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Background. Solute carrier family 2 member 4- (SLC2A4-) retinol binding protein-4- (RBP4-) phosphoenolpyruvate carboxykinase
1 (PCK1)/phosphoinositide 3-kinase (PI3K) is an adipocyte derived “signalling pathway” that may contribute to the pathogenesis
of type 2 diabetes mellitus (T2DM). We explored whether single nucleotide polymorphisms (SNPs) of these “signalling pathway”
genes are associated with gestational diabetes mellitus (GDM). Methods. Case-control studies were conducted to compare GDM and
control groups. A total of 334 cases and 367 controls were recruited. Seventeen candidate SNPs of the pathway were selected. Chi-
square tests, logistic regression, and linear regression were used to estimate the relationships of SNPs with GDM risk and oral glucose
tolerance test (OGTT), fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels. Model-based
multifactor dimensionality reduction was used to estimate the adjusted interactions between genes. Regression and interaction
analyses were adjusted by maternal age, prepregnancy BMI, and weekly BMI growth. The Bonferroni correction was applied for
multiple comparisons. Results. RBP4 rs7091052 was significantly associated with GDM risk. SLC2A4 rs5435, RBP4 rs7091052, PCKI
rs1042531 and rs2236745, and PIK3RI (coding gene of the PI3K P85 subunit) rs34309 were associated with OGT'T, fasting insulin,
and HOMA-IR levels in the linear regression analysis. The gene-gene interaction analysis showed that, compared with pregnant
women with other genotype combinations, women with SLC2A4 rs5435 (CC/CT), RBP4 rs7091052 (CC), PCK1 rs1042531 (TT/TG)
and rs2236745 (T'T), and PIK3RI rs34309 (AA) had lower GDM risk. Conclusion. SLC2A4, RBP4, PCK1, and PIK3RI genes may be
involved in the pathogenesis of GDM.

glucose rises, and GDM occurs. Severe insulin resistance is
the core of GDM pathophysiology[3]. To date, it has been

Gestational diabetes mellitus (GDM) is defined as varying
degrees of glucose intolerance that is first detected during
pregnancy [1]. The prevalence of GDM has increased in
recent decades, ranging from 1.7 to 11.6% among various pop-
ulations [2]. During pregnancy, because the placenta secretes
a series of hormones with an insulin antagonistic function,
such as progesterone, prolactin, oestrogen, and cortisol,
pregnant women appear physiologically insulin resistant and
secrete more insulin to maintain normal blood glucose
levels. When insulin resistance reaches higher levels, the
insulin compensatory secretion becomes insufficient, blood

widely accepted that the molecular mechanism of insulin
resistance is mainly associated with post-insulin-receptor
signal transduction defects. The “substrate” proteins that
are phosphorylated by insulin receptors include a protein
known as insulin receptor substrate 1 (IRS-1). IRS-1 binding
and phosphorylation eventually lead to increased levels of
high affinity glucose transfer protein-4 (also known as solute
carrier family 2 member 4, SLC2A4) molecules on the
outer membrane of insulin-responsive tissues and, therefore,
increased glucose uptake from blood into these tissues.
Disturbance of any of the abovementioned processes can
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affect the signal transduction of insulin, leading to insulin
resistance[4].

In obesity and type 2 diabetes mellitus (T2DM), the
expression of SLC2A4 is selectively decreased in adipocytes.
Yang et al. found that adipose-specific SLC2A4-knockout
mice show secondary insulin resistance in muscle and liver
through elevated levels of retinol binding protein-4 (RBP4)
in the serum. Further research revealed that increasing
serum RBP4 induces hepatic expression of the gluconeogenic
enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) and
reduces insulin-stimulated phosphoinositide 3-kinase (PI3K)
activity in muscle. Thus, SLC2A4-RBP4-PCK1/PI3K is an
adipocyte-derived signalling pathway that may contribute to
the pathogenesis of T2DM [5].

Researchers have found that the levels of SLC2A4 in
adipocytes of pregnant women with GDM were lower than
those of normal pregnant women [6, 7]. Studies of RBP4 have
suggested that the levels of RBP4 mRNA and serum RBP4
in adipocytes of pregnant women with GDM were higher
than those of normal pregnant women with similar BMI
[8-19]. Studies of PI3K have suggested that reducing PI3K
levels can reduce the expression level of TRPM6 on the cell
membrane and increase the risk of GDM [20]. These findings
suggest that the SLC2A4-RBP4-PCKI1/PI3K pathway not only
is associated with T2DM, but also may be associated with the
risk of GDM.

In this study, we investigated the association between
GDM and SLC2A4-RBP4-PCKI/PI3K gene single nucleotide
polymorphisms (SNPs) using a case-control research
approach.

2. Subjects, Materials, and Methods

2.1. Ethics Statement. The study protocol was reviewed
and approved by the Central-South University’s Ethical
and Confidentiality Committee. All participants provided
written informed consent. The authors assert that all pro-
cedures/methods were conducted in accordance with the
approved guidelines.

2.2. Study Population. This was a case—control study of
pregnant women with and without GDM who enrolled on the
oral glucose tolerance test (OGTT) day. The inclusion criteria
for subjects were (a) visiting prenatal clinics regularly and
undergoing OGTT during 24-28 weeks at the Department of
Obstetrics and Gynecology in the Hunan Provincial Hospital
of Maternal and Child Health from December 2014 to
July 2015; (b) aged between 25 and 38 years; (c) singleton
pregnancies; (d) without prepregnancy diabetes mellitus,
hypertension, chronic liver disease, thyroid dysfunction or
subclinical thyroid dysfunction, any known or suspected
active infection, or other diseases, which are known risk
factors for abnormal glucose metabolism; (e) no use of any
medications except for minerals and vitamins. We diagnosed
pregnant women with GDM according to the current GDM
criteria in China. OGTT was done during 24-28 gestational
weeks. The boundaries of OGTT were 5.1 mmol/L, 10.0
mmol/L, and 8.5 mmol/L for fasting glucose and 1 and 2 hours
after 75 g oral glucose intake, respectively. When one or more
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OGTT indicators reached or exceeded the abovementioned
boundaries, the pregnant woman was diagnosed with GDM.
After obtaining informed consent, blood for genotyping of
GDM pregnant women was obtained on OGTT afternoon
when all the OGTT results came out. A similar number
of women with normal glucose tolerance were randomly
selected as the control group on the same afternoon and blood
for genotyping was obtained. All subjects were collected for
general information including maternal age, gestational age,
parity, height, and weight (on OGTT morning and before
pregnancy), and body mass index was calculated (BMI =body
weight (kg)/body height (m) ?). Fasting insulin levels, systolic
blood pressure, and diastolic blood pressure were measured
on the OGTT morning. Gestational age was confirmed by a
routine ultrasonographic examination performed during the
first trimester of gestation.

2.3. SNP Selection and Genotyping. The candidate SNPs of
SLC2A4, RBP4, PCK1, and PIK3RI (coding gene of the PI3K
P85 subunit) were selected by searching for the SNPs with the
strongest signal in the literature (including GDM, T2DM, and
metabolic syndrome) and selecting the tagSNP by searching
the Genome Variation Server 141 (database search by gene
name, population: HapMap-HCB, allele frequency cutoft
(%)>10%, and R? threshold for cluster: 0.8). Finally, 17 SNPs
were selected. The alleles, minor allele frequency (MAF), and
SNPs covered by tagSNP are shown in Table 1. The primers
for each SNP are shown in Table S1.

Genomic DNA was extracted from whole blood using a
TIANamp Blood DNA Kit (DP318-03, TIANGEN, Beijing),
which is based on silica membrane technology and uses a
special buffer system for DNA extraction from fresh or frozen
whole blood. SNPs were genotyped with the SEQUENOM
MassARRAY iPLEX platform. The assay consists of an initial
locus-specific PCR reaction, followed by single-base exten-
sion and matrix-assisted laser desorption/ionization-time of
flight mass spectrometry to identify the SNP allele.

2.4. Statistical Analysis. Case-control studies were conducted
to compare the GDM and control groups. General clinical
features of the case and control groups were compared with a
t-test or the Mann-Whitney U test for continuous variables
or the chi-square test for categorical variables. The Hardy-
Weinberg test and linkage disequilibrium were estimated
using SHEsis (http://analysis.bio-x.cn/myAnalysis.php)[21].
Pair-wise linkage disequilibrium parameters (D' and r?)
were estimated for SLC2A4, RBP4, PCK1, and PIK3RI genes.
The most frequently used LD coefficients D' and r* have
very different properties and may be applied for different
purposes. D' is useful to assess the probability for historical
recombination in a given population, whereas r* is useful
in the context of association studies [22]. In this study, we
mainly used r* as the criterion for judging the linkage disequi-
librium. When r* was equal to or higher than 0.8, we judged
that SNPs were in strong linkage disequilibrium. Meanwhile,
if D' was equal to 1, we judged that SNPs were in complete
linkage disequilibrium. The chi-square test was used to
compare the distribution of genotypes between the case and
control groups. Logistic regression was used to estimate the
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TaBLE 2: Demographic and clinical characteristics of the study subjects.

Controls (N=367) Cases (N=334) p

Maternal age, years 29(28,32) 29(27,32) 0.672*
Gestational age at sampling, weeks 25.11+2.724 25.35+2.948 0.458"*"
Pre-pregnancy BMI 20.55(19.14,22.64) 22.31(20.29,24.14) <0.001"
Weekly BMI growth® 0.114+0.054 0.131+0.056 <0.001""
SBPP 111+10.30 116+11.12 <0.001""
DBP® 70+8.38 74+8.09 <0.001""
Parity

0 230(62.7%) 216(64.7%) 0.312"**

1 123(33.5%) 93(27.8%)

2 5(1.4%) 7(2.1%)
Family history of diabetes®

Yes 62(17.4%) 94(29.3%) <0.001"""

No 295(82.6%) 227(70.7%)

* The Wilcoxon rank sum test was used due to a nonnormal distribution of the tested characteristics, and data are presented as medians and quartiles.

** Student’s ¢-test was used due to a normal distribution of the tested characteristics, and data are presented as the mean and SDs.

*** A Chi-square test was

used to analyse data presented as a ratio. * BMI measured on the morning of the oral glucose tolerance test minus the prepregnancy BMI and then divided by

the gestational age (weeks) was defined as “Weekly BMI growth”; b spp (systolic blood pressure) and DBP (diastolic blood pressure) were the blood pressures
measured on the morning of the oral glucose tolerance test. “Relatives covered grandfather, grandmother, maternal grandfather, maternal grandmother, father,

mother, brother, sister, and brother and sister of father and mother.

odds ratio (OR) and 95% confidence interval (CI) of each
SNP under different genetic models adjusted by maternal
age, prepregnancy BMI, and weekly BMI growth. Linear
regression was used to estimate the relationship between
SNPs and the OGTTT, fasting insulin, and homeostasis model
assessment of insulin resistance (HOMA-IR) levels, adjusted
by maternal age, prepregnancy BMI, and weekly BMI growth.
The BMI measured on the morning of the OGTT minus
the prepregnancy BMI and then divided by gestational age
(weeks) was defined as “Weekly BMI growth.” HOMA-IR was
calculated from the data of OGTT day. HOMA-IR=Fasting
insulin (mIU/L)* fasting blood glucose (mmol/L)/22.5.

All of the above statistical analyses, except for the Hardy-
Weinberg test and linkage disequilibrium analysis, were
performed using SPSS version 18.0 (SPSS Inc., Chicago, IL,
USA). Model-based multifactor dimensionality reduction
was used to estimate the adjusted interactions between genes
[23, 24]. Even in the case of only one genotype combination
distributed differently between the case and control groups,
the specified genes had gene-gene interactions for GDM
risk. The gene-gene interaction analysis was performed using
R3.2.3, adjusting for maternal age, prepregnancy BMI, and
weekly BMI growth. A multiple comparisons test with the
Bonferroni correction was used to assess the significance
level of the association. For the logistic regression and linear
regression analysis, « was equal to 0.004 (0.004=0.05/14)
because 14 SNPs were finally included in the analyses. Because
three genetic models of each SNP have been analysed, a
stringent Bonferroni correction was also applied, and o was
equal to 0.001 (=0.05/(143)=0.001). & was set as 0.05.

3. Results

3.1. Demographic and Clinical Characteristics. A total of
334 cases and 367 controls were analysed. The clinical

characteristics of cases and controls are summarized in
Table 2. Compared with the control group, the case group
had a higher prepregnancy BMI (p<0.001), larger weekly BMI
growth (p<0.001), higher systolic blood pressure (p<0.001),
higher diastolic blood pressure (p<0.001), and higher family
history positive rate (p<0.001).

3.2. Test for Hardy-Weinberg Equilibrium and Linkage Dise-
quilibrium Analysis. The SNP genotyping detection rate was
99.5%. For all SNPs, Hardy-Weinberg equilibrium (HWE)
was observed in the control group (Table 1). Pair-wise linkage
disequilibrium parameters (D' and r*) were estimated for
SLC2A4, RBP4, PCKI, and PIK3RI genes. For SLC2A4,
rs222852 and rs5418 were in strong linkage disequilibrium.
(Table S2). For RBP4, rs17108991, rs34571439, rs7079946, and
rs7091052 were in complete linkage disequilibrium (Table S3).
In the subsequent analysis, we included only rs7091052 and
rs3758539. No pair of SNPs in PCK1 and PIK3RI genes was in
strong linkage disequilibrium (Table S4, Table S5).

3.3. Association between Genetic Variants in SLC2A4, RBP4,
PCK1, PIK3RI, and GDM. Table 3 shows that the frequencies
of the RBP4 rs7091052 T allele (p=0.012) and CT genotype
(p=0.003) were significantly higher in the case than in the
control group. After correction for multiple comparisons,
the frequency of the rs7091052 CT genotype was still sig-
nificantly higher in the case than in the control group
(a=0.05/14=0.004). However, no significant differences in the
alleles and genotypes of SLC2A4, PCKI, and PIK3RI were
observed between cases and controls (Table S6).

In the logistic regression analysis, SLC2A4 rs5435,
rs222852, rs5418, and rs8082645; RBP4 rs3758539; PCKI
rs1042531, 1s2236745, rs28359554, and rs707555; and
PIK3RI rs40419, rs1819987, rs34309, and rs6890176 were not
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TaBLE 3: The distribution of alleles and genotypes of RBP4 rs7091052.
Gene SNP Allele/Genotype Controls Cases XZ p
n % n %
RBP4 rs7091052 C 672 91.8 586 87.7 6.375 0.012
T 60 8.2 82 12.3
CC 311 85.0 254 76.0 11.723 0.003"
TT 5 1.4 2 0.6
CT 50 13.7 78 23.4
* The p value was less than or equal to 0.004, which was « after Bonferroni correction (=0.05/14=0.004). Fourteen SNPs were included in the analyses.
TABLE 4: Logistic regression analysis of RBP4 rs7091052 and GDM risk.
Gene SNP Genotype OR p 95%CI
RBP4 rs7091052 Recessive model 0.314 0.211 0.051,1.933
Dominance model 1.710 0.011 1.129,2.591
Additive model 1.493 0.041 1.017,2.191
The covariates in the logistic regression analysis were maternal age, prepregnancy BMI, and weekly BMI growth.
TaBLE 5: The association of genetic variants of SLC2A4, RBP4, PCK1, and PIK3RI with OGTT, fasting insulin, and HOMA-IR levels.
: # # # PSP
Gene SNP Genetic model Fasting BG 1h BG 2h BG Fasting insulin HOMA-IR
Beta p Beta p Beta p Beta p Beta p
SLC2A4  rs5435 Recessive model 0171 0.042 0338 0180 0.287 0.169 3.166 0.002 " 0.879  <0.001*°
RBP4 rs7091052 Dominance model 0.109 0195 0.542 0.030 0.004 0.987 -0.060 0.927 0.025 0.890
PCK1 rs1042531 Recessive model 0176 033 0.455 0185 0.428 0.34 5443 <0.001*° 1485 <0.001"°
Additive model 0.052 0.271 0.089 0520 0139 0.230 1.228 0.030 0.341 0.014
PCK1 rs2236745 Dominance model 0.040 0.515 -0.056 0.755 -0.002 0.989 1571 0.032 0.352 0.051
PIK3R1  1s34309 Recessive model -0.222  0.01 -0.701 0.007 -0.395 0.069 0.250 0.813 -0.088 0.735

The covariates in these linear regression analyses were maternal age, prepregnancy BMI, and weekly BMI growth. BG® is the abbreviation for blood glucose. *p
value was less than 0.004, which was o after Bonferroni correction (=0.05/14=0.004); fourteen SNPs were included in the analyses. § meant that the p value
was less than 0.001, which was « after stringent Bonferroni correction (=0.05/(14%3)=0.001); three genetic models of each SNP have been analysed.

associated with GDM, regardless of genotype and use
of dominant model, recessive model, or additive model
comparisons (Table S7).

As shown in Table 4, after adjusting for maternal age,
prepregnancy BMI, and weekly BMI growth, the logis-
tic regression analysis revealed that for cases, compared
to controls, RBP4 rs7091052 was significantly associated
with GDM (Dominance model: OR=1710, p=0.01l, and
95%CI:[1.129,2.591]; Additive model: OR=1.493, p=0.041, and
95%CI: [1.017,2.191)).

3.4. Association Analysis of Genetic Variants in SLC2A4, RBP4,
PCK1, and PIK3RI with OGTT, Fasting Insulin, and HOMA-IR
Levels. In addition to fasting blood glucose level, the blood
glucose levels at 1 and 2 hours after the OGTT, which con-
stitute the diagnostic criteria for GDM, fasting insulin, and
HOMA-IR levels, are also important indicators for evaluating
glucose metabolism. To better study the relationship between
the selected genes and the glucose metabolism level, we
analyzed the relationships between the fasting insulin level or
other continuous indicators and genes. As shown in Table 5,
after adjusting for maternal age, prepregnancy BMI, and

weekly BMI growth, the linear regression analysis revealed
that (1) the SLC2A4 rs5434 TT genotype was associated with
a higher fasting blood glucose level (Beta=0.171, p=0.042),
fasting insulin level (Beta=3.166, p=0.002), and HOMA-
IR level (Beta=0.879, p<0.001); (2) the RBP4 rs7091052 TT
and CT genotypes were associated with a higher 1-hour
blood glucose level (Beta=0.542, p=0.030); (3) under the
recessive model, the PCKI rs1042531 GG genotype was asso-
ciated with higher fasting insulin (Beta=5.443, p<0.001) and
HOMA-IR levels (Beta=1.485, p<0.001); under the additive
model, the G mutation was still associated with higher
fasting insulin (Beta=1.228, p=0.030) and HOMA-IR levels
(Beta=0.341, p=0.014); (4) the PCKI rs2236745 CC and TC
genotypes were associated with a higher fasting insulin level
(Beta=1.571, p=0.032); (5) the PIK3RI rs34309 AA genotype
was associated with higher fasting blood glucose (Beta=-
0.222, p=0.011) and I-hour blood glucose levels (Beta=-
0.701, p=0.007). After stringent Bonferroni correction for
multiple comparisons, SLC2A4 rs5435 and PCKI rs1042531
were still associated with increased HOMA-IR and/or fasting
insulin levels («=0.05/(14%3)=0.001). No significant results
were observed for the association analysis of other SNPs with
OGTT, fasting insulin, and HOMA-IR levels.



3.5. Gene-Gene Interaction in GDM. In the above anal-
ysis, SLC2A4 1rs5435 (Recessive model); RBP4 rs7091052
(Dominance model); PCKI rs1042531 (Recessive model)
and rs2236745 (Dominance model); and PIK3RI rs34309
(Recessive model) were associated with GDM risk. We
included SLC2A4 rs5435, RBP4 rs7091052, PCKI rs1042531
and rs2236745, and PIK3RI rs34309 in a gene-gene interac-
tion analysis, adjusting for maternal age, prepregnancy BMI,
and weekly BMI growth.

Compared to pregnant women with the other geno-
type combinations, pregnant women with SLC2A4 rs5435
(CC/CT), RBP4 rs7091052 (CC), PCKI rs1042531 (TT/TG)
and rs2236745 (TT), and PIK3RI rs34309 (AA) had a lower
GDM risk (OR=0.231, p=0.012). The detailed data are shown
in Table S8. Gene-gene interactions existed for SLC2A4,
RBP4, PCK1, and PI3K.

4. Discussion

SLC2A4 1rs5435; RBP4 rs7091052, rs17108991, rs34571439,
and rs7079946; PCKI rs1042531 and rs2236745; and PIK3RI
rs34309 were associated with GDM risk.

SLC2A4 is a glucose transporter that is the only insulin-
sensitive protein in the glucose transporter family. When
insulin binds to its receptor, the signal is passed down to
SLC2A4, causing SLC2A4-rich vesicles to move towards the
plasma membrane. As the vesicles fuse with the plasma
membrane, SLC2A4 transporters are inserted and become
available for transporting glucose, and glucose absorption
increases [25]. In our study, we analysed the association of
rs5435 with blood glucose and insulin and found that fasting
blood glucose, fasting insulin, and HOMA-IR were higher in
women with the TT genotype. The only previous correlation
study showed that the T allele of rs5435 was associated with a
high risk of T2DM [26]. SLC2A4 rs5435, a tagSNP, is located
in the coding region, and the mutation is a synonymous
mutation. SLC2A4 rs5435 may affect glucose metabolism
in pregnant women by influencing the level of mRNA and
further modulating the protein level of SLC2A4, thus leading
to a high risk of GDM [7].

RBP4 is mainly synthesized by hepatocytes and adipose
tissue. It was identified in 2005 as an adipocytokine with the
potential to reduce insulin sensitivity and enhance hepatic
gluconeogenesis [5]. The results of our study showed that
RBP4 rs3758539 was not associated GDM risk. To date,
three studies have focused on the relationship between RBP4
and GDM risk, and all of three studies analysed rs3758539.
In a study reported in the United States, rs3758539 was
not associated with GDM risk [27]. A Mexican study also
supported that rs3758539 was not associated with GDM risk;
however, the A allele was associated with higher insulin and
HOMA-IR levels six months after delivery [28]. Ping studied
rs3758539 in a Chinese population and found that the A allele
may reduce the risk of GDM [18]. However, the rs3758539 A
allele was found to be associated with high insulin resistance
levels in T2DM, metabolic syndrome, obesity, and lipid
metabolism-related studies [29-33]. Therefore, more research
is needed to confirm whether RBP4 rs3758539 is associated
with GDM risk and to determine the role of the A allele.
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Hu et al. found that the serum levels of RBP4 were higher
in a Han population with RBP4 rs7091052 TT and CT
genotypes [34]. Our team performed a meta-analysis of
the relationship between the risk of GDM and the serum
RBP4 level, which showed that the serum levels of RBP4
in pregnant women with GDM were higher than those
in normal pregnant women [35]. We inferred that the TT
and CT genotypes of rs7091052 are high-risk genotypes for
GDM, which was confirmed by the results of our study. The
RBP4 157091052 results, logistic regression analysis, and linear
regression analysis suggested that RBP4 is likely part of the
pathophysiology of GDM.

PCKl is a gluconeogenic enzyme. In this study, we found
that the GG genotype of rsl042531 was associated with
higher levels of fasting insulin and HOMA-IR, suggesting
that the GG genotype was a high-risk genotype of abnormal
glucose metabolism; however, the GG genotype was not
found to be associated with the risk of GDM in the single-
factor logistic regression analysis. To date, the association
between rs1042531 and glycometabolism has been explored
only in T2DM patients, and the results are inconsistent.
Studies of Chinese and South Asian-born British populations
concluded that rs1042531 was not associated with T2DM
risk [36, 37]. However, a study in the United States showed
positive results, although the authors revealed that the G allele
was a low-risk allele for T2DM risk [38]. Additional studies
are needed to explore whether rs1042531 is associated with
GDM risk and whether the influences are different among
different races. This study found the CC and TC genotypes
of 152236745, a tagSNP, were related to higher fasting insulin
levels. Although no relevant study has focused on this tagSNP,
rs2071023, which is in high linkage disequilibrium with
rs2236745, has been studied several times in T2DM patients
in the UK, China, Finland, Canada, Japan, Denmark, and
Germany [36, 37, 39-44]. In addition to studies that have
reported that rs2071023 was not related to T2DM risk [37,
40, 43, 44], other studies have suggested that the minor allele
was a high-risk allele for T2DM [36, 39, 41, 42], which was
consistent with our study.

PI3K is a key effector of the insulin signalling pathway
that can affect the movement of SLC2A4 in skeletal muscle
and inhibit liver gluconeogenesis. PI3K is composed of a
P85 subunit and a P110 subunit. P85 and the P85-P110 com-
plex compete for phosphotyrosine sites of insulin receptor
substrate-1, while P85 activates phosphatase and tonic protein
homologues, attenuating the insulin signal. The balance
between P85 and P110 is critical for the insulin signalling PI3K
pathway [45-47]. In this study, we focused on the PIK3RI
gene, which is the coding gene of the PI3K P85 subunit. Thus
far, only one study has focused on PIK3RI and GDM risk
(Italy), suggesting that rs3729982 is not associated with the
risk of GDM [48]. However, the sample size of the Italian
study was relatively small (240 controls, 38 pregnant women
with GDM). The four SNPs included in this study were all
tagSNP. The results showed that the GG and GA genotypes of
rs34309 were related to higher levels of fasting blood glucose
and blood glucose at the 1-hour OGTT, suggesting that the
P85 subunit of PI3K may be related to abnormal glucose
metabolism. We suggested that SNPs of the PI3K P85 subunit
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are associated with the risk of GDM, which need to be tested
in larger samples.

This study revealed that gene-gene interactions related to
GDM risk existed for SLC2A4, RBP4, PCK1, and PI3K. This
finding suggested that these four proteins may be part of
a pathway that affects GDM risk. The potential mechanism
of the interaction may be that RBP4 protein levels can be
regulated by SLC2A4 protein levels. Simultaneously, RBP4
protein level can regulate the protein levels of PCK1 and PI3K.
Protein levels can be regulated by the encoding gene and
exerts a feedback regulation function on the transcription
and translation of the encoding gene. However, due to the
relatively small sample size, the analysis of interactions in this
paper is a preliminary study. The results were not conclusive
but may be indicative. We will recruit additional patients in
the future to perform a study with sufficient power to verify
the effects of gene-gene interactions on GDM.

The study has certain limitations. First, the genetic sus-
ceptibility analysis provided limited information about the
association with GDM; the results need to be validated at
other levels, such as the proteomics level. Second, because
the study population was one race and the sample size was
relatively small, the results need to be confirmed in other
races and larger samples.

5. Conclusions

Our study showed that T2DM-related SNPs were associated
with GDM in a Han Chinese population. The SLC2A4,
RBP4, PCKI1, and PIK3RI genes may be involved in common
elements of the pathogenesis of T2DM and GDM. These
results also provide genetic evidence to support that patients
with GDM might have a higher risk for T2DM.
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