we present a novel analysis that incorporates features of habitat suitability (boundaries
and environmental gradients) into home range estimates (i.e. geographic ranges of animals in
space).

Using radio-telemetry data on sea otters, we develop and evaluate a method for estimating
permissible home ranges (hereafter “Permissible Home Range Estimation,” or PHRE) that: (1)
reflects ecological and physiological constraints on animal movements, (2) generates probabil-
ity estimates based on habitat suitability, and (3) produces robust, unbiased estimates of the
areas actually used by individual sea otters. We describe a generalized function for PHRE
coded in the open source statistical program R [30]. In addition, we evaluate and compare sam-
ple size requirements and the predictive accuracy of probability estimates of PHRE and two
commonly used methods: kernel density estimation and Local Convex Hull Analysis. We then
use this new method to test the prediction that resource distribution across sites in central Cali-
fornia affects the shape of sea otter home ranges.

Methods

Ethics statement
This research adhered strictly to established capture, tagging, and tracking protocols, which
were reviewed and approved by the University of California Santa Cruz Institutional Animal
Care and Use Committee and the U.S. Fish and Wildlife Service. Protocols were conducted
under the following research permits: University of California Santa Cruz IACUC permit
Tinkt1007 (8/05/2010) and U.S. Fish and Wildlife Service permit MA672624-16 (10/31/2008).
As outlined and approved in the established protocols, animals were sedated for surgery with
an intramuscular injection of fentanyl (Elkins-Sinn, Cherry Hill, NJ, USA; 0.5–0.11 mg kg−1

body mass) and diazepam (Abbot Laboratories, North Chicago, USA; 0.010–0.053 mg kg−1)
and maintained under an isoflourane gas and oxygen mixture [31].

Data collection
From 1999 to the present, U.S. Geological Survey and Monterey Bay Aquarium scientists and
volunteers collected spatially explicit sighting data from radio-tagged sea otters near Monterey
Bay (36.6183° N, 121.9015° W) and Big Sur, California (36.1075° N, 121.6258° W). We cap-
tured sea otters using rebreather SCUBA and Wilson traps [32], surgically implanted them
with VHF radio transmitters (Advanced Telemetry Systems Inc., Isanti, MN, USA), and
applied color-coded plastic flipper tags in the webbing of the hind flippers (Temple Tags, Tem-
ple, TX, USA) to aid in visual identification [31,33].

We visually located tagged individuals during regular field surveys (usually 3–5 times per
week, but less often for some wide-ranging individuals) using standard VHF radio telemetric
techniques [34,35] for multiple years. This resulted in 38,941 sighting locations for 193 individ-
uals. While autocorrelation is of concern in home range estimation, sea otters routinely travel
the full length of their home range in a single day, so we treated the sighting locations (which
are only collected every few days) as independent. Associated observational data collected at
the time of each sighting confirmed that all sighting locations were in water, and that terrestrial
areas represented unused habitat. Sighting locations from 126 sea otters with>20 sighting
locations per individual over a two-year period were used to compare the performance of three
home range estimation methods. Because home range boundaries often change over an
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animal’s lifetime (e.g. male sea otters disperse as juveniles and may settle into small reproduc-
tive territories as adults [34]) and comparisons are meaningful only if home ranges are calcu-
lated over the same time period [10], we used two years of data for each home range estimate.

Model Description
PHRE consists of four steps: (1) identify habitat elements that influence animal space use a pri-
ori, (2) transform sighting locations to a new coordinate system reflecting key habitat variables,
(3) produce a kernel density estimate in landscape space, and (4) back-transform the KD prob-
ability values to geographic coordinate space. For sea otters that move primarily up and down
the coast within the nearshore environment, the key habitat elements defining space use are
position along the California coastline and distance from shore (S1 Fig). Coastal position in
California is easily described by a previously-defined one-dimensional axis termed the “As The
Otter Swims” (ATOS) line, representing a sequentially numbered set of points at 500-m inter-
vals along the 10-m isobath [36] (S2 Fig). Each sighting location was transformed to decimal
ATOS units by linear interpolation (e.g. a sighting location that was 1/3 of the way between
ATOS point 367 and 368 was assigned a value of 367.33). The perpendicular distance to the
closest shoreline feature was also calculated for each sighting location using the 1:24,000 coast-
line vector [37]. The resulting transformed coordinate system better reflected movement deci-
sions by the animal (i.e. animals decide to move up or down the coast, and on or off shore),
and also flattened out the tortuous linear boundary.

We further transformed the distance-from-shore values to ensure complete exclusion of ter-
restrial areas from home range estimates and to normalize the right-skewed distribution. Spe-
cifically, we log-transformed the raw distance-from-shore values (S3 Fig), which resulted in a
distribution that was approximately normal, varied in log-space from –1 to1 and, impor-
tantly, prohibited assignment of probability values>0 on land because log(0) is undefined. We
note that for boundaries having an environmental value other than 0, or for environmental var-
iables where log-transformation is not appropriate, an alternative approach is to use a trun-
cated normal distribution for the kernel along the target axis. These practices are key to
complete exclusion of unused areas when a distinct boundary exists, especially if the animal
heavily uses areas immediately adjacent to the boundary.

We next fit a bivariate kernel density function (ks package [38] in R version 3.0.2 [30])
using the decimal ATOS and log(distance) variables for each individual (S4 Fig). Otters are
known to differ in the nature of their coastal movements, with some individuals (e.g. adult
females) making small movements and using a highly concentrated area of coast, and other
individuals (e.g. juvenile males) making longer movements and utilizing large areas of the
coast [39]. To account for these different space-use patterns we used an adaptive smoothing
parameter (h) for the decimal ATOS axis. We allowed the value of h to vary as a function of the
mean nearest neighbor distance (d) between sighting locations, according to the equation h =
hb�(d/4)2.5, where hb represents the baseline smoothing parameter of 2 ATOS units, or 1 km of
coastline. This equation was selected prior to home range analyses using a subset of animal
location data and based on subjective visual choice [28,40,41] of a parameter that consistently
avoided under- and over-smoothing for a variety of different movement types (i.e. those repre-
sented by adult females, juvenile males, and adult males). The smoothing parameter for the log
(distance) axis was held fixed at 0.05.

The kernel density function was then back-transformed to geographic space by evaluating
the probability density values across a grid of points with local coverage (S5 Fig). All density
values in the grid were then transformed to sum to one and reflect probability values. A poly-
gon was created to encompass grid points within the 90% kernel home range boundaries
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(Fig 1 & S6 Fig). We created a function that applies the above-described algorithm to any data-
set, using the open source statistical programming language R (version 3.0.2) [30] and incorpo-
rating the ks [38], raster [42], and amap [43] packages (S1 File). This generalized function
requires sighting locations and a list of raster datasets with habitat elements of interest (the
analysis handles one to six dimensions in landscape space). Optional specifications include the
percent kernel and the smoothing parameter.

Method Comparison
We evaluated the method’s utility by comparing its general performance with two other com-
monly used methods of estimating home ranges in geographic space: (1) kernel density estima-
tion (KDE) [28,29] and (2) adaptive Local Convex Hull analysis (a-LoCoH) [19], a
nonparametric method designed to delineate habitat boundaries. We used the ks package [38]
for KDE and the adehabitatHR package [44] for LoCoH. The baseline smoothing parameter
was 30,000 for KDE, which we then adapted for each animal using the same method as applied
in PHRE. As suggested by Getz et al. [20], we used the maximum distance between sighting
locations of the animal being evaluated for the LoCoH smoothing parameter. All three meth-
ods therefore adapted the smoothing parameter according to the distribution of sighting loca-
tions for each animal. We selected 90% isopleths as home range boundaries (Fig 1). The
performance of each method was then evaluated based on the following metrics: (a) the ability
to exclude unused (terrestrial) areas from home range estimates, (b) the minimum sample size
of sighting locations required, and (c) the predictive accuracy of probability estimates.

Exclusion of unused areas. To test the ability of each method to exclude terrestrial areas,
we calculated the percent of home range area that overlapped with terrestrial habitat (1:24,000
shoreline feature) using the rgeos package [45] in R version 3.0.2 [30].

Fig 1. Home range polygons estimated using three different methods. The polygons represent the 90% probability isopleth of sea otter number 1392, a
female in Monterey Bay, CA. Note the overlap between home range polygons and land for LoCoH (middle; 17% of the home range overlapped with land) and
KDE (left; 10%), but not for PHRE (right; 0%).

doi:10.1371/journal.pone.0150547.g001
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Sample size requirement. We iterated home range estimates across different sample sizes
of sighting locations (N = 10 to 300 in increments of 10) using data for 26 animals with�300
sighting locations within a two-year period. For each sample size, we subsampled data without
replacement ten times. We identified the minimum sample size requirement (defined as the
minimum N that produced mean home range areas statistically similar to the estimated area at
N = 300) [46] for each animal using a Kruskal-Wallis test and Wilcoxon rank sum tests with a
Bonferroni correction (adjusted cutoff value at p = 0.0167) across sample sizes (data were non-
normally distributed, Kolmogorov-Smirnov test, p<< 0.05) and compared requirements
across methods. To address variation around mean area, we fit an asymptotic curve to the coef-
ficient of variation (CV) and determined at what N the CV reached an asymptote. We com-
pared CV sample size requirements across methods using a one-way analysis of variance
(ANOVA) executed with the aov function (data were normally distributed within methods,
Kolmogorov-Smirnov test, p>> 0.05).

Predictive accuracy of probability estimates. For 26 animals with�300 sighting locations,
we generated home range estimates for each method using 200 sighting locations (greater than
the maximum sample size requirement for all methods; see results below). Rather than restrict
estimates to simplified 90% isopleth boundaries, we tested the predictive accuracy of the proba-
bility grids from PHRE and KDE and created probability grids for LoCoH using the 10–100%
isopleths (at 10% intervals). We evaluated all methods on their ability to predict the location of
100 randomly selected sighting locations (presence points)—independent from those used for
the home range estimate—against a background sample of 1,000 pseudo-absence points, which
were randomly drawn from within 1 km of the sighting locations. We iterated this process ten
times and calculated the average area under the receiver operating characteristic curve (AUC)
[47–49] for each method using the dismo package [50] in R. AUC is a threshold-independent
measure of model performance that calculates the proportion of pixels correctly or incorrectly
classified. The receiver operating characteristic curve depicts the relationship between the pro-
portion of correctly predicted presences (i.e. the true positive rate) against the proportion of
incorrectly predicted absences (i.e. the false positive rate). AUC ranges from 0.5 for a model that
is no better than chance to 1.0 for a model that perfectly predicts presences and absences. AUC
values did not meet assumptions of a normal distribution (Kolmogorov-Smirnov test, p< 0.05),
so we compared across methods using a Kruskal-Wallis test andWilcoxon rank sum tests with a
Bonferroni correction (adjusted cutoff value at p = 0.0167).

An Ecological Application
In addition to comparing the methods, we used all three home range estimators to test predictions
about the effects of habitat structure on sea otter space use. Home ranges should result from ani-
mals maximizing benefits—resources contained within an area—while minimizing costs of travel
and resource extraction [6], so size and shape should be influenced by resource availability and
distribution. Due to physiological limits in sea otter diving capabilities [25,26], the continental-
shelf extent has a large impact on offshore availability of benthic prey. Among study sites for this
project, Monterey Bay has a more extensive continental shelf than Big Sur, so sea otters are capa-
ble of accessing prey resources farther offshore in Monterey Bay. We hypothesized that size and
shape of home ranges are influenced by these differences in resource distribution between sites.

We quantified the amount of available habitat in Monterey Bay and Big Sur, CA based on
coastal bathymetry. We used 200-m resolution bathymetry data [51] to select areas that are
accessible to diving sea otters (0 to −39 m depth, which encompasses the 99th percentile of div-
ing depths for sea otters in Monterey Bay and Big Sur [27]). We tested our hypothesis that hab-
itat bathymetry affects home range shape by plotting home range length (the distance along
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the “as the otter swims” line [10-m isobath] encompassed within the home range polygon) vs.
home range area—where slope represented the length-area relationship (i.e. home range
shape)—and comparing the slopes between sites. Higher slopes in this case indicate more elon-
gated home range polygons. We compared the ability of each method to detect differences in
home range shape between sites by evaluating the assumption of homogeneous slopes of fitted,
log-linearized functions using analysis of covariance (ANCOVA; data were normally distrib-
uted; Kolmogorov-Smirnov test, p> 0.1) [30].

Results

Method Comparison
Exclusion of unused areas. KDE resulted in home range estimates that overlapped the

most with terrestrial habitat (13.59 [10.15, 18.10]% of home range area was on land; note that
statistics are presented as median [quartile 1, quartile 3]), and LoCoH overlap was intermediate
(2.67 [0.43, 7.30]%; Wilcoxon rank sum test of LoCoH versus KDE,W = 2321, p< 0.0001). At
the extreme, the maximum overlap was higher for LoCoH (53.64%) than for KDE (32.22%),
but more LoCoH home ranges (18 out of 126) completely excluded land than KDE home
ranges (0 out of 126). PHRE home ranges completely avoided overlap with land, as the method
defines the probability of unused areas as zero (Fig 2). Note that the precision of PHRE home
range boundaries depends on the resolution of the grid across which the probability values are
estimated, so minimal overlap (<1%) can result if the resolution of the estimation grid is lower
than the resolution of the unusable habitat spatial data.

Sample size requirement. By iterating home range estimates across sample sizes of sight-
ing locations, we found that PHRE required the fewest sighting locations (N = 10 [10, 20]; chi-
squared = 9.92, df = 2, p = 0.007;W = 417, p = 0.006). KDE required 50 (10, 80) sighting loca-
tions, while LoCoH polygons required 40 (10, 80) sighting locations. The requirements set by
the coefficients of variation were statistically similar across methods (df = 2, F = 0.87, p = 0.42)
and suggested using 210 (190, 230) sighting locations to minimize variation in estimated areas
(Fig 3). Note that average area differed by method (log-transformed data were normally dis-
tributed, Kolmogorov-Smirnov test, p = 0.72; one-way ANOVA and Tukey HSD, df = 2,
F = 27.53, p<0.0001), with PHRE tending to produce the largest home ranges (4.10 [2.29,
7.14] km2), KDE producing home ranges of intermediate area (3.23 [1.85, 5.04] km2), and
LoCoH producing the smallest (1.81 [0.70, 3.41] km2). Area of the 90% polygon was sensitive
to the smoothing parameter (which was not directly comparable across methods), so we with-
held interpretation of polygon area and instead used a threshold independent analysis to
address predictive accuracy of the probability estimates.

Predictive accuracy of probability estimates. All methods produced home range proba-
bility estimates that predicted locations of presence and pseudo-absence data better than
chance (Fig 4). KDE and PHRE had high predictive accuracy (AUC = 0.98 ± 0.01
[mean ± standard deviation] and 0.97 ± 0.02 respectively), and LoCoH had lower predictive
accuracy (AUC = 0.93 ± 0.02; df = 2, chi-squared = 454.26, p< 0.0001). Receiver operating
characteristic curves showed that LoCoH displayed low true positive rates, indicating exclusion
of used areas and negative bias (type I error). While KDE had the highest AUC values, the per-
formances of KDE and PHRE were qualitatively similar, and both generally avoided negative
(type I error) and positive bias (type II error).

An Ecological Application
Based on PHRE home range estimates, a typical 8.6-km stretch of coastline (the average home
range length for otters in both habitats) contained 7.23 km2 of accessible area for benthic
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foraging in Monterey Bay and 5.10 km2 in Big Sur (Fig 5). To determine whether sea otter
space use reflected these differences in available habitat, we compared home range shapes
using the slopes of log-linearized functions representing the length-area relationship. The
interaction term for the full linear model (Length ~ Area + Site + Area: Site) was statistically
significant for KDE (df = 122, t = −0.12, p = 0.03), LoCoH (df = 122, t = −0.13, p = 0.01), and
PHRE (df = 122, t = −0.24, p = 0.01), indicating that the assumption of slope homogeneity was
not supported (Fig 6). Based on the magnitude of the difference between slopes of the linear
models (and therefore the difference in home range shapes between sites), PHRE showed the
largest effect size, where home range length was greater in Big Sur than in Monterey Bay (dif-
ference in slope coefficients = 0.24 ± 0.11 for PHRE, and 0.12 ± 0.06 and 0.13 ± 0.06 for KDE
and LoCoH respectively). To interpret the biological significance of this difference, we

Fig 2. Frequency distribution of the percent of home range area that overlapped with land for each
method.We calculated the percent of the 90% probability isopleth that overlapped with land (N = 126 sea
otter home ranges for each method). Three methods are compared: KDE (top), LoCoH (center), and PHRE
(bottom).

doi:10.1371/journal.pone.0150547.g002
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Fig 3. Average (± SD) home range area and the coefficient of variation across sample sizes of sighting locations. Home range estimates were
iterated 10 times across each sample size for 26 different animals (data for only one animal shown, ID = N-1225-03-S). Closed circles show home range area
and open circles show the coefficient of variation. The solid lines denote the asymptotic curves for the data and the dashed lines denote the asymptotic
curves for the coefficients of variation. Three methods are compared: KDE (top), LoCoH (center), and PHRE (bottom).

doi:10.1371/journal.pone.0150547.g003
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calculated the expected difference in home range length in Big Sur versus Monterey Bay. Our
analysis using PHRE indicates that a home range of average area (5.30 ± 4.24 km2) is 1.16 km
longer in Big Sur compared to Monterey Bay. A home range of maximum area for Big Sur
(14.07 km2) is 8.47 km longer than the equivalent home range in Monterey Bay.

Discussion
Methods of describing animal space use have improved in their ability to incorporate complex
environments. Non-parametric kernel estimation methods require fewer assumptions about

Fig 4. Receiver operating characteristic curves comparing predictive accuracy of KDE, LoCoH, and PHRE. Sighting data from 26 animals were used
to generate home range estimates (200 random points were selected for ten iterations). For each iteration 100 presence and 1,000 pseudo-absence data
were generated to calculate the area under the curve (AUC). Plotted curves show composite estimates for all iterations. Calculated curves can be compared
to the grey dotted line, which denotes an AUC of 0.5 where presence and absence predictions are no better than chance.

doi:10.1371/journal.pone.0150547.g004
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Fig 5. Map of available habitat at the Monterey Bay (north of Garrapata State Park) and Big Sur (south of Garrapata State Park) study sites. Because
habitat available to foraging sea otters (between 0 and −39 meters depth) extends farther offshore in Monterey Bay, there is greater opportunity for sea otters
to increase home range area and access to resources by extending home ranges offshore. In contrast, sea otters in Big Sur are forced to extend their home
ranges along the coastline to access more resources. Characteristic home ranges for females at each study area are shown in red (Monterey Bay) and
yellow (Big Sur).

doi:10.1371/journal.pone.0150547.g005
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patterns of animal space use than do parametric density functions or minimum convex poly-
gons [29,52]. Local Convex Hull analysis [19] allows for the identification of moderately com-
plex boundaries, and the lattice-based density estimator [53] allows for recognition of quite

Fig 6. Home range length (km) plotted as a function of area (km2) for otters at two sites in central
California. Data represent values obtained from home range estimates created using KDE (top), LoCoH
(middle), and PHRE (bottom). Solid, black points represent Monterey Bay (N = 92) and open, blue points
represent Big Sur (N = 34). Fitted power functions are shown by solid lines, with standard error shown by
lighter dashed lines. Length increased more rapidly with home range area for sea otters at Big Sur compared
to Monterey Bay (i.e. Big Sur home ranges were more elliptical).

doi:10.1371/journal.pone.0150547.g006
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complex boundaries. However, while species distribution models use habitat variables to
inform predicted distributions (see Guisan and Zimmermann [54] for a review), home range
estimates rarely incorporate continuous habitat features a priori (but see Horne et al.’s [22]
synoptic model of animal space use and Moorcroft et al.’s [24] Mechanistic Home-Range Anal-
ysis for a sophisticated application of this concept using movement models). Habitat selection
analyses (such as maximum entropy [55] or general additive mixed models [56]) make use of
such non-Cartesian dimensions, but they serve a fundamentally different purpose from home
range analysis. PHRE is one of the first methods to directly incorporate continuous features of
the environment in probability estimates of past space use by an individual. PHRE performed
well in including used areas and excluding unused areas, allowing for meaningful statistical
descriptions of home range use in complex, restricted habitats.

Method Comparison
Exclusion of unused areas. PHRE proved to be more successful at excluding terrestrial

areas than the other two home range methods. This is perhaps not surprising, given the meth-
ods of coordinate transformation (PHRE disallows any overlap with land, as unused areas
receive a probability estimate of zero by definition). This particular feature of PHRE will be
extremely useful for coastal-dwelling marine species such as sea otters, or other species where a
complex “hard boundary” needs to be accommodated in home range methods. PHRE was
more successful at this task than LoCoH, which also recognizes hard boundaries in animal
space use [19]. However, PHRE requires that the feature(s) of unusable space be identified a
priori, whereas LoCoH can highlight such boundaries with no a priori information. Thus if the
goal is to estimate home ranges when there is suspicion of hard boundaries (but no means to
pre-identify unusable space), then LoCoH would be a more suitable method, but if there are
complex boundaries separating usable space from unusable space that is already identified (e.g.
land vs. water, forest vs. non-forest) then PHRE may be the more effective method.

Sample size requirement. Depending on methods and species, home range estimates
require sample sizes from 18 [57] to 1,000 [58]. For many species direct field observation is the
only available approach for tracking space use, as satellite tags are only effective for wide rang-
ing species (locations are of limited accuracy) and can be prohibitively expensive. As collecting
sighting data using radio telemetry is labor intensive, requiring relatively few sighting locations
is a desirable trait for a method that is applicable across systems. We found moderate differ-
ences in sample size requirements across methods. KDE and LoCoH required a median of 50
and 40 points respectively for home range area to approach an asymptote, whereas PHRE only
required 10 points. Achieving stabilization of variance estimates required a larger sample size,
approximately 210 sighting locations for all three methods. Note that when applying any of
these methods to a new dataset, the exact sample size at which average home range area stabi-
lizes depends on the distribution of sighting locations, so any estimate of sample size require-
ments will likely be system or species specific. In addition, our estimates of sample size
requirements were made relative to a baseline of 300 sighting locations, which reflected sample
sizes for animals that were well sampled over a two-year period in our study. Although this
analysis indicates that the methods perform well at low sample sizes, we note that these sample
size requirements only pertain to asymptotic estimates of area contained, and not to accuracy
of home range shape and location. Thus, although lower sample sizes are required by PHRE to
estimate the area enclosed within the home range boundary, this does not mean that home
range shape and location are also stable at these lower sample sizes.

Predictive accuracy of probability estimates. An accurate method of home range estima-
tion can identify and therefore predict both used and unused locations. Calculating the AUC
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for each method revealed that KDE predicted the location of presence and pseudo-absence
data with the most accuracy (though only marginally better than PHRE). This result was some-
what surprising, as KDE performed the worst in the overlap test, so we expected that the
method would suffer from low false positive rates (indicating inclusion of unused areas). We
can reconcile this difference by reviewing how the “pseudo-absence data” were produced in the
AUC analysis. Because pseudo-absence points were drawn randomly from any location within
1 km of the sighting locations, the absence data fell on both water and land. This fact leads to
the somewhat paradoxical result that the KDE home ranges had the highest rate of exclusion of
pseudo-absence points, because they were able to exclude both marine and terrestrial points.
This highlights the fact that the AUC comparison should be qualified by the “exclusion of
unusable space” comparison, as poor performance on the latter metric actually allowed for bet-
ter performance on the former.

Of the three methods tested, PHRE was most successful at excluding unused areas, required
the fewest sighting locations, and had high predictive accuracy. However, PHRE also comes
with the challenge of obtaining both habitat data and determining species habitat requirements
a priori. The preferred method for a given species will thus depend on habitat complexity at the
scale of animal space use (to the degree that it influences the risk of type I and II error), avail-
ability of sighting data [10], availability of environmental data, and the degree to which
researchers can identify habitat requirements a priori. For an animal in a relatively unre-
stricted, simple landscape, such as an African buffalo (Syncerus caffer) on a plain with uniform,
high quality foraging opportunities [59], there is little risk of including unused areas (type I
error), so KDE or LoCoH are preferred as they do not require habitat data. Although there is a
risk of excluding used areas (type II error), LoCoH can be useful for describing home ranges in
species that encounter moderately complex boundaries, such as white-faced capuchins (Cebus
capucinus) in forested areas that avoid large clearings and grasslands [60], and have incomplete
or coarse habitat data available. For species that inhabit a restricted and complex environment
with a high risk of incorrectly including unused areas in home range boundaries, such as black
bears (Ursus americanus) that avoid circuitous roads [61], northern pike (Esox lucius) in river-
ine habitats [21], and Arctic foxes in oil-developed areas with 50% of the land surface covered
by water [62], PHRE provides a powerful new method for creating estimates that exclude these
unused areas. PHRE should perform well in both aquatic and terrestrial environments and for
other movement types (such as central-place foragers, where distance from the nest or den site
could be included as an environmental feature), but this remains to be tested.

In addition to excluding unused areas and requiring few sighting locations, PHRE allows
researchers to evaluate the fit of home ranges estimated using multiple habitat features. As
PHRE can be performed in multi-dimensional space, alternative models incorporating differ-
ent habitat variables can be tested against each other. For example, we found that sea otter
home ranges predicted by coastal position and water depth were equally or more accurate than
those predicted by coastal position and offshore distance (AUC using depth = 0.98 ± 0.01). In
these endeavors, it is useful to have at least one feature that is grounded in geographic coordi-
nate space with 1:1 mapping (e.g. distance along a boundary). Note that as more dimensions
are added, alternative methods may be required to select the smoothing parameters [63].
When using more than two dimensions, we found that the reference smoothing parameter in
the ks package provided a good visual fit to the data. By calculating the AUC, researchers can
compare the accuracy of multiple models [64] that incorporate different habitat variables and
choose those that are most biologically appropriate for their study species. While not a substi-
tute for a habitat selection analysis, PHRE could serve as a superior null model in Horne et al.’s
synoptic model [22], which would allow for subsequent interpretation of habitat selection.
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An Ecological Application
In applying PHRE to test the effect of habitat structure on home range shape, we expected that
site bathymetry (a proxy for the distribution of accessible resources) would influence sea otter
space-use. In support of our hypothesis, analyses showed that for a given home range area,
length was greater in Big Sur than in Monterey Bay. Big Sur home ranges were therefore more
elliptical overall, and this difference in home range length between sites increased as overall
size increased. Mirroring their narrower continental shelf, Big Sur sea otters are only able to
increase benthic foraging area by extending their home ranges farther along the coastline. In
contrast, Monterey Bay sea otters are able to access shallow offshore resources, and thus can
increase home range area by extending their home ranges farther offshore.

Differences in habitat and home range shape have implications for sea otter health, as home
ranges of equivalent area are up to 8.47 km longer in Big Sur compared to Monterey Bay.
Home range shape may influence risk of exposure to terrestrial pollutants, including zoonotic
protozoan pathogens such as Toxoplasma gondii, which may be transported into marine eco-
systems via sewage systems and freshwater runoff [65,66]. Encountering longer stretches of
coastline in Big Sur may increase exposure to freshwater outputs from multiple watersheds and
increase risk of encountering terrestrial pollutants for individual sea otters. In addition, otters
with similar home range lengths are expected to realize up to a 37% loss of foraging habitat in
Big Sur compared to Monterey Bay. While these restrictions could be offset by higher prey den-
sity in Big Sur, recent work on sea otter body condition and foraging success suggests that prey
resources are equally or less abundant in Big Sur as compared to Monterey Bay [27].

The effect of habitat structure on home range shape has implications for costs and benefits
of home range use across habitats. It is therefore important to note that the effect of site on
home range shape was most detectable using PHRE. KDE, the method used in previous publi-
cations that define sea otter home ranges [67,68], showed a difference between sites of lower
magnitude and less significance (Fig 6). Similarly, the effect size detected using LoCoH was half
that of PHRE. Using PHRE to detect differences in home range shape will allow researchers to
better evaluate space use trade-offs for species in complex habitats, such as sea otters. Accurate
estimates of home range shape and location were previously unavailable for many species in
restricted habitats; PHRE fills this niche, and has potential applications for research on expo-
sure to anthropogenic disturbances, encounter rates with pathogens, and access to resources.

Conclusion
PHRE performed well in the coastal environment by successfully excluding unused areas from
home range polygons, displaying low sample size requirements, and creating probability estimates
with high predictive accuracy and low bias (minimizing both type I and II errors). This method is
applicable to ecological studies of species whose home ranges are restricted by complex bound-
aries or across environmental gradients. Limitations to this method include the need for environ-
mental data and a priori knowledge of habitat features that influence animal space use. In systems
for which these requirements are met, PHRE can provide more accurate home range estimates for
species in restricted habitats than previous methods, leading to more realistic characterization of
the physical and biotic environments with which an individual interacts. Increased accuracy in
defining home ranges will allow researchers and resource managers to better understand habitat
use requirements and ultimately improve conservation efforts for a variety of species.

Supporting Information
S1 Fig. Step 1 of Permissible Home Range Estimation: Sighting locations of an individual
animal are collected over a set time period. Sighting locations of sea otter 1317, a female in
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Monterey Bay, CA, over a two-year period (2007–2009). Data were collected using VHF radio-
telemetry. Projection: CA Teale Albers, NAD 1927.
(TIFF)

S2 Fig. Step 2 of Permissible Home Range Estimation: Sighting locations are transformed
from geographic coordinate space to landscape space. For sea otters, we assigned coastal
position (ATOS) and distance from shore values to sighting locations. ATOS (As The Otter
Swims) points are numbered sequentially and run along the 10-m isopleth at 500-m intervals
(black points and numbers). Sighting locations (yellow points) are each assigned an ATOS
value (yellow numbers) based on their proximity to ATOS points and a distance-from-shore
value based on their distance to the closest point on land (vector along the red arrows).
(TIFF)

S3 Fig. Step 2 continued: Sighting locations are transformed from geographic coordinate
space (left) to landscape space (right).
(TIFF)

S4 Fig. Step 3 of Permissible Home Range Estimation: A kernel density function is gener-
ated in landscape space. Black points denote ATOS and log(distance) values of the sighting
locations. Warmer colors indicate increasing density values.
(TIFF)

S5 Fig. Step 4 of Permissible Home Range Estimation: Kernel density estimates are back-
transformed to geographic coordinate space and converted to probability estimates. Using
the kernel density function, density values are calculated for each point in a regularly spaced
array along the central California coast. All kernel density values in the array are transformed
to sum to one and reflect probability values. Projection: CA Teale Albers, NAD 1927.
(TIFF)

S6 Fig. Step 5 of Permissible Home Range Estimation: Array points within the 90% proba-
bility kernel are selected and converted to a polygon, which defines the boundaries of the
permissible home range. Grid points with probability values within the 90% probability kernel
are selected and converted to a polygon to define a permissible home range. Projection: CA
Teale Albers, NAD 1927.
(TIFF)

S1 File. R code for generalized PHRE function. The function can be applied to any animal
locations (dataframe) and habitat layers (rasters). Code was created in R version 3.0.2.
(R)

S2 File. Sample R code to apply the PHRE function to the sea otter dataset (see Data Acces-
sibility Statement and S3 File). The user must open the R code file and specify the file paths to
the data and the S3 File. Code was created in R version 3.0.2.
(R)

S3 File. Habitat rasters to use for S2 File. This.csv file contains an array of points (spaced 100
meters apart) along the California coast with ATOS values (ATOScal) and distance-from-
shore values (Distance [m]). TealeX and TealeY coordinates are projected in California Teale-
Albers NAD 1927. The depth (m) at each point is also provided. The S1 code converts this.csv
file into raster layers to define the “landscape space” for Permissible Home Range Estimation
in sea otters.
(CSV)
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