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Abstract

Identifying genetic biomarkers for brain connectivity helps us understand genetic

effects on brain function. The unique and important challenge in detecting associa-

tions between brain connectivity and genetic variants is that the phenotype is a

matrix rather than a scalar. We study a new concept of super-variant for genetic

association detection. Similar to but different from the classic concept of gene, a

super-variant is a combination of alleles in multiple loci but contributing loci can be

anywhere in the genome. We hypothesize that the super-variants are easier to detect

and more reliable to reproduce in their associations with brain connectivity. By apply-

ing a novel ranking and aggregation method to the UK Biobank databases, we discov-

ered and verified several replicable super-variants. Specifically, we investigate a

discovery set with 16,421 subjects and a verification set with 2,882 subjects, where

they are formed according to release date, and the verification set is used to validate

the genetic associations from the discovery phase. We identified 12 replicable super-

variants on Chromosomes 1, 3, 7, 8, 9, 10, 12, 15, 16, 18, and 19. These verified

super-variants contain single nucleotide polymorphisms that locate in 14 genes which

have been reported to have association with brain structure and function, and/or

neurodevelopmental and neurodegenerative disorders in the literature. We also iden-

tified novel loci in genes RSPO2 and TMEM74 which may be upregulated in brain

issues. These findings demonstrate the validity of the super-variants and its capability

of unifying existing results as well as discovering novel and replicable results.
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1 | INTRODUCTION

There have been a number of genome-wide association studies

(GWAS) conducted to identify genetic risk variants for brain func-

tional disorders. However, those studies provide only limited under-

standing of brain structure and function, and pathways to neurological

disorders (Jahanshad et al., 2013). With the advances of functional

magnetic resonance imaging (fMRI), the human brain's intrinsic

functional connectivity network architecture has been delineated

(Seeley, Crawford, Zhou, Miller, & Greicius, 2009). Brain connectivity

is known to be associated with a wide range of neurological disorders,

such as Alzheimer's disease (Greicius, Srivastava, Reiss, &

Menon, 2004; Supekar, Menon, Rubin, Musen, & Greicius, 2008),

autism (Belmonte et al., 2004) and working memory performance

(Hampson, Driesen, Skudlarski, Gore, & Constable, 2006). GWAS of

the brain connectivity can guide the development and evaluation of
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treatments by identifying potential mechanisms and circuits promot-

ing disease risk (Medland, Jahanshad, Neale, & Thompson, 2014).

Using the method in Elliott et al., 2018, we find that the estimated

heritability of the nuclear norm of resting-state functional partial cor-

relation matrix from the UK Biobank (UKB) databases (Data field:

25753) is 0.21 (p < .001), indicating that genetic variation may indeed

have impacts on the brain connectivity matrix. Despite the progress

that has been made in this regard (Jahanshad et al., 2012; Kong, An,

Zhang, & Zhu, 2019), the existing studies generally are based on

datasets of limited sizes (less than 1,000) and without convincing

replications.

The unique and important challenge in detecting associations

between brain connectivity and genetic variants is that the phenotype is

a matrix rather than a scalar. To address this challenge, we introduce a

novel method, matrix regression with local ranking and aggregation

(MLRA). The MLRA adopts the concept of super-variant to aggregate

weak signals in individual single nucleotide polymorphisms (SNPs) and to

include potential interactions between SNPs. Similar to the classic con-

cept of gene, a super-variant is a combination of alleles in multiple loci,

but the loci contributing to a super-variant can be anywhere in the

genome. A gene is a biologically defined concept, but a super-variant is

identified from data through GWAS. To search for super-variants, SNPs

are divided into generally local, but not necessarily, blocks and ranked

within each block by their importance based on a matrix regression anal-

ysis of brain connectivity matrix against the SNPs. To accommodate the

fact that the response variable is matrix, we adopt a proper matrix norm

when measuring importance of individual SNP.

Super-variants constructed from local blocks could capture group

effects of SNPs within blocks. While there have been several existing

methods based on group-wise penalization in genetics and imaging-

genetics literature (see Sliver et al., 2012; Lu et al., 2017; Ramanan

et al., 2012; and see Shen & Thompson, 2019 for a comprehensive

review), it is worthy pointing out that some existing methods use

imaging-derived phenotypes (IDPs) as the traits, and in contrast, the

proposed method can directly deals image (or network) data as matrix

responses. The formation of IDPs requires prior knowledge. In addi-

tion, because these derived phenotypes are summary data, they may

lose information from the original data. Other existing methods per-

form regression analysis on each voxel, which completely ignores the

spatial structure. To the best of our knowledge, this is the first work

to consider the group-wise structure of SNPs and brain connectivity

network in matrix form at the same time.

In this study, we analyze genetic and brain connectivity network

data from the UKB database. Recently, fMRI data for more than

19,000 participants were collected and released by the UKB team.

This database has a large number of participants with multimodal

imaging data acquired using homogeneous hardware and software

(Elliott et al., 2018). With the large number of participants in the UKB

database, we have the opportunity to use the same database to dis-

cover and validate the findings independently, instead of adopting the

ensemble methods to stabilize and validate the findings using the dis-

covery set alone (Asahchop et al., 2018; Tu et al., 2020). Several

GWAS of brain imaging based phenotypes have been reported (Elliott

et al., 2018; Zhao et al., 2019) to take advantage of this large and rich

database, but, a study of brain connectivity has not been conducted

to the best of our knowledge.

2 | SUBJECTS AND METHODS

2.1 | Matrix regression with local ranking and
aggregation

MLRA is designed to find associations between matrix response (brain

functional connectivity matrix in this study) and ultra-high dimensional

variable (SNPs in this study). Let Yi, i ∈ {1, …, n}, denote the matrix

response and xi, i ∈ {1, …, n}, be a p dimensional variable. The original

data are standardized so that for each dimension of variable the mean

equals zero and the variance equals one. Each element of Yi has also

been standardized; that is, the mean of Yi, jk equals 0 and variance

of Yi, jk equals 1 for j = 1, …, d1 and k = 1, …, d2, where Yi, jk is the ele-

ment on jth row and kth column of matrix Yi.

Segmentation: We divide all SNPs to form local blocks. We cur-

rently consider a partition based on the physical location with fixed

length (1 × 106 bp in this study). There could be other ways to incor-

porate biological information to form information-rich blocks. While it

is convenient to consider physically neighboring regions in identifying

the super variants, super variants can be identified in any regions. An

advantage of super variants is to be able to assess potential SNP by

SNP interactions that are in linkage disequilibrium or not. Moreover,

although it is straightforward to define an initial set of variants for

consideration, how to identify a group, or super variant, is challenging.

Our approach, as one of the solutions that complement the existing

methods, is convenient and provides intuitive results.

Marginal ranking: In line with the work of Song & Zhang, 2014, we

order the SNPs according to their marginal effect sizes. Because the

true effect sizes are unknown, we estimate the marginal effect of each

SNP using a linear model:

Yi =
Xs

u=1

xi0uB0u + xigvBgv + Ei ,

where for the ith participant, xi0u is the value of the uthenvironmental

covariate (u = 1, …, s), and xigv is the number of minor alleles of

SNP v in block g. In this article, we work with bi-allelic SNPs. We take

nuclear norm of the coefficient matrix, kBgvk� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BT
gvBgv

q
, as the mar-

ginal effect size for the vth SNP in block g with Jg variants, and

1≤ v≤ Jg, and the estimated marginal effects are ordered in a des-

cending order. Let dgv be the indices of the SNPs with the vth largest

marginal effect size. Define

zig =
min j : xigdgj >0

� �
if 9 xigdgj >0

Jg +1 otherwise,

(

where 1 ≤ j ≤ Jg. Recall that xigj > 0 indicates the minor allele of SNP j

in block g is present in participant i. When there exist missing data in
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some of the SNPs, we can calculate the marginal effects by excluding

the individuals with missing value when estimating the coefficient

matrix of the SNP, and then order the SNPs accordingly.

Note that the number of SNPs falling within each block may be

different. However, the coefficient matrices Bgv do not depend on the

number of SNPs within each block. They depend on the dimension of

the matrix phenotypes only. Therefore, we can use ranking in terms of

the associated norm.

The main advantage of adopting nuclear norm is that nuclear

norm explicitly accounts for the structure of coefficient matrices. It is

sensitive to various signal patterns in coefficient matrices and robust

against random noise. Moreover, nuclear norm is computationally effi-

cient. Other summary statistics of Bgv such as operator norm and

Frobenius norm can also be considered.

Find the best cutting point: To obtain the super-variants, we

inspect all possible cut-off values for variable Zg with observations

{z1g, …, zng}. For each cut-off value c, the variable is turned into binary;

Sg = I ( Zg < c), where I is the indicator function, and c ∈{z1g, …, zng}. A

marginal matrix regression is carried out to investigate the marginal

effect of the resulting binary variable, and the final cut-off value is the

one that gives the largest nuclear norm of the coefficient matrix

among all possible cut-offs in the block.

Transformation to super-variant: Finally, with the best cutting point

for each block, we transform the derived variables into super-variant indi-

cators. Suppose the best cutting point for block g is t, for i ∈ {1, 2, …, n},

sig =
1 if 9 zig < t

0 otherwise:

�

2.2 | The MLRA for pairwise functional
connectivity trait

The MLRA can be adopted to investigate a single pairwise functional

connectivity trait as follows. We estimate the marginal effect of each

SNP using a linear model:

yi =
Xs

u=1

xi0uβ0u + xigvβgv + ei ,

where for the ith participant, xi0u is the value of the uthenvironmental

covariate (u = 1, …, s), and xigv is the number of minor alleles of

SNP v in block g. We will rank the SNP effect according to the p-value

of its corresponding coefficient βgv when identifying super-variants.

2.3 | Synthetic data

We generate 32 × 32 matrix responses according to:

Yi =
X
u∈S1

xiu +
1
2

X
v∈S2

1P2
j=1

xivj >0
+
1
3

X
w∈S3

1P3
j=1

xiwj >0

0
B@

1
CABT +Ei,

here BT is the coefficient matrix of signals, S1 = {1,11,21,31,41,51},

and S2 = {(61, 62), (71, 72), (81, 82)}, which are the sets of signals with

group-wise structure of 2 SNPs and S3 = {(111,112,113),

(121,122,123)}, which is the set of signals with group-wise structure

of three SNPs. We generate noise matrix Ei from N(0, σ2I), here I is

the identity matrix. We generate genetic covariates using haplotype

data from the 1,000 Genomes Project on chromosome 22 (Song &

Zhang, 2014). Specifically, we delete haplotypes with standard devia-

tion less than 0.5% and randomly select 3,000 haplotypes as genetic

covariates. The number of subjects is 1,258. In Simulation 1, we gen-

erate the signal coefficient matrix BT with a block structure and set

the noise level σ = 1. In Simulation 2, BT is generated such that the

structure is closer to be uniform and the noise level is set with σ = 0.2.

The true images of BT are presented in Figure 1.

Besides the MLRA, we also consider the rank-one screening method

(Kong et al., 2019), the L1 entry-wise norm screening, the nuclear norm

screening, and the Frobenius norm screening, where the last three are

compared as the state-of-arts in Kong et al., 2019. We divide 3,000 hap-

lotypes into 300 blocks, by every 10 indexes, for MLRA.

We apply screening procedure to each simulated dataset and

select the first k largest of all covariates. We report the average true

nonzero coverage proportion as k increases from 1:100. The result is

averaged by repeating 100 times and is presented in Figure 1.

Figure 1 reveals that MLRA outperforms all other four methods.

As expected, MLRA can detect more interactive signals than the other

methods. Moreover, the performance of MLRA is stable under differ-

ent settings of coefficient matrix, while rank-one screening performs

poorly in Simulation 2.

2.4 | rfMRI partial correlation matrix

We download the resting-state rfMRI partial correlation matrix

(dimension 100) from the UKB (Data field: 25753). In the dataset, net-

work matrices which represent the functional connectivity (measured

by partial correlation) of each pair of nodes have been estimated for

all subjects. Nodes that are not neuronally driven are discarded during

network connectivity modeling by the UKB. As a result, 55 nodes

remain and result in a 55 × 55 connectivity matrix. The list of

remaining nodes, the complete original sets of 3D spatial maps and

more resources about the dataset can be found at https://www.fmrib.

ox.ac.uk/datasets/ukbiobank/index.html.

It is noteworthy that our method is applicable when different

maps are available, but it is a different and major undertaking, beyond

the scope of this manuscript, to build and assess different

connectivity maps.

2.5 | Data processing

We apply the MLRA at 41,502,298 SNPs after imputation and

genotyping quality controls. Specifically, we removed SNPs with low
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call rate (missing probability ≥0.1) or that disrupted Hardy–Weinberg

equilibrium (p-value <1 x 10−7). The whole data set is divided into

2,689 local genetic blocks, each with physical length 1 × 106 bp. We

use the difference between the date of attendance and the date of

birth as individuals' age. Individuals without age information or genetic

information are excluded. We also exclude subjects whose genetic

gender is inconsistent with self-reported gender. We primarily use

individuals who made an imaging visit prior to first January 2018 as

discovery set and the other individuals as the verification set. We cre-

ate nominally unrelated subsets (without relatives closer than third

cousins) of both sets accordingly, following procedures described in

Bycroft et al., 2018. In order to reduce the confounding effect of pop-

ulation structure, we also include the first five principal component

scores based on the SNP data in the quality control information pro-

vided by the UKB as control variables. In the end, we have a discovery

set with 16,421 subjects, and a verification set with 2,882 individuals.

We calculate the ordinary least squares estimates of coefficient

matrices and compute the corresponding residual matrices for the

functional connectivity matrix after adjusting the effects of age, gender

and the first five SNP principal component scores on both datasets.

Then, we apply the MLRA on each dataset and selected the common

blocks where the top 5% important super-variants are located.

3 | RESULTS

We analyze 19,831 individuals with both genetic data and resting-

state networks available from the UKB. Based on the data release

dates, we divide the whole dataset into a discovery set with 16,421

subjects, and a verification set with 2,882 subjects as similarly done

by Elliott et al., 2018. We use the verification set to evaluate the

validity of genetic associations from the discovery phase.

The 41,502,298 SNPs analyzed are grouped into 2,689 sets of

one Mbp in length. The matrix response is the partial correlation

matrix derived from resting-state fMRI. We measure the importance

of SNPs and candidate super-variants by the nuclear norm of the

F IGURE 1 Results on synthetic data. We present the result on synthetic data and the true images of BT used in simulations. We report the
average true nonzero coverage proportion as k increases from 1:100. The result is averaged by repeating 100 times. It reveals that MLRA (light
blue diamond) outperforms all other four methods. Moreover, the performance of MLRA is stable under different settings of coefficient matrix,
while rank-one screening (red triangle) performs poorly in Simulation 2
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regression coefficient matrix. In both discovery and verification

stages, we focus on the super-variants among the top 5% important

super-variants (134/2689). In the end, we find 12 common top super-

variants on both discovery and verification datasets. The probability

of getting 12 or more common super-variants in a pool of 2,689 can-

didates that are ranked among the top 5% in both datasets by chance

is less than 3.32%. The corresponding SNPs of each super-variant

with top 3 largest nuclear norm according to the discovery data are

listed in Table 1. The genes, where the SNPs are located, are also

reported, if known. The full list of corresponding SNPs of each super-

variant is reported in Supplemental Data.

Our findings gain supports from literature. Among 12 verified

super-variants, 7 of them contain SNPs that reside in 14 genes which

have previously been reported to have association with brain struc-

ture and function. The consistency with existing results of these

14 genes is presented in detail in Table 2.

We also conduct the analysis on the pairwise functional connec-

tivity strength between Region of Interest (ROI) 2 and ROI

29 (Net100_0380 in Elliott et al., 2018) based on their partial correla-

tion measure from the connectivity matrix. Elliott et al. (2018)

reported that this connectivity had the largest heritability (0.3033)

among all the pairwise functional connectivity strengths. From the

TABLE 1 Top SNPs corresponding to

12 verified super-variants for
connectivity matrix

Super-variant SNP name Position Major Allele Minor Allele Gene

chr1_119 rs150587011 118,394,978 CT C

rs140523673 118,104,740 A G

rs187120237 118,521,524 T C SPAG17

chr3_151 rs754473336 150,225,522 G T

3:150010532 150,010,532 G GTTAC

rs56911072 150,800,599 G C

chr7_139 rs74888723 138,056,520 A G

rs76356478 138,682,454 T C

rs28644472 138,367,105 C T SVOPL

chr8_110 rs537656432 109,182,059 C T

rs73316135 109,590,330 T C

rs577665281 109,352,658 C A

chr9_26 rs1332432 25,214,299 G A

rs73471738 25,204,838 G T

rs7043237 25,201,349 G A

chr9_120 9:119683843 119,683,843 G GGCGACCGAGC ASTN2

rs564940053 119,683,855 T A ASTN2

rs12002288 119,687,073 T C ASTN2

chr10_30 rs112305584 29,281,784 A T

rs58515486 29,828,831 T C SVIL

rs73611821 29,284,416 C T

chr12_34 rs7296825 33,059,771 G C

rs73303683 33,050,638 A G PKP2

rs60059851 33,045,241 G A PKP2

chr15_65 rs1037847 64,279,555 T C DAPK2

rs7168753 64,283,625 T C DAPK2

rs8041460 64,279,864 T C DAPK2

chr16_61 16:60145501 60,145,501 T TG

rs531574432 60,145,505 C G

rs144650764 60,133,310 TTA T

chr18_71 rs79191515 70,351,615 C T

rs17086080 70,133,421 G A

rs10514046 70,133,865 C G

chr19_55 rs11881664 54,892,237 G A

rs113393416 54,516,210 G A CACNG6

rs113772732 54,895,558 A G
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discovery stage, we select the top 5% important super-variants

(134/2689) for verification, and the smallest p-value among the

134 selected variants is 0.00595 from the validation dataset, which is

greater than 0.05/134.

TABLE 2 The concordance with previous results

Super-variant Gene Papers Results

Chr3-151 SELENOT Boukhzar et al., 2016 Gene SELENOT encodes a selenoprotein. This gene has

been reported to play a crucial role in the protection

of dopaminergic neurons against oxidative stress in

mouse model of Parkinson's disease.

MED12L Risheg et al., 2007

Isidor et al., 2014

Nizon et al., 2019

Gene MED12L encodes a subunit of Mediator complex.

Mutations in this gene have been identified in

several genetic disorders associated with intellectual

disabilities.

Chr7-139 KIAA1549 Jones et al., 2008

Lin et al., 2012

KIAA1549:BRAF fusion has been identified in many

cases of pilocytic astrocytoma in central neural

system.

Chr9-120 ASTN2 Fagerberg et al., 2014 Gene ASTN2 shows biased expression in brain.

Wilson, Fryer, Fang, & Hatten, 2010 Gene ASTN2 has been reported to regulate glial-guided

neuronal migration.

Glessner et al., 2009

Vrijenhoek et al., 2008

Lesch et al., 2008

Variations in gene ASTN2 has been identified as a risk

factor in neurodevelopmental disorders, including

autism spectrum disorder, schizophrenia, attention-

deficit/hyperactivity disorder.

Chr12-34 SYT10 Moghadam & Jackson, 2013 Gene SYT10 is a member of synaptotagmin, a family of

transmembrane proteins involved in the regulated

exocytosis of vesicles.

Mittelsteadt et al., 2009 Gene SYT10 is mainly expressed in olfactory bulb

neurons.

Woitecki et al., 2016 Gene SYT10 has been reported to contribute to

activity-induced neuroprotection against excitotoxic

neurodegeneration.

Chr15-65 CSNK1G1 Martin et al., 2014 Gene CSNK1G1 encodes a member of the casein

kinase I gene family. A mutation in this gene may be

associated with non-syndromic early-onset epilepsy.

Chr18-71 CBLN2 Fagerberg et al., 2014 Gene CBLN2 shows biased expression in brain.

Rong et al., 2012 Genetic elimination of CBLN2 results in synaptic

alterations in cerebellum.

NETO1 Fagerberg et al., 2014 Gene NETO1 encodes a transmembrane protein, which

shows biased expression in brain.

Ng et al., 2009 Gene NETO1 has been reported to regulate spatial

learning and memory.

Chr19-55 PRKCG Fagerberg et al., 2014 Gene PRKCG encodes a member of a family of serine-

and threonine-specific protein kinases. This gene

shows biased expression in brain.

Chen et al., 2003

Shirafuji et al., 2019

Mutations in this gene results in neurodegenerative

disorder spinocerebellar ataxia-14 (SCA14).

CACNG6

CACNG7

CACNG8

Fagerberg et al., 2014 These genes encode a type II transmembrane AMPA

receptor regulatory protein. Genes CACNG7 and

CACNG8 are restrictedly expressed in brain.

Guan et al., 2016 Genes CACNG6 and CACNG8 have been identified as

potential susceptible genes to schizophrenia.

CNOT3 Martin et al., 2019 Variations in gene CNOT3 cause a variable

neurodevelopmental disorder.

TTYH1 Fagerberg et al., 2014 Gene TTYH encodes a member of the tweety family of

proteins. This gene shows biased expression in brain.

Halleran et al., 2015 Gene TTYH is expressed during neuronal development.
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4 | DISCUSSION

Genes that are consistent with existing literature are related to signal

transduction and neuronal development, and/or neurodevelopmental

and neurodegenerative disorders such as intellectual disabilities (Isidor

et al., 2014; Nizon et al., 2019; Risheg et al., 2007), schizophrenia

(Guan et al., 2016; Vrijenhoek et al., 2008), and Parkinson's disease

(Boukhzar et al., 2016). Our findings indicate that these genes may

have impact on these disorders by affecting the brain connectivity.

Besides the concordance with previous results, other identified genes,

such as RSPO2 and TMEM74, have been reported to have biased

expression in the brain (Fagerberg et al., 2014). Therefore, our results

may serve as a guide for the further experimental research on associa-

tion between these genes and brain structure and function.

In addition, the super-variant on Chromosome 18 involves genes

CBLN2 and NETO1, which to the best of our knowledge, have not

been reported to be associated with brain function jointly in the litera-

ture. Therefore, our method may lead to discoveries of potentially

novel mechanisms on how multiple genes affect the brain connectivity

collectively.

To visualize the influence of a super-variant on brain connectivity,

we compare the average connectivity matrices by the allele types of

the super-variant. Figure 2 presents the result for the super-variant

on Chromosome 9 block 120 whose top contributing SNPs are from

gene ASTN2. From Figure 2, we can see that some regions are

affected with clear patterns; for instance, connections including region

6 (region 14) are all weakened if the super-variant on Chromosome

9 block 120 is present. The details about all of the 55 regions are

available on the UKB website listed in Web Source. Although the bio-

logical rationale behind such observation is unclear to us, but this find-

ing warrants further investigation, because ASTN2 has been identified

as a risk factor in neurodevelopmental disorders. Similar plots for all

super-variants are reported in the Figure S1 in Supplemetal Data.

The MLRA is able to find SNPs that have not been reported in

existing studies (Jahanshad et al., 2012; Kong et al., 2019), mainly

because that the MLRA orders the SNPs in terms of their importance

without screening out any single one (Kong et al., 2019). In this way, it

becomes possible to retain and aggregate SNPs with weak and/or

interactive effects to discover more associations. Importantly, our

results are also verified using a separate dataset, and are more reliable

than the existing results (Jahanshad et al., 2012; Kong et al., 2019)

which lack of cross verification.

The proposed method still has limitations. When dealing with scalar

responses, we can obtain a p-value for each super-variate as explained.

However, with matrix responses, statistical inference of matrix regression

remains a challenging and active research topic. For this reason, we used

the cross-validation method by splitting the samples into two datasets.

This method, however, reduces the sample size and hence the power of

detecting significant super-variants. We also analyze the pairwise func-

tional connectivity strength, but do not find any super-variant that is sta-

tistically significant at the 0.05 level after Bonferroni correction.

One may consider adding an explicit sparsity constraint on each

Bgv when ranking and finding the best cutting point. In this study, we

decided not to add such a constraint based on the following concerns.

First, as mentioned in (Kong et al., 2019), one may calculate some

other regularized estimates (e.g., Lasso or fused Lasso), but it is com-

putationally infeasible when the number of candidate SNPs is more

than 41million. Second, there are hyper-parameters to be tuned when

constraints were introduced. Even if the computation is not a concern,

it is difficult to directly tune those parameters in the analysis of real

data where the ground truth is unknown. Last, when adding con-

straints, one should have structural knowledge from the ground truth

as rationales for the constraints. However, as far as we know, the spe-

cific structure of signals on brain connectivity is not well studied or

verified, so it is premature to choose what kind of constraints in brain

imaging and genomic analysis.

In summary, the MLRA can capture the structure of response

matrices as well as interactions between explanatory variables. We

should note that although the proposed method enjoys important

advantages, it can be extended and improved. For example, a formal

statistical inference on the results needs to be developed. In addition,

F IGURE 2 The influence of the super-variant on Chromosome
9 block 120 on brain connectivity. We standardize the elements of
the connectivity matrices to mean 0 and variance 1. Individuals in the
discovery set are separated into two groups according to the minor
and major variants of the super-variant on Chromosome 9 block 120.
Here, the variant with a lower frequency is referred to as the minor
variant. The difference matrix is calculated by subtracting the average
connectivity matrix of the group with the major variant from the
average connectivity matrix of the group with the minor variant. For
visualization, only differences with absolute values in top 5% are
plotted in the chord diagram. Red (green) bands indicate the negative
(positive) differences and the widths of the bands indicate the
magnitudes of the differences. The numbers in the outer circle
indicate specific regions in the brain
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it may be useful to use biological knowledge to guide the formation of

SNP blocks.

Web Resources: 3D-maps for the brain regions, https://www.

fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_

good_nodes.html
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