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Simple Summary: The legume pod borer is one of the most serious legume pests widely distributed
in Asia, Africa, Australia, America, and Oceania. The use of synthetic pheromone lures has been
developed as a more environmentally friendly alternative for its control. In this study, we evaluated the
potential of the pheromone components as a mating disruption tool under laboratory and small-scale
field conditions by identifying effective blends made out of single pheromone components or a
different mix of them. The results from the laboratory experiment show that insects challenged with
the blend ratio of 1:1:1 had lower fecundity and egg eclosion. A small-scale caged field experiment
also showed a significantly disruption of normal mating with the above-mentioned ratio, leading
to lower flower and pod damage, and higher mungbean yield. This study provides new evidence
about the possibility to use pheromone components for mating disruption; however, more research
is needed to determine appropriate ratios of pheromone blend to increase the effect of disruption.
From an applied research perspective, more studies are needed to investigated the effectiveness of
mating disruption strategy on different legume crops, dispenser types, release points in the field,
and compatibility with conventional insecticides as part of an integrated pest management (IPM)
combined approach.

Abstract: The legume pod borer (Maruca vitrata) is one of the most serious legume pests due to
its wide host range and high damage potential. Pheromone components on M. vitrata have been
previously identified, allowing research on more environmentally friendly IPM tools for its control.
M. vitrata produces a three-component pheromone blend containing (E, E)-10,12-hexadecadienal
(major), (E, E)-10,12-hexadecadienol (minor), (E)-10-hexadecenal (minor). This study focused on
the efficacy of synthetic pheromone lures and their blend components for mating disruption in
M. vitrata. Under laboratory conditions, the mating behavior of M. vitrata pairs was observed
from 18:00 to 02:00 h in an interval of 20 min to assess the efficacy of different pheromone lures.
The scotophase behavior results show that the complete pheromone blend (E, E)-10,12-hexadecadienal
+ (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal with a blend ratio of 1:1:1 effectively disrupted
mating. The impact on mating disruption was evident from the lower fecundity and egg hatch/eclosion.
The same lures were evaluated in a small-scale caged field study. The results show that the pheromone
blend of (E, E)-10,12-hexadecadienal + (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal in a1:1:1
ratio significantly disrupted the normal mating, leading to lower flower and pod damage and higher
mung bean yield.
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1. Introduction

Legume pod borer, Maruca vitrata (Fab.) (Lepidoptera: Crambidae) is widely distributed in Asia,
Africa, Australia, America, and Oceania [1,2]. Indo-Malaysian is the most probable region of origin for
the genus Maruca, including M. vitrata, which is found throughout the tropics [3]. Maruca vitrata is
recognized as one of the most serious legume pests due to its wide host range, high damage potential
and worldwide distribution [4].

Maruca vitrata larvae make webs on flower buds, flowers and pods, and once inside they start
feeding on these plant parts [5]. Several legume crops including cowpea (Vigna unguiculata (L.) Walp.),
mungbean (Vigna radiata (L.) Wilezek), black gram (Vigna mungo (L.) Hepper), lablab bean (Lablab
purpureus (L.) Sweet), pigeon pea (Cajanus cajan (L.) Mills.), adzuki bean [Phaseolus angularis (Willd.)
W.F. Wight (Syn. Vigna angularis)], common bean (Phaseolus vulgaris L.), the vegetable hummingbird
tree (Sesbania grandiflora (L.) Pers.), the corkwood tree (Sesbania cannabina (Retz.) Pers.), and soybean
(Glycine max (L.) Merr) are directly affected by the larval feeding of this species. Cowpea is one of
its most preferred host plants in tropical Asia and Africa [6–11]. The severity of damage caused by
M. vitrata led to yield losses recorded on cowpea, yardlong bean, and green gram in Thailand, west
Sumatra, and Bangladesh [12–14]; 42–80% in India [15], Taiwan [16,17], and Brazil (soybean) [18,19];
and up to 100% yield losses in black gram in Karnataka, India [20].

Farmers rely almost exclusively on the application of chemical pesticides to combat M. vitrata.
In 2010, farmers in Thailand and Vietnam applied approximately 16.3 kg/ha of pesticide per cropping
cycle on yardlong bean [21]. Additionally, farmers in Cambodia use a mixture of four pesticides together
in a single spray [22]. The challenge with M. vitrata is that the larvae are exposed on leaves only for a
short time after hatching, and hence many farmers have to rely on periodical spraying throughout the
growing season. Furthermore, more than 90% of the growers in Ratchaburi, Kanchanaburi, and Pathum
Thani provinces in Thailand relied on chemical pesticides as a prophylactic measure for controlling
pests on yard-long bean, and around 70% of growers applied pesticides once a week [23]. As a result,
heavy dependence on conventional pesticides has led to many environment and health problems.
However, pesticide use also failed to achieve a satisfactory level of control of M. vitrata [24] due to
increasing pesticide resistance in this insect pest [25].

A more environmentally friendly alternative, synthetic sex pheromone lures, has been
developed for monitoring, mass trapping and mating disruption of many insect pests of agricultural
importance. In the particular case of M. vitrata, three pheromone components have been identified,
with (E, E)-10,12-hexadecadienal (EE10,12-16:Ald) as the major sex pheromone component of
M. vitrata [26]. In addition, (E, E)-10,12-hexadecadienol (EE10,12-16:OH); (E)-10-hexadecenal (E10-16:Ald)
[27]; and (Z, Z, Z)-3,6,9-tricosatriene (ZZZ3,6,9-23:H) [28] have been recognized as the minor pheromone
components. Interestingly, in in-field trapping experiments conducted in Benin, Ghana, India and
Burkina Faso, the synthetic lures of EE10,12-16:Ald, EE10,12-16:OH and E10-16:Ald in the ratio of
100:5:5 (Benin ratio) was attractive to M. vitrata males, whereas the major compound alone was most
effective in Burkina Faso [27,29]. However, when tested in Taiwan, Thailand, and Vietnam, the same
components failed to attract the male moths [30,31]. More specifically, in India, in an experiment
carried out under laboratory conditions, the pheromone blend (Z, E)-10,12-hexadecadienal + (E, E)
-10,12-hexadecadienol + (Z)-10-hexadecenal (100:10:5) was found to elicit a better antennal response
than the standard three-component blend [32].

Maruca vitrata is a genetically complex species, with the presence of multiple Maruca species or
subspecies [4,8], and was also reported to have two forms in Australia [33]. There are three putative
Maruca species, one in Latin America, one each in Oceania (including Indonesia) and in Asia, Africa,
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and two putative M. vitrata subspecies in Asia and Africa have also been reported [8]. A recent study
found the presence of different Maruca species and/or subspecies in different continents based on the
diversity within pheromone binding protein genes [34]. Since different species or subspecies appear to
exist in the genus Maruca, the pheromone composition and reception of pheromone may not be uniform
in different geographical locations. As previously mentioned, earlier studies on M. vitrata showed that
under field conditions, the blend ratio of 100:5:5 was effective in Benin [29] as a monitoring tool but
failed in the effective attraction of the adults in Southeast Asian countries. Therefore, our intention
with this study is to gain a broader perspective on the appropriate ratio, therefore we tried with 1:1:1
ratio to understand what happens at the maximum expression of all components. Considering these
facts, this study was conducted in order to investigate whether different pheromone blend ratios alone
(1:1:1) or in combination affect the mating and reproduction of M. vitrata. First, the study assessed
the efficacy of different pheromone alone/blend components in disrupting sexual communication,
and their impact on fecundity and egg hatching of M. vitrata under laboratory conditions. Second,
a small-scale field experiment was conducted to understand how different pheromone blends affect
the fecundity of M. vitrata, host plant damage, and yield. From an applied perspective, the results
from this research will allow us to have another environmentally sound pest management strategy to
decrease the heavy reliance on chemical control.

2. Materials and Methods

2.1. Maruca vitrata Mass Culture under Laboratory Conditions

Second instar larvae of M. vitrata were obtained from a stock culture at the insect rearing facility of
the World Vegetable Center, Shanhua, Taiwan. Insects were maintained in a 14 h light (L): 10 h dark (D)
regime with a room temperature of 25 ± 2 ◦C and a relative humidity of 70 ± 10%. The larvae were kept
in plastic containers (9 cm height × 9 cm width × 12 cm length), provided with an artificial diet [35],
and reared until pre-pupation. In pre-pupal stage, corrugated paper was put inside the box as a pupation
substrate. Later, pupae were transferred into mating cages (44 cm width × 45 cm length × 58 cm height)
for 6–8 days, and the emerging adult moths were nourished with 10% glucose solution. During the
oviposition period, Sesbania grandiflora (Fabaceae) leaves and flowers were provided as egg-laying
substrate. The egg-laying substratewas kept in a plastic container, and provided with artificial diet [35].
As soon as the resulting neonates started feeding on the artificial diet [35], the remaining leaves and
flowers were removed from the plastic container.

2.2. Efficacy of Pheromone Lures in Disrupting Sexual Communication of M. vitrata—Laboratory Studies

Scotophase behavioral assays were conducted to assess the efficacy of pheromone lures during
the sexually active time of adult moths. For this purpose, late pupae (well-developed silken cocoon:
N = 100) were separated and kept singly in cups measuring 2 cm × 1.5 cm, and provided with
a drop of honey as nourishment for freshly emerged adults. The adults were sexed based on the
abdominal characters, with a sharp or forked abdominal tip (male genitalia) feature used as the
main distinguishing aspects of the male, while a female was recognized for having a blunt-tipped
abdomen [28]. Later, two separate rooms with a temperature of 25 ± 2 ◦C and relative humidity of
70 ± 10% were used to directly compare a single lure treatment to a no pheromone control. The paired
comparisons were conducted for each pheromone treatment separately over time using mating cages
(44 cm width × 45 cm length × 58 cm height). Each treatment used 4 replicates (mating cages) in a
dark room at one time. i.e., mating disruption lures as follows: T1 = (E, E)-10,12-hexadecadienal;
T2 = (E, E)-10,12-hexadecadienol; T3 = (E)-10-hexadecenal; T4 = T1 + T2; T5 = T1 + T3; T6 = T2 + T3;
T7 = T1 + T2 + T3 (alone/blend lures was tested @ 1 mg/lure. Source: Pest Control India Pvt. Ltd.,
Bengaluru, India), whereas in another room, the four mating cages were not exposed to any disruption
lure (untreated control). The purity of each compound is as follows: (E, E)-10,12-hexadecadienal
(98.3%), (E, E)-10,12-hexadecadienol (98.64%) and (E)-10-hexadecenal (99.02%). All the mating cages
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were provided with 10% glucose solution on cotton fibers as food source and S. grandiflora leaves or
flowers as an egg-laying substrate. Four virgin male and female moths (<24 h old) were released into
each of the four cages evaluated per treatment. Observation on mating was recorded continuously
for eight hours at 20 min interval starting from 18:00 and until 02:00 h. To avoid light disturbance,
observations were carried out with a LED 3W lamp with red cellophane during the scotophase up to
48 h after the release of adults (2 eight-hour sessions). The total number of mated pairs was recorded.

2.3. The Impact of Mating Disruption on Fecundity of Maruca vitrata

After 2 eight-hour sessions, the used male and female moths were removed from the cage.
Later, the used female moths (N = 4/mating cage) were transferred from their respective individual
mating cages (four replications per treatment) on to individual oviposition containers that were made
from plastic cups measuring 15 cm × 5 cm. These separated females were nourished with 10% glucose
solution in cotton fibers and provided with the S. grandiflora leaves, and flowers as egg-laying substrates.
The egg-laying substrates were changed daily for the entire female longevity period. The number of
eggs and neonate larvae was counted for each day separately.

2.4. Small Scale Caged Field Study

The experiment was conducted at World Vegetable Center farm in Shanhua, Taiwan (23◦06′53.1” N
120◦17′53.5” E). The experimental design was a randomized complete block design, with three blocks
(field dimensions: 95 m × 32.5 m). Each block contained seven treatments plus an untreated control,
as follows: T1 = (E, E)-10,12-hexadecadienal; T2 = (E, E)-10,12-hexadecadienol; T3 = (E)-10-hexadecenal;
T4 = T1 + T2; T5 = T1 + T3; T6 = T2 + T3; T7 = T1 + T2 + T3 (alone/blend lures was tested @ 1 mg/lure.
Source: Pest Control India Pvt. Ltd., Bengaluru, India). Furthermore, each treatment (i.e., pheromone
lure) was located inside an insect net house (2.5 m width × 2.5 m length × 2.4 m height) and separated
10 m from other treatments [27]. Furthermore, a distance of 10 m × 10 m was maintained within and/or
between treatments and replications. In addition, two rows of commercial corn were sown between
treatments, with a spacing of 1 m × 30 cm. Within the selected field (2.5 m × 2.5 m), mung bean crop
was sown and maintained. Seeds of mung bean (Vigna radiata) variety Tainan No-5 were sown with a
spacing of 10 cm × 1 m. After thinning, 30 plants/treatment were maintained in each insect net house.
Two rows of commercial corn were also sown as a border crop. The border crop and insect net houses
were used to prevent the movement and oviposition of out crossed adult female M. vitrata moths into
the experimental area. Ten pairs of <24 h old virgin M. vitrata adults were released at two times into
the net-houses, first during the flower initiation stage (approx. 65 days after sowing), and second
during the pod formation stage (approx. 75 days after sowing). One pheromone lure was installed at a
height of 10 cm above the crop canopy level inside at the center of each net-house/small scale caged
field. Pheromone lures were installed inside the net-houses one day before the release of M. vitrata
adults, and one day ahead of the second release of adults (pod initiation stage). Observations on the
percentage of flower damage (7–8 days after first release), percent pod damage (15 days after first
release and 7 days after second release) and yield were recorded (15–20 days after second release).

2.5. Statistical Analysis

Mean and chi-square 2 × 2 contingency table tests of association were applied to compare the
mated and un-mated adult pairs in the treatment and corresponding control cages during the laboratory
experiment. The total number of eggs and larvae was analyzed in a paired t-test. In small scale field
experiment, percent of flower, pod damage, and yield were analyzed with one factor ANOVA followed
by Tukey’s test by using SAS (version 9.1; SAS Institute, Cary, NC, USA). Before statistical analysis,
and to ensure data normality, the percentage of flower and pod damage was arc sin [asin(sqrt(x))]
transformed, with x being the percentage of flower or pod damage.
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3. Results

3.1. Efficacy of Pheromone Lures in Disrupting Sexual Communication of M. vitrata and Effect on Fecundity

Regarding disruption of sexual communication, the treatment with the three-component blend,
T7 showed a significant mating disruption compared to their paired control treatment. Treatment T2
(i.e., minor component blend (E, E)-10,12-hexadecadienol) showed some disruption of mating but
marginally failed to be statistically significant. The remaining blend treatments failed to cause mating
disruption (Table 1).

Table 1. (±SE) Maruca vitrata mating percentage and chi-square values (with Yates correction)
under different mating disruption pheromone blends (treatments) under laboratory conditions
(scotophase period) (N = 16 virgin pairs, <24 h old). T1= (E, E)-10,12-hexadecadienal (100%);
T2 = (E, E)-10,12-hexadecadienol (100%); T3 = (E)-10-hexadecenal (100%); T4 = T1 + T2 (1:1); T5 = T1
+ T3 (1:1); T6 = T2 + T3 (1:1); T7 = T1 + T2 + T3 (1:1:1). Mean mating values obtained from paired
comparison experiment with four replicates, and four M. vitrata pairs per replicate.

Lure Treatment Mean Mating % Chi-Square p-Value

T1 1.75 ± 0.25
1.143 0.2850

Control 2.75 ± 0.25

T2 2.00 ± 0.41
3.636 0.0565

Control 3.50 ± 0.28

T3 3.00 ± 0.41
0.948 0.3302

Control 3.75 ± 0.25

T4 2.75 ± 0.25
0.731 0.3924

Control 3.50 ± 0.29

T5 1.75 ± 0.25
1.143 0.2850

Control 2.75 ± 0.25

T6 2.00 ± 0.00
0.518 0.4716

Control 2.75 ± 0.48

T7 1.75 ± 0.25
7.127 * 0.0076 *

Control 3.75 ± 0.25

* indicates the level of significance at 5%: degree of freedom = 1.

In line with this, the effect on M. vitrata fecundity showed a reduction of 71% and 17% in the number
of eggs laid by females in treatments T7 (i.e., three component blend) and T2 (i.e., minor component
blend (E, E)-10,12-hexadecadienol), respectively and compared to their paired controls (Table 2).
Furthermore, the egg hatching was also affected by the pheromone blends of these treatments, with a
reduction of 85% and 22% in the larva recorded in treatments T7 and T2, respectively and compared to
their paired control (Table 2). Interestingly, treatment T6 (i.e., T6 = T2 + T3) did not cause a reduction
in eggs being laid by M. vitrata females, but instead a reduction of 25% in egg hatching was recorded
(Table 2).

3.2. Small Scale Caged Field Study

Seventy percent less flower damage was observed in the three-component blend T7 compared
to the control treatment. However, pod damage followed a different trend, with higher pod damage
recorded in T1 (i.e., major pheromone component, (E, E)-10,12-hexadecadienal) compared to T4
(i.e., T1 + T2), which had the lowest pod damage across all treatments (Table 3). The three-blend
component T7 had intermediate values, and did not differ from T1 and T4.
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Table 2. Mean (±SE) number of Maruca vitrata eggs, hatched larvae, and percentage of eggs that hatched
from females exposed to seven different pheromone lures under laboratory conditions (scotophase
period) (n = 16 females). T1 = (E, E)-10,12-hexadecadienal; T2 = (E, E)-10,12-hexadecadienol;
T3 = (E)-10-hexadecenal; T4 = T1 + T2; T5 = T1 + T3; T6 = T2 + T3; T7 = T1 + T2 + T3. Total number
of eggs, number of larvae, and hatchability from paired comparison experiment with four replicates,
and four M. vitrata pairs per replicate.

Lure
Component

Total Number of Eggs Total Number of Larvae % of Egg
Hatchability

Mean ± SE t-Test p Mean ± SE t-Test p

T1 778.25 ± 65.5
2.121 0.062

556.0 ± 59.8
1.249 0.151

71.0
Control 464.75 ± 88.9 396.0 ± 75.0 85.3

T2 1394.5 ± 155.9
3.876 0.015 *

1202.2 ± 130.0
4.403 0.011 *

86.3
Control 1688.7 ± 109.0 1546.5 ± 125.0 91.3

T3 1206.0 ± 314.4
−1.268 0.147

958.7 ± 289.5
−0.761 0.250

76.4
Control 838.0 ± 71.9 757.0 ± 71.9 90.1

T4 1338.0 ± 79.9
−0.409 0.355

958.7 ± 60.8
1.127 0.170

71.7
Control 1247.0 ± 175.0 1154.7 ± 171.1 92.3

T5 877.7 ± 154.6
−0.536 0.314

536.5 ± 119.0
0.687 0.270

58.7
Control 788.0 ± 38.2 638.5 ± 34.6 81.2

T6 1148.7 ± 80.8
0.445 0.343

753.2 ± 114.4
5.247 0.006 *

64.4
Control 1186.7 ± 160.7 1006.5 ± 91.2 86.6

T7 270.0 ± 12.9
4.921 0.008 *

120.7 ± 3.8
6.342 0.004 *

44.9
Control 840.5 ±114.1 802.7 ± 106.4 95.7

* indicates the level of significance at 5%.

Significant differences were observed in the yield among the treatments (F8,19 = 6.79; p < 0.0024).
More specifically, higher yield was recorded in the three-component blend (T7) compared to T2
(i.e., minor component blend (E, E)-10,12-hexadecadienol), T4 (i.e., major component T1 and + minor
component T2), and T6 (minor component T2+ minor component T3), which were recorded as the
treatments with the lowest yields. Furthermore, the yield in three-component blend T7 did not differ
statistically from the untreated control treatment (Table 3). We must indicate here that flower and pod
damage was recorded at the end of the experiment, and therefore damage assessments include the
cumulative impact of two consecutive insect releases.

Table 3. Mean (±SE) flower and pod damage caused by M. vitrata and grain yield of mung bean crop.
Means followed by different letters in a column are significantly different, as determined by Tukey’s
post hoc test (p < 0.05).

Lure Treatment Flower Damage (%) Pod Damage (%) Yield (g/2.5 × 2.5 m2) a

T1 (E, E)-10,12-hexadecadienal 36.37 ± 6.98 ab 31.32 ± 4.62 a 59.93 ± 8.87 ab
T2 (E, E)-10,12-hexadecadienol 18.89 ± 2.30 ab 15.69 ± 1.82 ab 44.00 ± 6.00 b
T3 (E)-10-hexadecenal 29.46 ± 9.00 ab 20.19 ± 6.09 ab –
T4 T1 + T2(1:1) 21.87 ± 4.20 ab 10.99 ± 2.41 b 43.83 ± 6.49 b
T5 T1 + T3(1:1) 14.53 ± 2.35 ab 14.35 ± 1.24 ab 61.60 ± 12.90 ab
T6 T2 + T3(1:1) 33.82 ± 3.31 ab 21.98 ± 4.41ab 39.30 ± 8.87 b
T7 T1 + T2 + T3(1:1:1) 13.16 ± 2.96 b 14.81 ± 1.11ab 91.47 ± 9.97 a
T8 Control 40.73 ± 5.1 a 21.52 ± 3.44ab 64.53 ± 7.38 ab

a Only one block for T3 provided information on yield due to high precipitation during the harvesting period.
Therefore, this treatment was not considered for the statistical analysis on the yield parameter.

4. Discussion

Pheromone-mediated mating disruption is a vital tool in the suppression of insect pests [36].
Mating disruption is an eco-friendly practice and is safer for most non-target organisms including
natural enemies, and is compatible with modern integrated pest management (IPM) [36,37]. The earlier
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studies on M. vitrata showed that the adult females produced three sex pheromone compounds:
(E, E)-10, 12-hexadecadienal (major), (E, E)-10,12-hexadecadienol (minor) and (E)-10-hexadecenal
(minor) [26,27], and these compounds showed higher attraction of moths (monitoring) under field
condition with the blend ratio of 100:5:5 (called Benin ratio) in Benin [29] but failed in the effective
attraction of the adults in Southeast Asian countries, such as Thailand and Vietnam, for the same
components [31]. A previous study on two M. vitrata Chinese populations suggested sex polymorphism
between these populations, since the sex pheromone from the Huazhou population was composed
of (E)-10-hexadecenal, (E, E)-10, 12-hexadecadienal, and (E, E)-10,12-hexadecadienol in the ratio of
10.3:100:0.7, whereas the sex pheromone of the Wuhan population presented a different ratio of
79.5:100:12.1 [38]. In line with this finding, a recent study confirmed the presence of different Maruca
species and/or subspecies in different continents [34] and differential production of sex pheromone
compounds in different geographical locations [38,39], which is possible due to the presence of
polymorphism in M. vitrata with respect to the pheromone production. With no doubt, the high
pheromone polymorphism recorded in M. vitrata across diverse geographic areas in Africa, India,
and Asia limits the potential use of the traps when used as monitoring or mass trapping tools.

Hence, in this study, we evaluated the potential of the pheromone components as a mating
disruption tool under laboratory and small-scale field conditions by identifying effective blends
made out of single pheromone components or a different mix of them. The previous studies on the
monitoring of a M. vitrata population on different legume host crops in Taiwan failed to show the
attraction for the same commercial pheromone component with the ratio of 100:5:5 [30]. In contrast,
the current mating disruption study showed that the three-component blend (E, E)-10,12-hexadecadienal
+ (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal (T7) in the ratio of 1:1:1 disrupted the mating
significantly as compared to the untreated control. The total number of eggs, number of larvae,
and percentage of eggs hatched provided information on the impact of mating disruption and
the next generation population build-up. The three component blend (E, E)-10,12-hexadecadienal
+ (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal (T7) and the individual minor compound
(E, E)-10,12-hexadecadienol (T2) showed lower fecundity and larval hatchability due to lower or
unsuccessful mating as compared to the untreated control. Similarly, Lobesia botrana (Tortricidae:
Lepidoptera) females exposed to a synthetic species-specific pheromone (E7,Z9-12:Ac) showed lower
fecundity than control females [40]. Among the mating disruption lures, the aldehyde component
showed no impact on mating disruption with impact observed as an increase in eggs oviposited.
In contrast, the Amyelois transitella (Pyralidae: Lepidoptera) synthetic species-specific pheromone
containing aldehyde [(Z, Z)-11,13-hexadecadienal] alone compound is more effective for mating
disruption [41]. In addition, the percentage of eggs that hatched indicates fertile and infertile eggs laid
by the female moths. Hence, the overall percentage of eggs that hatched was lowest in T7 among the
pheromone lures (Table 2).

Even though the adults were exposed to the major, and minor components alone and their
combinations, mating was disrupted by the three-component blend of (E, E)-10,12-hexadecadienal
+ (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal with the ratio of 1:1:1. The virgin females in the
laboratory experiments/small scale field studies might also have released sex pheromones together
with the synthetic pheromone lure, but the synthetic lure could have masked the pheromone released
by females [42], since female sex pheromones are subjected to quality and quantity changes quite
rapidly, which may be regarded as phenotypical condition-dependent traits [43]. Such changes in
the released pheromone composition and/or its interaction with the synthetic lures could prolong
the duration of mate finding and also disrupting the exact location of courtship partner. Similarly,
L. botrana (being exposed to their synthetic species-specific sex pheromone (E7, Z9-12:Ac) reduced
female calling, mating, and led to the suppression of next generation population density [40].
Hence, future studies should investigate the mechanisms of mating disruption, including the interaction
between female-released pheromones and the synthetic lures. Though the three component blend
(E, E)-10,12-hexadecadienal + (E, E)-10,12-hexadecadienol + (E)-10-hexadecenal (T7) and the individual
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minor compound (E, E)-10,12-hexadecadienol (T2) were capable of reducing the fecundity and larval
hatchability of M. vitrata, the grain yield of mungbean did not differ significantly from the control.
More fine tuning is probably required in the blends and dose in future research.

The current study provides new evidence about the possibility to use pheromone components for
mating disruption. However, more basic research is needed to understand M. vitrata’s response in terms
of intrasexual competition, specific mode of action (i.e., false trail following vs. confusion), competition
between pheromone dispensers and natural pheromone, and sensory imbalance. More specifically,
and as discussed and reviewed by [44], mating disruption needs to address areas such as intrasexual
competition, the role of early male vs. late male responders and how they are attracted by “false females”,
and an expected reduction in the ratio males to females. In this particular scenario, females would need to
directly compete not only among them, but against the pheromone dispenser. Moreover, females would
invest more in pheromone production, and unmated aging females in consequence would have a
less reproductive potential compared to those young females able to mate under this pheromone
competition scenario. In addition, more studies are needed to understand whether males respond to
abundant false females/pheromone release points (i.e., false trails followers) or to a high dosage level.
In any of these cases, mating disruption may decrease the odds of females being mated, but unless
the efficacy of this disruption is high enough, even a low percentage of mated females will produce
enough progeny to still cause substantial crop damage. The high dosage of pheromones provided
during this experiment may also need to be further studied, since mating disruption may be caused
by a sensory imbalance, interfering with the male’s ability to perceive and process the normal sensory
inputs [45,46]. Low responsiveness in moths has been previously reported for the light-brown apple
moth males of Epiphyas postvittana (Walker) (Tortricidae) to sex pheromones after pre-exposure [47,48].
Therefore, efforts are needed to investigate and understand the appropriate pheromone dosageto
enhance the effectiveness of a mating-disruption strategy in the management of M. vitrata, and avoiding
a reduced attraction/saturation to high rates of pheromone [49].

From an applied research perspective, more questions remain in terms of optimal ratio elucidation,
as well as effectiveness on different legume crops, various dispenser types, dispenser density (release point)
in the field, and compatibility with conventional insecticides as part of an IPM combined approach.

5. Conclusions

The current study provides new evidence about the possibility to use pheromone components for
mating disruption. In line with this, and based on the results of these experiments, more research is
needed to understand the appropriate ratios of the pheromone blend to increase the effect of disruption.
Furthermore, the mechanisms of disruption should be examined using dosage response experiments
with optimized pheromone blend. Such information will provide the optimal components necessary
to successfully pursue mating disruption in the management of M. vitrata and less reliance on chemical
insecticides. In addition, more studies are needed to optimize the use of this technology including
dispenser types, density of release points, potential interference from host plants, release period,
and compatibility with other IPM tools.
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