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Abstract: Considerable debate exists on whether exposure to vegetation cover is associated with
better mental health outcomes. Past studies could not accurately capture people’s exposure to
surrounding vegetation and heavily relied on non-spatial models, where the spatial autocorrelation
and latent covariates could not be adjusted. Therefore, a suite of five different vegetation measures
was used to separately analyze the association between vegetation cover and the number of psychotic
and non-psychotic disorder cases in the neighborhoods of Toronto, Canada. Three satellite-based
and two area-based vegetation measures were used to analyze these associations using Poisson
lognormal models under a Bayesian framework. Healthy vegetation cover was found to be negatively
associated with both psychotic and non-psychotic disorders. Results suggest that the satellite-based
indices, which can measure both the density and health of vegetation cover and are also adjusted for
urban and environmental perturbations, could be better alternatives to simple ratio- and area-based
measures for understanding the effect of vegetation on mental health. A strong dominance of spatially
structured latent covariates was found in the models, highlighting the importance of adopting a
spatial approach. This study can provide critical guidelines for selecting appropriate vegetation
measures and developing spatial models for future population-based epidemiological research.

Keywords: vegetation; mental health; spatial modeling; psychotic; non-psychotic; enhanced veg-
etation index; normalized difference vegetation index; soil-adjusted vegetation index; Bayesian;
random forest

1. Introduction

The effect of vegetation on mental health is a topic of considerable debate in recent
years. Several carefully designed studies have obtained contradictory results while as-
sessing the role of vegetation in improving mental health conditions. Although evidence
suggests that vegetation-covered areas can have an ameliorating effect on people’s psy-
chological well-being [1], other studies have reported that vegetation is either weakly
associated with mental health or does not have any consistent and significant effect [2,3].

Contrary to traditional beliefs, good mental health now extends beyond the state of
absence of mental disorders. According to the World Health Organization [4], “mental
health is a state of well-being in which the individual realises his or her own abilities,
can cope with the normal stresses of life, can work productively and fruitfully, and is
able to make a contribution to his or her community”. Common mental health disorders,
which may induce poor mental health conditions in the urban population, can be broadly
categorized into psychotic and non-psychotic disorders [5–7]. Psychotic disorders are
characterized by the loss of touch with reality, leading to delusions, hallucinations, and
disorganized thinking and behavior [6,8]. In contrast, non-psychotic disorders affect an
individual’s state of mind, behavior, and ability to think and feel, which may manifest in the
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form of depressive, anxiety, dissociative, and personality disorders [9,10]. Several studies
have reported an increased prevalence of psychotic disorders in urban areas and found
that urban stressors elevate the risk of developing psychotic disorders [11,12]. Similarly,
non-psychotic disorders were found to be the most prevalent among all the types of mental
health disorders in Ontario, Canada [9], a province that contains five of the fastest growing
urban areas in the country [13].

Therefore, given the global increase in urbanization and the subsequent loss in
vegetation-covered areas [14,15], understanding whether reduced vegetation cover can act
as a putative risk factor for mental health disorders, such as psychotic and non-psychotic
disorders, has become an issue of critical importance [1]. Past studies indicate that urban-
ization is predominantly followed by the loss of surrounding vegetation [14,15], which may
be a potential threat to urban residents’ mental health and well-being [16]. For example,
White et al. (2013) studied the relationship between urban green space and mental distress
and found that individuals living in areas with more urban green space reported having
lower mental distress [16]. Additionally, past studies reported that even simple walks
within vegetation-rich areas such as parks or streets could help mitigate cognitive fatigue
and depression in adults [17,18]. Similar benefits of the vegetation and natural environment
were found for children with attention deficit hyperactivity disorder (ADHD) in urban
areas. A twenty-minute walk in an urban park (having a prominent presence of vegetation)
yielded elevated attention performance for these children compared to walks in downtown
and residential areas [19].

Unfortunately, some methodological constraints in studying vegetation and mental
health are rarely addressed in epidemiological studies. The first challenge stems from the
fact that characterizing or defining “vegetation” in urban areas can be extremely difficult,
since vegetation comes in different forms. Ideally, vegetation can be defined as a collection
of plants that includes, but is not limited to, tall trees in protected areas, shrubs and bushes
in parks, and ornamental plants in gardens and on rooftops [20]. Therefore, the association
between vegetation and mental health could show differential sensitivity depending on
the type of vegetation measure [1]. The type of vegetation measure determines whether
all vegetation forms in an urban area are considered during the study. Ideally, the best
vegetation measure will be the one that can effectively capture people’s perception of and
interactions with surrounding greenness in the study area [1,21,22].

In this regard, remote sensing- or satellite-based indices could be used to measure
vegetation cover in urban areas. Several prominent indices are available, which include the
normalized difference vegetation index (NDVI) [23], enhanced vegetation index (EVI) [24],
and the soil-adjusted vegetation index (SAVI) [25]. All these indices utilize the type and
intensity of electromagnetic waves reflected from vegetation cover to detect vegetation in
an area [26]. Rugel et al. (2017) discussed that NDVI could be used to effectively character-
ize vegetation in population-level mental health research [27]. However, Markevych et al.
(2017) noted that highly sensitive vegetation indices such as EVI and SAVI could be more
useful compared to the conventionally used NDVI and other polygon-based measures of
vegetation [1]. Unlike NDVI, the computation process of these indices adjusts for atmo-
spheric disturbances, background canopy cover, and spurious soil brightness [23,24,26]
and thus can better capture the vegetation signals registered in satellite images. However,
despite their computational differences, all three indices are able to measure both the
areal extent and quality or the biomass vigor of vegetation cover [1,25,28]. In contrast, the
commonly used polygon- and area-based vegetation measures [1,29,30] can only provide
information on the areal extent and cannot measure the quality of the vegetation cover.

The second major methodological challenge stems from the complexities in selecting
an appropriate statistical technique to study the association. The distributions of mental
health disorder cases and vegetation cover are both spatially structured due to their varying
levels of distribution in space [31,32]. Consequently, the use of non-spatial models such
as multiple linear or logistic regression models, which assume structural stationarity of
the dependent and independent variables over space, can be a gross oversimplification of
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the real-life scenario [33], especially when mental health disorder cases or vegetation cover
are spatially autocorrelated. Spatial autocorrelation refers to a systematic spatial variation
and originates when the observations (for example, the mental health disorder cases) in an
area are affected by the observations of the neighboring areas [34]. Spatial autocorrelation
may violate the core model assumptions of commonly used statistical models, which treat
observations and residual errors as independent [35,36]. Hence, spatial autocorrelation or
spatial dependence may impair the estimation of beta (β) coefficients and the accuracy of a
significance test.

Furthermore, not all spatial techniques can measure the effects of latent covariates in
the regression models [37]. These latent covariates are unmeasured socioeconomic and
cultural factors that affect the distribution of mental health disorder cases in the study
area [38]. If unadjusted, these covariates can obscure vegetation’s actual effect on mental
health and can confound the results. Additionally, some frequentist spatial models, such as
the spatial error and spatial lag models, consider spatial effects as a nuisance and adjust
them accordingly during the estimation of β coefficients [36,37]. As a result, these models
cannot separately measure the relative contributions of spatial and non-spatial latent
covariates in the data generating process [38–40], which are essential for understanding
the nature of risk factors and devising targeted interventions.

Contrary to these frequentist approaches, Bayesian spatial modeling (BSM) can be
applied to adjust for the spatial autocorrelation and capture the spatial structure of the
covariates through the integration of a spatial random effect term (si) in the models.
Additionally, any overdispersion in the count data of mental health disorders could be
adjusted using a non-spatial or spatially unstructured random effect term (ui) [39,40].
Furthermore, epidemiological studies are often interested in the area-wise relative risk of
mental health disorders, which cannot be estimated precisely when the population size
is too small or large. For example, extreme relative risk values are commonly associated
with areas having small populations, while statistically significant relative risk values
are associated with areas with large populations [40]. These artifacts owing to variations
in the population size can also be adjusted in Bayesian models through the process of
“borrowing” information from adjacent areas. Under this process, the models carry out
statistical smoothing and incorporate the prior information (evidence from the data of
surrounding areas) and the observed data of the area for which the risk will be estimated.
Therefore, any statistical artifacts such as small data counts and large variations in sample
size or study populations are inherently adjusted within the Bayesian models [39–41].
Consequently, through the application of BSM, it is possible to accurately identify areas
with high risk of mental health disorders due to the influence of putative risk factors like
low vegetation content.

Although some studies have attempted to understand the association between vegeta-
tion and mental health [27,42], there is a paucity of studies that have incorporated spatial
statistics to understand how the selection of various vegetation measures could influence
the association between vegetation and mental health. Hence, to address the research
gap, we developed a spatial study based on the hypothesis that the type of vegetation
measure could affect the significance of the association between vegetation and psychotic
and non-psychotic disorder cases. In order to test this hypothesis, we used remote sensing
and machine learning techniques to develop three vegetation indices (EVI, SAVI, and
NDVI) and an area-based vegetation measure from satellite images. We also retrieved
the conventionally used tree cover dataset from the Toronto Open Data Portal to compare
with the satellite-based measures. Finally, we modeled the relationship between the two
prevalent mental health disorders in urban areas, psychotic and non-psychotic disorders,
and each of the vegetation measures using the Bayesian spatial modeling approach. The
results were then compared in terms of the significance of association, relative risk values
and the influence of spatial and non-spatial latent covariates in the Bayesian models. Thus,
the study aimed to answer two specific research questions:
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1. Can the type of vegetation measure affect the significance of the association between
vegetation and psychotic and non-psychotic disorders?

2. What type of vegetation measures are associated with these two types of mental
health disorders?

2. Materials and Methods
2.1. Study Area

This study focused on the city of Toronto, with a population of 2,731,571 in 2016
(Canadian census, 2016). The study was conducted at the neighborhood level, and all 140
neighborhoods were considered in the analysis. The neighborhoods were defined by the
Social Policy Analysis and Research Unit in the Social Development and Administration
Division of the City of Toronto [38]. These neighborhoods are geographic units created
for planning and service delivery purposes by aggregating the Statistics Canada Census
Tracts into meaningful spatial units [43]. The city of Toronto is one of the most urbanized
and populous cities in the province of Ontario, Canada, and due to the high urbanization
rate, the built environment is becoming the dominant land cover type in the area. The
proliferation of the built environment is believed to have drastically reduced the soil
volume available for the growth of small vegetation and has also decreased the aerial space
for the growth and expansion of large trees. The increase of built surfaces has led to a rise
in non-permeable surfaces and an increase in the ground salinity level due to the use of
de-icing salt on the roads during the winter season. The environmental impacts of these
changes are the dehydration and death of natural flora [44].

2.2. Data Preparation
2.2.1. Mental Health Disorders

The mental health disorder data, covering the period from 1 April 2015 to 31 March
2016 (fiscal year 2015), were retrieved from the Ontario Community Health Profiles Partner-
ship database [45]. The dataset was a part of the study “Enrollment, Access, Continuity and
Mental Health Gaps in Care (ICES Project No. 2018 0900 992 000)”, which was supported
by the Institute for Clinical Evaluative Sciences (ICES), funded by the Ontario Ministry
of Health and Long-Term Care (MOHLTC). For this study, we extracted only the count
data for psychotic and non-psychotic disorder cases, which are the two prevalent men-
tal health disorders in the study area. Further details on the data can be found in the
Supplementary Materials.

The observed counts on psychotic and non-psychotic disorder cases for both sexes
(males and females) and ages 0+ years were used as outcome variables to analyze how
indices- and area-based measures of vegetation can impact the association between vegeta-
tion cover and psychotic and non-psychotic disorders among gender and age groups. The
population at risk was also accounted for in the BSM models by estimating the expected
counts of psychotic and non-psychotic disorders. The original data were divided into
“enrolled” and “non-enrolled” categories. The term “enrolled” relates to the primary care
enrollment models found in the Client Agency Provider Enrollment (CAPE) tables. The
CAPE tables are used to identify patients enrolled in different primary care models over
time [9]. As the target was to model the distribution of the mental health disorder cases
regardless of the patient’s enrollment statuses in the primary care models, enrolled and
non-enrolled cases were combined for the analyses. The final dataset contained counts of
all the Ontario permanent residents with an Ontario Health Insurance Plan (OHIP) and
having OHIP claims for the mental health conditions listed in Table 1 [9,45].
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Table 1. Categories and sub-categories of mental health disorders used in this study.

Type Sub-Category OHIP Codes of Sub-Category

Psychotic disorders

Schizophrenia 295
Manic-depressive psychoses, involutional melancholia 296

Other paranoid states 297
Other psychoses 298

Non-psychotic disorders

Anxiety neurosis, hysteria, neurasthenia,
obsessive-compulsive neurosis, reactive depression 300

Personality disorders 301
Sexual deviations 302

Psychosomatic illness 306
Adjustment reaction 309
Depressive disorder 311

The expected counts of the mental health disorders were derived separately for the
psychotic and non-psychotic cases using an indirect (internal) standardization method.
The expected counts of psychotic or non-psychotic disorders correspond to the overall rate
of psychotic or non-psychotic disorder cases multiplied with the residential population
of each of the neighborhoods. This process involved applying the sex-specific rates to the
population structure of each neighborhood and calculating the expected number of cases.
As the data provider did not use the age of the individuals to group the data for psychotic
and non-psychotic disorder cases, only the sex-specific rates could be used to estimate the
expected counts of psychotic and non-psychotic disorder cases.

The quantile maps in Figure 1 show that both the high and low rates of mental health
disorders are concentrated in particular parts of the Toronto area, suggesting that the
mental health disorder cases could be spatially autocorrelated. Since it is necessary to
confirm the presence or absence of spatial autocorrelation in the data prior to selecting an
appropriate modeling technique, the global Moran’s I test was carried out using the GeoDa
software (https://geodacenter.github.io/, accessed on 25 September 2019) to test for spatial
autocorrelation. The results suggested the presence of significant spatial autocorrelation in
the data, which indicated that a spatial modeling technique would be essential to study the
association between vegetation and the different types of mental health disorder cases. The
details of the spatial autocorrelation test can be found in the Supplementary Materials.

2.2.2. Landsat 8 Satellite Images

Three satellite images of the Landsat Operational Land Imager and Thermal Infrared
Sensor (OLI-TIRS) or Landsat 8 were retrieved from the United States Geological Survey’s
(USGS) EarthExplorer data repository [46]. A search criterion of less than 10% cloud cover
was used to exclude the images with a considerable presence of clouds, since cloud cover
in satellite images can considerably influence the calculation of the vegetation indices [26].
Three images, having an average cloud cover of 2.67% and a spatial resolution of 30 m,
were required to cover the study area. Two of these images were acquired on 20 May
2016, and the third image was captured on 14 June 2016. The year 2016 was selected to be
consistent with the data period of the mental health disorder dataset. Similarly, the May
and June months were chosen to estimate the vegetation content of the spring–summer
seasons, because the vegetation densities during these months become stable after a cold,
snowy winter and before a chilly fall season.

Radiometric corrections were conducted by converting the raw digital numbers to
the top-of-atmosphere (TOA) reflectance [47]. Furthermore, atmospheric corrections were
applied to remove any haze from the images through the identification of the darkest pixel
value in each band and subtracting this value from every pixel in the satellite image [48].
Finally, the radiometrically and atmospherically corrected images were mosaiced and
cropped using the boundary of the city of Toronto to produce a single image for the analysis.

https://geodacenter.github.io/
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2.2.3. Construction of the Vegetation Indices

The three vegetation indices, EVI, NDVI, and SAVI, were generated using the pro-
cessed Landsat 8 image for Toronto. The details of the vegetation indices and computational
formulas used in this study can be found in the Supplementary Materials. The Raster Cal-
culator in ArcMap 10.7 software (https://desktop.arcgis.com/en/arcmap/, accessed on
25 November 2019) from ESRI (Redlands, CA, USA) was used to perform the band opera-
tions to produce the rasters of vegetation indices. The formulas for the computation of these
vegetation indices were obtained from the USGS websites for each of the indices [23,24,49].
These three indices are computed from different ranges of wavelengths in the electromag-
netic spectrum (referred to as bands), reflected from the vegetation surface and received
by the satellite. The reflectance of these bands, in turn, is governed by factors such as
the type of plant, water retention capacities of the tissues, chemical and morphological
characteristics of the leaves, and the level of photosynthetic activities in the plant [50–52].

The NDVI raster was used to extract the vegetation-covered areas and to mask out
the non-vegetation features like water bodies, bare soil, and built-up surfaces in all three
vegetation rasters. This process was necessary to remove the negative values representing
the non-vegetation features in the vegetation indices [1]. Finally, the mean values of the
indices for each neighborhood were extracted using the Zonal Statistics tool in ArcMap 10.7.

2.2.4. Developing the Land Use/Land Cover Model Using the Random Forest Ensemble

A land use/land cover (LULC) model was developed to estimate the percentage of
vegetation cover in the Toronto area. This LULC model was developed to generate an
area-based measure of vegetation through the application of an advanced machine learning

https://desktop.arcgis.com/en/arcmap/
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ensemble, which could be compared with the area-based measure of vegetation derived
using the automated extraction of features and custom-made procedures (such as the tree
cover dataset from the Toronto Open Data Portal). Furthermore, this LULC model also
allows a comparison between the vegetation indices that are able to estimate the plant
biomass vigor and the area-based measures that are simply able to measure the areal extent
of vegetation cover.

The Random Forest (RF) classifier was chosen to develop the LULC model. This
is because RF is one of the most powerful machine learning classifiers to date and can
handle the classification of both multispectral and hyperspectral satellite images in noisy,
unbalanced and non-linear data settings [53–55]. The use of the RF ensemble ensures
significantly better classification accuracies, especially when the classification for areas
such as Toronto could be heavily complicated due to the mixture of built environment
and natural features [56,57]. For example, it would be challenging for an algorithm to
distinguish between a green-colored building and a tree with a large green canopy.

This study employed the “randomForest” package in R for the classification pro-
cess [58]. Google Earth aerial imagery for the Toronto area in 2016 was used to generate the
training data to be later used in the RF algorithm. On-screen visual interpretation and the
NDVI image were used to assist the generation of the training dataset for the vegetation
class. A total of 400 training data points were generated to develop the LULC model. A
uniform number of training data (100 per class) was maintained for all the four land cover
classes listed in Table 2. Furthermore, to ensure a homogenous distribution of the training
dataset over the study area, all the parts (north, south, east, and west) of the study area
were equally considered for generating the training data. Finally, to assess the accuracy
of the developed model, 25% of the training data was retained for accuracy assessments,
which means 75% of the data was used for training the RF model.

Table 2. Land cover classes developed in this study.

LULC Types Description

Bare soil Exposed soils, construction sites

Built-up Residential, commercial and services, industrial, transportation, roads, mixed urban, and other urban

Vegetation Deciduous forest, mixed forest lands, palms, conifer, scrub, and others

Waterbody Permanent and seasonal wetlands, inland water bodies, low-lying areas, marshy land, rills and gully, swamps

A different number of input features (mtry) and the number of decision trees (ntree)
parameterization were performed to inspect the out-of-bag (OOB) error rates. Finally, an
RF model was trained with a ntree and mtry setting that contributes to the lowest OOB error
rate. Consequently, the final RF model on the training data was trained using the number of
decision trees (ntree) as 500 and the number of input features (mtry) as 3. This trained model
was then used for predicting LULC classes in the satellite image. Lastly, the vegetation-
covered areas were extracted from the LULC raster and the “Tabulate Intersection” tool in
the ArcMap software was used to estimate the percentage of area covered by vegetation
(hereinafter referred to as Veg_RF) in each neighborhood.

2.2.5. Processing the Tree Cover Dataset from the Open Data Portal

The tree cover dataset was retrieved from the “Treed area” data in the Toronto Open
Data Portal. The City of Toronto’s Open Data Portal is a public data repository that
allows developers, students, and researchers to easily avail spatial and non-spatial datasets
related to the functioning of the city. The tree cover dataset was developed via automated
extraction from aerial Light Detection and Ranging (LiDAR) using custom-developed
procedures and open-source tools [59] and was a representation of the physical features
(trees) that were visually identifiable in an aerial photograph. The data was downloaded in
a shapefile (.shp) format and was converted to the Universal Transverse Mercator (UTM)
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projection for further use. The percentage of area covered by trees in each neighborhood
(hereinafter referred to as Tree_OD) was estimated using the “Tabulate Intersection” tool
in ArcMap.

2.2.6. Adjusting for Potential Confounders

Socioeconomic factors can profoundly impact the mental well-being of people of all
ages and sexes [60–62]. For example, psychotic disorders like schizophrenia were found
to be more prevalent in lower than in higher socioeconomic groups [61]. Similarly, past
research found association between low socioeconomic status and psychotic disorders,
which may even lead to mood disorders and self-harm in adults [63]. Factors such as mate-
rial deprivation, residential instability, dependency, and ethnicity have well-documented
influences on mental health conditions [64–67]; therefore, these socioeconomic covariates
were retrieved from the Ontario Marginalization Index (OMI) [68] and adjusted as po-
tential confounders in the models. The OMI is an area-based index that highlights the
differences in marginalization between geographic areas in Ontario and is comprised of
four dimensions: material deprivation, residential instability, dependence, and ethnic
concentration. The weighted average scores for these four variables were used, with a high
score representing high material deprivation, residential instability, dependence, or ethnic
concentration. In this regard, high ethnic concentration implies a high concentration of
recent immigrants and visible minorities [68].

In order to avoid multicollinearity due to the addition of the four OMI variables,
Pearson correlation coefficient [69] and multicollinearity [70] tests were conducted to check
for significant correlations and whether these dimensions could be linearly predicted from
one another. The results of the tests indicate that the OMI variables do not demonstrate
sufficient inter-correlations and multicollinearity. Therefore, all four of the variables could
be included in a regression model. The details of the socioeconomic covariates and the
correlation and multicollinearity tests can be found in the Supplementary Materials.

In addition to the socioeconomic factors, substance use disorder may have a marked
effect on the mental well-being of people [71,72]. To adjust for the effect of substance use,
the age and sex standardized rate of substance use disorders (both sexes, 0+ age, and per
1000 population) was retrieved from the Ontario Community Health Profiles Partnership
database [9,45] and added as a potential confounder in the Bayesian models. The summary
statistics of the variables used in this study are given in Table 3.

Table 3. Summary statistics of the key variables used to study the association between vegetation and mental health disorders.

Variables Minimum Mean (Standard Deviation) Maximum

Dependent Variables
Number of psychotic disorders 94 282.864 (±152.637) 861

Number of non-psychotic disorders 757 2239.850 (±964.286) 5523

Independent Variables (vegetation)
EVI 0.037 0.052 (±0.006) 0.0679

NDVI 0.473 0.561 (±0.035) 0.634
SAVI 0.041 0.058 (±0.006) 0.075

Percentage of vegetation cover (Veg_RF) 0.501 20.730 (±13.267) 54.279
Percentage of tree cover (Tree_OD) 0.100 6.540 (±5.611) 34.117

Independent Variables (others)
Material deprivation (OMI) −1.520 0.250 (±0.895) 3.068
Residential instability (OMI) −0.785 0.723 (±0.783) 3.009

Dependency (OMI) −1.262 −0.228 (±0.393) 0.897
Ethnic concentration (OMI) −0.317 0.902 (±0.838) 3.282
Substance use disorder rate 2.410 9.988 (±4.392) 30.54
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2.2.7. Bayesian Spatial Modeling

The association between vegetation and mental health was analyzed using the Bayesian
spatial modeling (BSM) technique. For this process, the observed counts, Oik, of the mental
health disorder k in neighborhood i was assumed to follow a Poisson distribution. In
this study, k = 1 or 2, representing psychotic and non-psychotic disorders, respectively.
Similarly, i = 1, 2, . . . n, where n is the total number of neighborhoods in the city of Toronto
(n = 140). Hence, Equation (1) can be used to define the distribution of the observations.

Oik ∼ Poisson(λik) (1)

where λik represents the expected value of the mental health disorder k in the neighbor-
hood i.

Equation (1) could be further modified to Equations (2) and (3). Equation (2) shows
that the observed count of a particular mental health disorder in a neighborhood is a
product of the unknown area-specific relative risk of the disorder, rik, and the expected
count, Eik. The Eik for each neighborhood was calculated earlier using the overall rate of
the disorder, k, multiplied with the residential population of each of the neighborhoods. In
contrast, the rik was estimated using the Bayesian models.

Therefore,
λik = Eik × rik = Eikrik (2)

Applying logarithm to both sides of Equation (2),

log [λik]= log [Eik] + log [rik] (3)

The unknown area-specific relative risk can be assumed to be associated with the
attributes of the population (socioeconomic) and environmental characteristics, or both [40].
As a result, for this study, the rik can be substituted by the risk owing to the area-specific
variations in the vegetation cover.

log [λik]= log [Eik] + β0 + β1X1i (4)

where X1i is the variable for vegetation measure (EVI, NDVI, SAVI, Veg_RF, or Tree_OD).
Additionally, as noted earlier, the socioeconomic conditions (represented by the four

OMI variables) and the rate of substance use can influence the observed counts of psychotic
and non-psychotic disorders in an area. Consequently, the material deprivation (X2i),
ethnic concentration (X3i), residential instability (X4i), dependency (X5i), and the age
and sex standardized rate of substance use disorders (X6i) were added into the model as
potential confounders. Hence, Equation (4) gives

log [λik]= log [Eik] + β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + β6X6i (5)

Although Equation (5) gives the desired model, several problems need to be consid-
ered before finalizing the model equation. First, the overdispersion in count data of the
observed cases of mental health disorders is adjusted. One of the core assumptions of the
Poisson model is that Var [Oik] = λik, where Var [] represents the variance. This implies
that for a proper Poisson model, the mean of the observations needs to be equal to the
variance of the observations. However, during overdispersion, Var [Oik] > λik, which
means the variance in the count data is higher than expected by the modeled Poisson dis-
tribution. This overdispersion stems mainly from the heterogeneity in the individual-level
risk of contracting the different types of mental health disorders, which translates to the
heterogeneity observed in the count data of the psychotic or non-psychotic disorder cases.
This heterogeneity arises mainly due to the differences in individual lifestyles, genetic
characteristics, and poor socioeconomic and family conditions.

Hence, to adjust for the overdispersion, a Poisson lognormal model was adopted,
where the individual-level processes (leading to the variations in individual-level risks)



Int. J. Environ. Res. Public Health 2021, 18, 4713 10 of 25

were modeled using Poisson distribution; however, the intensity parameters of the model
varied (within any neighborhood) following a Gamma (Γ) distribution. The resulting
compound model has Var [Oik] > λik, where overdispersion can be captured and ad-
justed [40]. Following the work of Law et al. (2006), two Gaussian random-effects terms,
uik and sik, were included with Equation (5) to construct the targeted Poisson-Gamma
model [40]. The inclusion of uik and sik helps capture the non-spatial and spatial structures
in the unknown area-specific relative risks due to unmeasured or latent covariates. Thus,
Equation (5) becomes

log [λik]= log [Eik] + β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + β6X6i + uik + sik (6)

The models given by Equation (6) were fitted using the WinBUGS software (https:
//www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/, accessed on 5
December 2019) from The BUGS Project (Cambridge, London). The prior information for
the β1, β2, β3, β4, β5, and β6 terms were specified as a normal distribution with an expected
mean of 0 and a precision (1/variance) of 0.00001. For the spatially non-structured (uik) and
structured (sik) random effect terms, an independent normal distribution and the intrinsic
conditional autoregressive (ICAR) distribution were specified. The prior information of
precision parameters for the unknown random effects was specified as a Γ distribution (a,b)
with a mean of a

b and variance of a
b2 . For this analysis, the prior distribution of Γ (0.001,

0.001) was used for both the random effect terms. The intercept term, β0, was assigned
with an improper uniform prior, dflat(), due to the inclusion of a sum-to-zero constraint on
the random effects.

In order to understand the relative contributions of the spatially structured (sik) and
non-structured (uik) random effect terms, the posterior distribution of the quantity ψ was
calculated, which could be expressed as follows [73]:

ψ =
SDsik(

SDsik + SDuik

) (7)

where SDsik is the empirical marginal standard deviation of sik and SDuik is the empirical
marginal standard deviation of uik.

As ψ→ 1 , the spatially structured random effect (sik) would dominate the model
compared to the non-structured effect (uik); thus, the variation in the area-specific relative
risk due to unmeasured covariates would be mainly spatial in nature. Conversely, when
ψ→ 0 , the non-structured random effect dominates the model, and the effect of spatial
variation can be considered as negligible.

Initial values were assigned to the parameters, from which the estimation began and
converged to the target posterior distribution. The convergence was checked by running
two chains with widely differing initial values and by visual inspection of the trace plots,
the serial autocorrelation function, and the Gelman-Rubin diagnostic. The trace plots were
inspected to check whether the samples from the chains scattered around a stable mean,
while the autocorrelation graphs were checked to see whether the graphs had approached
zero. The Gelman-Rubin graphs were checked to observe whether the ratio of the between-
and within-chain variances converged towards 1.0.

Once convergence was reached, the accuracy of the posterior estimate was assessed
using the Monte Carlo (MC) error of the posterior mean for each parameter. The accuracy
of the estimation and the number of samples taken to generate the posterior estimate were
considered satisfactory when the MC error was <5% of the sample (posterior) deviation.
The deviance information criterion (DIC) and the number of effective parameters (pD) for
each model were recorded to assist the selection of the best model.

DIC = D + pD (8)

where D is the posterior mean of the deviance.

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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The model given by Equation (6) was repeated separately for psychotic and non-
psychotic disorders and for each of the vegetation measures (EVI, NDVI, SAVI, Veg_RF,
and Tree_OD). Hence, a total of 10 models were required for this part of the analyses.
The models of the same outcome variable (for example, psychotic or non-psychotic) but
using different vegetation measures were compared to understand the differential effect of
vegetation measures on the association between vegetation and the two types of mental
health disorders. In addition to DIC and pD, comparisons between the models were made
in terms of the area-specific relative risks and the role of different vegetation measures in
determining the significance of the association.

2.2.8. Assessment of the Relative Risk of Mental Health Disorders Due to the Variations in
Vegetation Content

The relative risk values from the models of the five vegetation measures were checked
to understand if they substantially differed from one another. The posterior mean values
from the Bayesian models and the median and the interquartile ranges of the relative
risk values were assessed using box plot diagrams to analyze the differences in absolute
magnitude. Afterward, the results from the Bayesian spatial models (95% CI, DIC and pD)
and the risk value assessments were used to select one (out of the five vegetation measures)
to map the relative risks of psychotic and non-psychotic disorders in the study area.

The relative risk being mapped was owing to the variations in vegetation content
after adjusting for potential confounders and unmeasured covariates. Equations (3) and (6)
show that the relative risk can be defined using the following model components:

rik = exp[β0] ∗ exp[β1X1i] ∗ exp[β2X2i] ∗ exp[β3X3i] ∗ exp[β4X4i] ∗ exp[β5X5i] ∗ exp[β6X6i]∗
exp [uik]∗ exp [sik]]

(9)

3. Results
3.1. Vegetation Indices

Figure 2 illustrates the false-color composite of the raw Landsat-8 image, the three
vegetation indices (EVI, NDVI, and SAVI), and the area-based measures of vegetation
cover (Veg_RF and Tree_OD). The false-color composite image displayed here utilizes
the traditional color infrared image visualization technique for satellite images and the
band combination of near-infrared, red and green (instead of red, green, and blue), to
vibrantly illustrate vegetation in bright red color [14]. Accuracy assessments revealed quite
high accuracies of the final LULC model used to derive the Veg_RF variable. The user’s
accuracy and the Kappa coefficient values for the final LULC model were 0.967 and 0.909,
respectively. The developed LULC model suggested that 22.5% of Toronto was covered by
vegetation in 2016.

Comparing the different vegetation measures can provide further insights. Figures 2 and 3
show that the three constructed vegetation indices showed a gradation of green color to
illustrate both the density and health of the vegetation cover. Figure 3 also shows that
the yellow patches in the NDVI contained a marked presence of green color compared to
the other two indices. On closer inspection and further magnification of Figure 2, high-
resolution Google Earth images in Figure 4 indicate that these yellow and small green
patches actually represented built-up structures and surrounding vegetation, respectively.
Hence, there is evidence of spectral confusion or false detection of other non-vegetation
features as vegetation-covered areas.

Interestingly, despite having different computational processes (Supplementary File,
Table S2), EVI and SAVI could be seen as more similar to each other compared to NDVI. In
contrast, both area-based measures of vegetation only showed the areal-extent of vegetation,
as indicated by the solid green color. The Tree_OD data severely underestimated the
vegetation content compared to the other four satellite-derived vegetation measures. The
areal extent of vegetation cover detected by Veg_RF matched more closely with NDVI as
compared to EVI or SAVI.
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Figure 2. The macro-scale differences between the three vegetation indices and the area-based measures of vegetation cover.
The shades of green represent the vegetation-covered areas for all the three vegetation indices, and the solid green color
represents vegetation cover in the area-based measures. The black selection box in the raw image represents the portion of
the study area that was zoomed-in in Figure 3 for better visualization of the micro-scale differences.
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Figure 3. The micro-scale differences between the three vegetation indices and the area-based measures of vegetation cover.
The shades of green represent the vegetation-covered areas for all the three vegetation indices, with darker shades of green
representing dense and healthy vegetation. The yellow and the purple areas mainly represent the non-vegetation areas in
the indices. The solid green color represents vegetation cover, while the white color represents non-vegetation regions in the
area-based measures.
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Figure 4. Google Earth images of a portion of the study area. The images show (a) a segment of the
study area with vegetation cover and (b) a magnified image of the segment.

3.2. The Association between Vegetation and Psychotic and Non-Psychotic Disorders

The results of the Bayesian spatial modeling were used to analyze the association
between various measures of vegetation and psychotic and non-psychotic disorders. The
results of the analyses are tabulated in Table 4. The results indicate that only EVI and
SAVI were significantly associated with both psychotic and non-psychotic disorders. These
two vegetation indices were negatively associated with the number of psychotic and
non-psychotic disorder cases, implying that low counts of mental health disorder cases
were observed in areas with high EVI and SAVI values. The magnitude of the association
between EVI and psychotic disorders was β1 = −4.056 (95% CI: −8.147, −0.025) and that
between EVI and non-psychotic disorders was β1 = −2.442 (95% CI: −4.735, −0.172). Simi-
larly, the magnitude of the association of SAVI with psychotic disorders was β1 = −3.676
(95% CI: −7.350, −0.008) and that with non-psychotic disorders was β1 = −2.213 (95% CI:
−4.372, −0.121). Neither NDVI nor any of the area-based vegetation measures (Veg_RF
and Tree_OD) showed any significant association with the psychotic and non-psychotic
disorder cases.
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Table 4. Summaries of results from Bayesian spatial modeling to analyze the association between vegetation and psychotic
and non-psychotic disorders. The italicized values are significant at a 95% credible interval (CI).

Posterior Means Summaries EVI NDVI SAVI Veg_RF Tree_OD

Psychotic disorders

β0
(95% CI)

−0.287
(−0.514, −0.057)

−0.148
(−0.508, 0.206)

−0.286
(−0.513, −0.059)

−0.477
(−0.583, −0.375)

−0.492
(−0.591, −0.395)

β1 (vegetation measure)
(95% CI)

−4.056
(−8.147, −0.025)

−0.626
(−1.249, 0.000)

−3.676
(−7.350, −0.008)

−0.001
(−0.005, 0.004)

−0.001
(−0.006, 0.005)

β2 (material deprivation)
(95% CI)

0.122
(0.077, 0.166)

0.117
(0.073, 0.161)

0.121
(0.076, 0.165)

0.108
(0.062, 0.153)

0.112
(0.068, 0.156)

β3 (ethnic concentration)
(95% CI)

−0.118
(−0.169, −0.064)

−0.118
(−0.169, −0.065)

−0.117
(−0.169, −0.063)

−0.121
(−0.172, −0.067)

−0.123
(−0.175, −0.067)

β4 (residential instability)
(95% CI)

0.179
(0.135, 0.221)

0.180
(0.137, 0.221)

0.179
(0.135, 0.221)

0.179
(0.136, 0.221)

0.181
(0.138, 0.223)

β5 (dependency)
(95% CI)

−0.057
(−0.124, 0.011)

−0.057
(−0.125, 0.011)

−0.056
(−0.124, 0.012)

−0.057
(−0.126, 0.012)

−0.061
(−0.130, 0.008)

β6 (substance use disorder)
(95% CI)

0.041
(0.033, 0.049)

0.041
(0.033, 0.049)

0.041
(0.033, 0.049)

0.041
(0.033, 0.049)

0.041
(0.033, 0.049)

ψ
(95% CI)

0.537
(0.231, 0.792)

0.519
(0.223, 0.779)

0.539
(0.236, 0.792)

0.501
(0.203, 0.787)

0.522
(0.213, 0.798)

pD 102.66 102.589 102.642 103.662 103.683
DIC 1271.530 1271.580 1271.560 1272.160 1272.110

Non-psychotic disorders

β0
(95% CI)

0.098
(−0.031, 0.230)

0.015
(−0.195, 0.227)

0.098
(−0.037, 0.236)

−0.073
(−0.135, −0.012)

−0.062
(−0.122, −0.003)

β1 (vegetation measure)
(95% CI)

−2.442
(−4.735, −0.172)

−0.081
(−0.446, 0.280)

−2.213
(−4.372, −0.121)

0.002
(−0.002, 0.006)

0.004
(−0.001, 0.008)

β2 (material deprivation)
(95% CI)

0.014
(−0.014, 0.041)

0.009
(−0.019, 0.036)

0.013
(−0.015, 0.040)

0.015
(−0.012, 0.041)

0.007
(−0.020, 0.033)

β3 (ethnic concentration)
(95% CI)

−0.114
(−0.147, −0.082)

−0.115
(−0.148, −0.082)

−0.114
(−0.146, −0.081)

−0.115
(−0.147, −0.083)

−0.107
(−0.140, −0.075)

β4 (residential instability)
(95% CI)

0.055
(0.028, 0.082)

0.057
(0.029, 0.084)

0.055
(0.028, 0.082)

0.062
(0.035, 0.089)

0.056
(0.029, 0.082)

β5 (dependency)
(95% CI)

0.007
(−0.032, 0.046)

0.006
(−0.034, 0.045)

0.007
(−0.031, 0.046)

−0.002
(−0.041, 0.037)

0.007
(−0.031, 0.046)

β6 (substance use disorder)
(95% CI)

0.011
(0.005, 0.017)

0.011
(0.005, 0.017)

0.011
(0.005, 0.017)

0.011
(0.005, 0.017)

0.011
(0.006, 0.017)

ψ
(95% CI)

0.750
(0.595, 0.863)

0.754
(0.595, 0.867)

0.750
(0.596, 0.863)

0.744
(0.593, 0.860)

0.755
(0.601, 0.866)

pD 126.554 127.088 126.678 125.982 126.780
DIC 1591.070 1591.540 1591.290 1590.810 1590.750

ψ = relative contribution of the spatially structured and non-structured random effect terms; pD = number of effective parameters;
DIC = deviance information criterion.

Among the confounding variables, ethnic concentration (β3), residential instability
(β4), and the rate of substance use disorder (β6) showed statistically significant associ-
ations with both the psychotic and non-psychotic disorder cases. However, only ethnic
concentration showed a negative association, implying that low counts of psychotic and
non-psychotic disorder cases were observed in areas having high ethnic concentration. In
contrast, material deprivation (β2) was found to be significantly and positively associated
with psychotic disorders. The dependency (β5) variable did not exhibit any significant
association with any of the two outcome variables.

The values of ψ are greater than 0.50 in all the ten models and are all statistically
significant. The ψ values for the models of psychotic disorders are close to 0.50; therefore,
the spatially structured random effect term (sik) and the non-structured random effect term
(uik) are almost equally dominant in the models. However, the values of ψ in the models
for non-psychotic disorders are greater than 0.70 and are closer to 1 ( ψ→ 1), showing
that sik dominated each of the models compared to uik. Therefore, the variations in the
area-specific relative risk due to unmeasured covariates in the study area had notable
spatial structures for both the psychotic and non-psychotic disorder cases.

No discernible differences in the values of DIC and the number of effective parameters
(pD) are evident for the models analyzing the association between vegetation and psychotic
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disorders. Similar results were obtained for the models for non-psychotic disorders. These
results demonstrated that for a specific outcome variable (for example, psychotic or non-
psychotic disorders), using different vegetation measures did not affect the goodness of fit
and the model parsimony. The most notable change observed from the results, therefore,
is the difference in the significance of the association with the vegetation variables. The
findings suggest that a significant association is detected only with the vegetation indices,
specifically with the EVI and SAVI.

The relative risk values (rik) of psychotic and non-psychotic disorders, as defined
by Equation (9), for each of the vegetation measures are shown in Figure 5. The median
and the interquartile range of the box plots show that there are substantial differences
in the relative risks for psychotic and non-psychotic disorders. However, the relative
risk values are very similar for the five vegetation measures in both these mental health
disorder categories.
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Figure 5. Box plot diagram showing the posterior mean of relative risks of psychotic and non-
psychotic disorders. The relative risk values are shown for each of the five different vegetation
measures in the 140 neighborhoods in Toronto.

3.3. The Spatial Distribution of the Relative Risk of Psychotic and Non-Psychotic Disorders

Contrary to the non-spatial depiction of the relative risks using box plots, histograms
and other different forms of charts, illustrating relative risks using maps can help accu-
rately identify high-risk areas. The relative risk (rik) from the EVI models for psychotic
and non-psychotic disorders are shown in Figure 6a,b, respectively. The areas with relative
risk values >1 could be interpreted as areas with high risk of psychotic or non-psychotic
disorders due to reduced vegetation cover after adjusting for the risks from material depri-
vation, ethnic concentration, residential instability, dependency, substance use disorders,
and the unmeasured covariates.

Figure 6a shows that neighborhoods with the relative risk of psychotic disorders >1 were
mostly clustered in the southern part and extended from the west to east. There were
six neighborhoods with very high risk (rik > 1.75) in the southcentral part of Toronto. In
contrast, Figure 6b reveals that the neighborhoods with the relative risk of non-psychotic
disorders >1 covered much of the southern and the northcentral parts of Toronto. When
Figure 6a,b are considered together, it can be observed that the neighborhoods with high
risk (rik > 1) of psychotic disorders are also at high risk from non-psychotic disorders.
However, unlike the relative risk of psychotic disorders, the relative risk of non-psychotic
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disorders did not exhibit very high values and was mostly below the value of 1.5. These
two relative risk maps suggest that the northern part of Toronto is relatively at lower risk
compared to the southern part.
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Figure 6. The posterior mean of the relative risk (rik) of (a) psychotic and (b) non-psychotic disorders.

4. Discussions

Based on the knowledge from available literature, this is the first study that employed
Bayesian spatial statistics to analyze the performance of different vegetation measures
in detecting a significant association between vegetation and mental health. This study
provided empirical evidence that the type of vegetation measure in the model could
influence the significance of the association. Furthermore, in this study, a significant
association between vegetation and the psychotic and non-psychotic disorder cases was
observed when EVI or SAVI was used as the vegetation measure. This suggests that the
satellite-based vegetation indices, which are corrected for atmospheric disturbances, canopy
background noise, and soil brightness, could help detect a significant association between
vegetation and different types of mental health disorders. The observed results could be
explained by the fact that these indices could provide detailed information on the quality
of exposure to vegetation and, thus, people’s true exposure to surrounding greenness. The
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log-linear models (specifically the ψ values) revealed a strong dominance of the spatially
structured unmeasured and latent covariates during the relative risk estimations. These
latent covariates, if not adjusted in an epidemiological study, could potentially affect the
detection of a significant association between vegetation and mental health and could also
bias the risk estimation.

This study found that the area-based measures of vegetation cover (Veg_RF and
Tree_OD) were not associated with psychotic and non-psychotic disorders. This difference
could be explained in terms of the differences in their functionality. Every day, people
are regularly exposed to different forms of vegetation in their surroundings [1,74], which
several studies have attempted to characterize using the term “surrounding greenness”.
These studies found that both the density and health of vegetation are vital components for
measuring the surrounding greenness in an area [75,76]. The extent to which vegetation
cover can impart mental health benefits is directly dependent on the intensity and quality
of the exposure to surrounding vegetation, which in turn depends on the richness of
the vegetation cover and the duration of exposure [1,22]. In this regard, the area-based
vegetation measures were simply based on the percentage of vegetation or tree cover
in a neighborhood. Therefore, the values could not vary by the level of surrounding
greenness to which people were exposed. Consequently, the association analyzed using
these area-based measures could capture only a partial relationship between vegetation
and mental health.

Additionally, area-based measures that are based on the visual interpretation of aerial
images can lead to inaccuracies in the detection of vegetation. In highly urbanized settings
such as Toronto, with a marked presence of settlements that could reduce the visibility of
trees and surrounding vegetation patches, such area-based measures of vegetation might
not be suitable for health-related studies. Furthermore, the visual interpretation process
is also subject to the interpretation of the user or the ability to identify different types
of vegetation in the image. Consequently, this type of dataset might underestimate the
vegetation content in the area, as evidenced when visually comparing the raster images of
satellite-based vegetation measures (EVI, NDVI, SAVI, and Veg_RF) with the area-based
measure of tree cover (Tree_OD).

Although the visual interpretation process could be automated through the application
of powerful machine learning ensembles such as random forest classifiers, a high degree
of landscape heterogeneity, such as that present in an urban setting, could preclude the
accurate detection of different types of vegetation in the area [55,77]. In addition, medium
to low resolution of Landsat images (30 m) may lead to spectral confusion and problems in
differentiating vegetation from other land cover classes [55,77]. This misclassification of
vegetation may lead to the increased risk of misinterpreting the actual relationship between
vegetation and mental health disorders. However, the accuracy assessments revealed that
the RF model in this study had over 90% accuracy for the land cover classification model,
so over- and under-estimation should not be a problem for this study. Thus, the inability
of Veg_RF to capture the density and biomass conditions of vegetation cover or people’s
actual exposure to surrounding vegetation could be the reason for the differences observed
in the results of Bayesian models using Veg_RF and the vegetation indices (EVI and SAVI).

Contrary to the area-based measures, satellite-based vegetation indices such as EVI,
NDVI, and SAVI can measure both the density and quality of the vegetation cover. This
is because their values vary based on the chlorophyll content, variations in canopy cover,
and canopy architectures [25,26,28]. For example, the values of the vegetation indices
increase when there are more leaves and more photosynthetic activities in the vegetation
patch, which are the measures of density (leaves) and greenness, respectively. Therefore,
using these indices can help accurately capture the relationship between the surrounding
greenness and poor mental health outcomes [1], as the number of mental health disorder
cases is allowed to vary by both the density and health of the surrounding vegetation cover.
This could have led to the differences in the results of Bayesian models from the vegetation
indices (EVI and SAVI) and area-based measures (Veg_RF and Tree_OD).
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Surprisingly, the models for NDVI did not yield any statistically significant associ-
ation with any of the psychotic or non-psychotic disorders. This could be explained in
terms of the computational differences between NDVI and the other two indices. First,
NDVI and SAVI are computationally similar, but SAVI could be considered as a modified
form of NDVI, where the NDVI is corrected for the influence of soil brightness [49]. The
background brightness from surfaces such as soil may interact with the radiation reflected
towards the sensor (satellite) from the overlying vegetation canopy [25] and may result in
complex soil surface–vegetation interactions that might affect the values of NDVI. Thus, in
a highly urbanized area such as Toronto, substantial background noise from the different
built-up surfaces such as bitumen covered roads, concrete pavement, brick surfaces, and
gravel-covered rooftops (see Figure 4b) could impair NDVI’s vegetation detection capacity.
Second, the natural atmospheric conditions in urban areas are frequently disrupted by
pollutants from vehicles and commercial sites [78]. Additionally, urban morphology such
as tall buildings and surface roughness as well as the low heat capacity of materials such
as concrete can affect the wind flow and both vertical and horizontal distributions of these
pollutants in the atmosphere [79]. These atmospheric disturbances can affect the transmit-
tance of the red band through the atmosphere to the satellite and thus can influence the
NDVI or SAVI values. The EVI can overcome this problem and can adjust for the atmo-
spheric disturbances by using the atmosphere-sensitive blue band to correct the affected
red band for atmospheric influences [80]. EVI is also adjusted for canopy background noise
through the canopy signal decoupling process, which makes it very sensitive to vegetation
greenness. The decoupling process allows different forms of vegetation to be captured by
minimizing the covering effect of large, overlying vegetation [24,80,81]. Therefore com-
pared to relatively simpler indices such as NDVI or SAVI, EVI could be better at capturing
people’s exposure to the different types of vegetation cover in their surroundings.

Although this study could not find any notable differences between the vegetation
cover detected by EVI and SAVI, the atmospheric perturbations and the canopy background
noise could cause a substantial difference between these two indices in other urban areas.
Therefore, it is highly recommended to consider the type of study area (urban, peri-urban,
or rural) before selecting vegetation indices for mental health studies. Considering the
urban geophysical settings and the potential atmospheric and environmental disturbances
that could be present in Toronto, we preferred EVI over SAVI to map the relative risks.

The results of this study showed that the vegetation was negatively associated with
psychotic and non-psychotic disorders in Toronto, after adjusting for potential confounders
and unmeasured covariates. Comparing the results from the models having the same
vegetation measure but different mental health outcomes, it could be found that areas
with greater vegetation cover had fewer counts of psychotic disorder cases compared to
non-psychotic disorders. A possible explanation of the observed relationship could be that
vegetation was protective against the onset of mental health disorders, or people living
with mental health disorders tend to reside in areas with poorer vegetation. Future studies
could further investigate this.

In this regard, the mental health benefits from vegetation can be broadly categorized
into two specific domains: reducing harm and improving restoration capacities [1]. Vegeta-
tion can help reduce physical harm to the body by improving environmental conditions,
such as by reducing air pollution and exposure to heat and noise. These factors adversely
affect the psychological well-being and cognitive development of people, which could later
transform into mental health disorders [22,82,83]. Regular exposure to greenery and the
natural environment can help improve stress response and circumvent negative emotions
that deteriorate mental health conditions. In this process, attention restorative capacities
improve as well, as people have better cognition, which helps willfully direct attention to
the positive aspects of life [1,84].

This research has highlighted several critical issues of studying the relationship be-
tween vegetation and mental health disorders. First, this study established the necessity
to carefully select a vegetation measure for accurately capturing the quality of people’s
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exposure to surrounding greenness. Second, this study showed that the physical settings
of an area could introduce problems while detecting surrounding vegetation and thus can
affect the significance of the association between vegetation and mental health. Third, the
negative association between vegetation content and the number of psychotic and non-
psychotic disorder cases reflects that investments in urban vegetation can have tangible
health benefit effects, such as improved mental health conditions of the general public.
This research has provided directions that could be extended further to design future
studies to understand how long-term investments in urban vegetation could help reduce
healthcare costs.

Fourth, while this study did not measure the therapeutic impact of vegetation on
recovery from mental disorders, the evidence shows that mental disorders are less common
in higher-quality vegetation areas. Future research should incorporate longitudinal studies
to explore the impact of constant exposure to vegetation cover on the incidence and
treatment of psychotic and non-psychotic disorders. Finally, the analyses conducted in this
study quantified the relative contributions of the spatial and non-spatial latent covariates
and showed that these covariates could significantly influence the prevalence of mental
health disorder cases. The findings also showed that latent risk factors have considerable
spatial structure; thus, any interventions targeting the control of mental health disorder
cases should adopt spatial approaches.

The findings of this study may have direct implications in meeting the Sustainable
Development Goals (SDGs) [85]. By 2030, the SDG Target 3.4 aims at a one-third reduction
in premature mortality from non-communicable diseases through the prevention, treatment,
and promotion of mental health and well-being [86]. The SDG Target 11.7 aims at providing
universal access to safe and inclusive green and public spaces, particularly to people living
in cities and urban areas [87]. Therefore, if intervention strategies are undertaken based on
the findings of this study that reduced vegetation cover is significantly associated with the
two prevalent mental health disorders in urban areas, it can help meet the SDG Targets
3.4 and 11.7. Our findings suggest that the mental health and well-being of the urban
population could be improved through increased access to public spaces with abundant
vegetation cover.

Despite its strengths, several limitations are present in this study. First, research
suggests that the surrounding greenness and exposure to greenness are best captured by
the eye-level panoramic imagery of green space [1]. However, the process of obtaining
such imagery is both time-consuming and expensive. Therefore, this study attempted to
demonstrate the performance of the vegetation measures using datasets that are inexpen-
sive and readily available for epidemiological research. Second, this is an ecological study,
where the results conform to the findings relevant at the area level for groups of people.
The results of the associations need to be interpreted with caution, and no individual-level
conclusions should be drawn from the findings. Additionally, the study was carried out
for a single city in Canada with specific geophysical and socioeconomic settings. Therefore,
the results should not be generalized, especially for areas with contrasting geophysical and
socioeconomic conditions. Third, the study did not assess the performance of an index
that utilizes the combined strengths of both EVI and SAVI. Unfortunately, such an attempt
is well beyond the scope of this study, as it requires a careful selection of techniques to
combine the two indices or perform the adjustments that are conducted during the cal-
culation of these indices. Finally, we were not able to analyze the impact of vegetation
within the different mental health disorder categories in our psychotic and non-psychotic
disorder datasets. Future studies could focus on studying the impact of vegetation on
these categories, since it is likely that vegetation may have differential impacts on different
mental health conditions.

Regardless of these limitations, this study has taken up the challenge to identify
the methodological constraints owing to the selection of different vegetation measures
in population-based mental health studies. This research attempted to understand the



Int. J. Environ. Res. Public Health 2021, 18, 4713 21 of 25

complex relationship between vegetation and mental health disorders by developing
hierarchical models that adjust for potential confounders and unmeasured covariates.

5. Conclusions

The increase in global urbanization and the subsequent loss of vegetation-covered
areas are likely to put millions of people at risk from poor mental health conditions. Unfor-
tunately, due to the disagreements between carefully designed studies, it is still unclear
whether reduced vegetation is a significant risk factor for mental health disorders. In
epidemiological research, a considerable challenge exists when selecting an appropriate
vegetation measure to capture the different forms of vegetation in urban areas. Hence, there
is a need to assess the performance of different types of vegetation measures in studying
the association between vegetation and mental health disorders. Therefore, through the
application of remote sensing, geographic information systems, and machine learning
techniques, three satellite-based indices and two area-based measures of vegetation were
used to analyze the relationship between vegetation and psychotic and non-psychotic
disorders, after adjusting for material deprivation, ethnic concentration, residential insta-
bility, dependence, the rate of substance use disorders, and unmeasured (latent) covariates.
The results from this analysis were further investigated to select a suitable vegetation
measure, which was later employed to map the relative risk of psychotic and non-psychotic
disorder cases in the study area. The associations were studied using Poisson-lognormal
models under a Bayesian framework. The vegetation was found to be negatively associated
with both psychotic and non-psychotic disorder cases. Results suggest that satellite-based
indices could be better than area-based measures at capturing a significant association with
mental health. The findings also indicate that the indices, such as enhanced vegetation
index and soil adjusted vegetation index, which are adjusted for atmospheric disturbances,
canopy background, and soil-brightness, could be particularly useful, especially in an
urban context. The relative risk maps provided evidence of spatial variations in risk from
psychotic and non-psychotic disorders, which could be the focus of targeted public health
interventions. The findings from this study are expected to provide critical guidelines on
the selection of an appropriate vegetation measure for future population-based mental
health studies. The findings could also be helpful for other health research that uses such
measures to understand the exposure of the general public to surrounding vegetation cover.
Our study suggests that policymakers should prioritize the issue of decreased greenness in
densely populated areas for the development of public health policy initiatives that aim to
mitigate any adverse impact of vegetation loss on the mental well-being of urban residents.
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