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Abstract: Perfect broadband absorbers have increasingly been considered as important components
for controllable thermal emission, energy harvesting, modulators, etc. However, perfect absorbers
which can operate over a wide optical regime is still a big challenge to achieve. Here, we propose
and numerically investigate a perfect broadband near-infrared absorber based on periodic array of
four isosceles trapezoid prism (FITP) unit cell made of titanium (Ti) over a continuous silver film.
The structure operates with low quality (Q) factor of the localized surface plasmon resonance (LSPR)
because of the intrinsic high loss, which is the foundation of the broadband absorption. The high
absorption of metal nanostructures mainly comes from the power loss caused by the continuous
electron transition excited by the incident light inside the metal, and the resistance loss depends
on the enhanced localized electric field caused by the FITP structure. Under normal incidence,
the simulated absorption is over 90% in the spectrum ranging from 895 nm to 2269 nm. The absorber
is polarization-independent at normal incidence, and has more than 80% high absorption persisting
up to the incident angle of ~45◦ at TM polarization.
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1. Introduction

In 2008, Landy et al. [1] first experimentally demonstrated the perfect metamaterial absorber, which
works in microwave frequency band. Since then, many works concentrate on metamaterial absorber
operating at frequency from microwave range [2,3] through terahertz [4,5], infrared [6,7], and into the
visible region [8–10]. In the optical region, perfect metamaterial absorber has been an important branch
of optical devices for its unique performance. It has undergone a rapid and flourishing development,
finding a wide variety of potential application including thermal emitters [6,11], bolometers [12],
solar energy harvesting [8,13], photodetections [7], and sensing [9,14,15]. The typical structure of
metamaterial absorber is metal-dielectric-metal (MDM) structure [6,7,16], consisting of patterned
subwavelength periodic metal arrays on top of the central dielectric layer, backed by a metallic ground
plane. Beyond that, some absorbers composed of plasmonic nanostructure/nanoparticles [14,17,18]
and metasurfaces [19–26] structure have been proposed and studied extensively. The absorption
enhancement of incident light is derived from various types of electromagnetic (EM) resonances,
such as propagating surface plasmon resonance (PSPR) [6], localized surface plasmon resonance
(LSPR) [23], surface lattice resonance (SLR) [19,26], and so on. The perfect absorption is usually a single
or multiple narrow band because of their nature of the resonances. However, the perfect broadband
absorption is highly required for applications in the fields of energy harvesting and thermal emission.
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To achieve a large absorption bandwidth there are two common and direct strategies [27].
One method is planar arrangement [28,29], which requires to create multiple resonances in each unit
cell via tailoring the size of the patterns on the top layer. In this case, multiple resonances [8,30]
will appear and perfect absorption can be achieved by incorporating resonators into a unit cell.
Specifically, if these resonance absorption peaks are close enough, they will overlap with each other to
form broadband absorption. The second method is vertical arrangement [31–33], which can lead to
broadband absorption by stacking multiple top layers in the vertical direction. One can use different
dielectrics and metals as an individual bilayer and stack these bilayers to form a consecutive broadband
absorption spectrum by tuning the geometric parameters simultaneously. However, for the method
one, the number of the resonators is restricted because of the competition of neighboring resonances,
and the absorption performance is sensitive to the structure size, thus its absorption intensity and
bandwidth expansion are limited. For method two, the broadband absorption performance can be
improved further by increasing the number of metal/dielectric layers. Nonetheless, it is rather difficult
to realize experimentally since they require precise control in complex fabrication processes, which
also limit their potential applications. Therefore, finding a simple and effective strategy to achieve
perfect broadband absorber is a challenging and significant task.

Metasurfaces are two dimensional arrays formed by subwavelength periodic nanostructures of
metal and dielectric. This structure can easily localize the incident light and enhance absorption because
of its effect of localized surface plasmon resonance. However, the existing researches [10,19,21,23,26]
mainly use noble metal or dielectric materials as the metasurface to achieve high absorption, which
is difficult to achieve broadband absorption. High loss materials can excite low-Q surface plasmon
resonances (SPRs), which is conducive to broadband absorption [34,35]. Therefore, we consider using
high loss materials to design appropriate metasurface structure, aiming to widen the absorption peaks
and get the perfect broadband absorber.

In this article, we propose a broadband and polarization-independent absorber based on simple
and all metallic metasurface in near-infrared region. The structure consists of metallic array made of
four isosceles trapezoid prism (FITP) unit cell over a continuous metal film. The absorption mechanism
is explored through the analysis of the electric field distributions and the power loss profiles. Moreover,
the absorption performance is numerically researched when the materials of the ground plane and
the nanostructures are replaced by the other metal materials, respectively. For absorption spectrum,
the effect of the geometric parameters of the unit cell structure on the absorption bandwidth is studied.
Additionally, numerical simulations show the properties of the polarization angle and incident angle.

2. Structure Design and Simulations

As shown in Figure 1, the proposed broadband absorber is composed of metallic array made of
FITP unit cell backed with a continuous metallic film on a silicon substrate. The optimized geometric
parameters of the broadband absorber are: Λ = 800 nm, L = 700 nm, w = 150 nm, h = 280 nm, t = 100 nm.
It should be noticed that the metallic FITP structure is deformed from a metallic square ring structure.
It is expected that the FITP structure can give rise to stronger resonance mode so as to result in a
continuous strong broadband absorption in near-infrared region [36].
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Figure 1. Schematic illustration of the proposed broadband absorber: (a) two-dimensional (2D) 
nanostructure array; (b)–(d) front, lattice, and perspective views of the unit cell nanostructure. 

To investigate its absorption properties and mechanisms of the proposed absorber, full wave 
simulation was performed by a finite-different time-domain (FDTD) method based on commercial 
software (FDTD Solutions, Lumerical, Canada). In simulation, the bottom metallic layer is selected 
as silver (Ag) [37] film, the thickness of which is 100 nm, much larger than the typical skin depth in 
near-infrared regime. Since the incident light cannot go through Ag film, the absorption can be 
calculated by A(λ) = 1 − R(λ), where R(λ) is the reflection as functions of wavelength λ. Titanium 
(Ti) [37] is used to composed the metasurface because of its priority in features of high loss and 
stability in optical region. In addition, we will explore the effect of using other different metal 
materials (such as gold (Au), aluminum (Al), chromium (Cr), nickel (Ni), tungsten (W)) [37] as 
metallic ground plane and nanostructures on the absorption performance of the absorber in Section 
3. The complex dielectric constant of all metals is fitted by a Drude-Lorentz model (with 6 
coefficients) in the FDTD solutions. In simulation process, periodic boundary conditions were 
performed on unit cell in the x and y plane to represent the behavior of an infinite array at normal 
incidence. The structure is illuminated by an incident light with electric field parallel to the x-axis. 
For oblique angles, Bloch boundary conditions were performed on unit cell in the x and y plane. In 
both cases, a perfect matching layer was used in the z direction. 

3. Results and Discussions 

As mentioned above, the metallic FITP structure is deformed from a metallic square ring 
structure. To be specific, we can split the square ring into four isosceles trapezoids and get the 
proposed structure by decreasing the length of the short-side (l). Figure 2 shows the simulated 2D 
absorption color map with the short-side decreasing from 400 nm to 0 nm. We can see that these 
structures have similar absorbing behavior with two peaks and one dip (the white dotted line in 
Figure 2). The absorption performance of the square ring structure is poor because its absorption 
spectrum has a deeper dip. However, when just decreasing the length of the short-side, the 
absorption performance of the structure becomes better. For quantitative comparison of absorption 
performance, the relative bandwidth of the absorber [6], defined as RBW (≥ 90%) = 2× (λl − λs)/( λl + 
λs), where λl and λs are the long and short limits of a wavelength range with absorption above 90%, 

Figure 1. Schematic illustration of the proposed broadband absorber: (a) two-dimensional (2D)
nanostructure array; (b–d) front, lattice, and perspective views of the unit cell nanostructure.

To investigate its absorption properties and mechanisms of the proposed absorber, full wave
simulation was performed by a finite-different time-domain (FDTD) method based on commercial
software (FDTD Solutions, Lumerical, Canada). In simulation, the bottom metallic layer is selected
as silver (Ag) [37] film, the thickness of which is 100 nm, much larger than the typical skin depth
in near-infrared regime. Since the incident light cannot go through Ag film, the absorption can be
calculated by A(λ) = 1 − R(λ), where R(λ) is the reflection as functions of wavelength λ. Titanium
(Ti) [37] is used to composed the metasurface because of its priority in features of high loss and stability
in optical region. In addition, we will explore the effect of using other different metal materials (such
as gold (Au), aluminum (Al), chromium (Cr), nickel (Ni), tungsten (W)) [37] as metallic ground plane
and nanostructures on the absorption performance of the absorber in Section 3. The complex dielectric
constant of all metals is fitted by a Drude-Lorentz model (with 6 coefficients) in the FDTD solutions.
In simulation process, periodic boundary conditions were performed on unit cell in the x and y plane
to represent the behavior of an infinite array at normal incidence. The structure is illuminated by an
incident light with electric field parallel to the x-axis. For oblique angles, Bloch boundary conditions
were performed on unit cell in the x and y plane. In both cases, a perfect matching layer was used in
the z direction.

3. Results and Discussions

As mentioned above, the metallic FITP structure is deformed from a metallic square ring structure.
To be specific, we can split the square ring into four isosceles trapezoids and get the proposed structure
by decreasing the length of the short-side (l). Figure 2 shows the simulated 2D absorption color map
with the short-side decreasing from 400 nm to 0 nm. We can see that these structures have similar
absorbing behavior with two peaks and one dip (the white dotted line in Figure 2). The absorption
performance of the square ring structure is poor because its absorption spectrum has a deeper dip.
However, when just decreasing the length of the short-side, the absorption performance of the structure
becomes better. For quantitative comparison of absorption performance, the relative bandwidth of the
absorber [6], defined as RBW (≥90%) = 2 × (λl − λs)/(λl + λs), where λl and λs are the long and short
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limits of a wavelength range with absorption above 90%, respectively. Therefore, we can find that the
RBW (≥90%) first increases and then decreases as the short-side length decreases. When the short-side
length is smaller than 275 nm, the RBW (≥90%) of absorbers can reach above 80%. Furthermore,
the designed absorber has best absorption performance which is greater than 90% from 895 nm to
2269 nm and the RBW (≥90%) reaches as high as 86.9%, when the short-side length is 275 nm.
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Figure 2. The simulated 2D absorption (A(λ)) color map as functions of the short-side length (l) and
the wavelength. Parameters: Λ = 800 nm, L = 700 nm, w = 150 nm, h = 280 nm, t = 100 nm.

To reveal the working mechanism behind the stronger broadband absorption, we comparatively
studied the electric field distributions of the three structures S1, S2, and S3 (the plane structure is
illustrated in Figure 2, corresponding length of short-side are 400 nm, 200 nm and 0 nm, respectively) at
different absorption peaks and dips. Figure 3b–d shows the electric field distributions of the structure
S1. For peak P1 the localized electric fields are concentrated at the inner edge while it locates at the
outer edge for peak P2. Obviously, the two absorption peaks originate from the excitation of the
LSPR [6,23,26]. Since Ti is dispersive and has a relatively large imaginary part, the intrinsic absorption
coefficient of Ti is very big, resulting in a rather low Q-factor for broadened absorption bandwidth [6,38].
However, at the dip D, the electric field is distributed at both sides of the square ring, and the electric
field intensity is lower than that of the peaks, which leads to a poor absorption.

When the length of the short-side is decreased to 200 nm, the square ring structure becomes
the four isosceles trapezoid structure (S2). As shown in Figure 3e, the intensity of the dip and the
two peaks all exceeds 90%, indicating better absorption property of the structure S2. According to
Figure 3f–h, the localized electric field mainly concentrates on the short-side at the peak P1’. It suggests
that the absorption intensity at P1’ will be lower than that at P1, agreeing with the absorption spectrum.
Different from the structure S1, E-field of structure S2 is distributed at the corner and the inner side at
the dip D’, while the E-field is mainly localized in the corner at the peak P2’. The absorption intensity
at dip D’ and peak P2’ both increase because of a stronger localized electric resonance result from
smaller length of the short-side.



Materials 2019, 12, 3568 5 of 12

Finally, when the length of short-side is decreased to zero, we can get the structure S3. As shown
in Figure 3i, broadband and high absorption is achieved, but the bandwidth is slightly reduced relative
to the structure S2. We can notice that the absorption intensity exceeds 99% at peaks P1” and P2”,
and exceeds 95% at dip D”. As shown in Figure 3j–l, the electric fields can be better concentrated
at the corner in S3, which demonstrates the collective oscillations of conductive electrons, evidently
suggesting the existence of the LSPR mode [16]. In addition, the electric fields of S3 are much stronger
than that of S1 and S2, proving that structure S3 can enhance the electric fields [36]. In this manner,
structure S3 can also achieve broadband absorption based on the stronger localized electric field and
low-Q LSPR.
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Figure 3. Absorption spectrum and electric field intensity distributions of the three structures at
normal incidence. (a,e,i) Absorption spectrum of the structure S1, S2, and S3. (b–d) The electric field
distributions of S1 at P1, D, and P2. (f–h) The electric field distributions of S2 at P1’, D’, and P2’. (j–l) The
electric field distributions of S3 at P1”, D”, and P2”.

To further and directly study the physical mechanism, we also studied the power loss
distributions [19,23,39] of the three structures at the dip and two peaks. In this structure, the power
loss comes from the resistance loss (q), which can be expressed by [40],

q =
1
2
ε0ωε

′′

m|E|
2 (1)
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where ε0 is the vacuum dielectric constant, ω is the angular frequency of light, εm” is the imaginary
part of the relative permittivity of a metal (εm = εm’ + εm”), and E is the intensity of localized electric
field. According to the Equation (1), the cross-section colormaps of the power loss are calculated and
shown in Figure 4.

From profiles of the power loss in Figure 4, we can see that the power loss is mainly concentrated
in Ti nanostructures. Power is absorbed at the corner and throughout inner edge region of the
Ti nanostructures, which is consistent with the distributions of the electric field. By comparing
Figures 3 and 4, we can find that the variation trends of power loss intensity are in agreement with
that of the absorption spectra from S1 to S3. In other words, the absorption magnitude of incident light
is significantly enhanced when the structures change from S1 to S3. It supports the discussion that
decreasing the short-side of the structure can enhance the localized electric field and result in the high
absorption performance of Ti nanostructures.
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Figure 4. The cross-section colormaps describe the normalized power loss in the three structures.
Structure S1 at (a) P1, (b) D, and (c) P2. Structure S2 at (d) P1’, (e) D’, and (f) P2’. Structure S3 at (g) P1”,
(h) D”, and (i) P2”. Brighter areas correspond to higher power loss. The position of the cross-section is
consistent with Figure 3.

We analyzed the effects of different types of composed metal material on absorption performance.
First, Ti is used as the nanostructures, and Ag ground plane is replaced by metal materials (Au, Al, Cr,
Ni, W, and Ti), the contrastive absorption spectra are shown in Figure 5a. We can see that only the
absorption bandwidth changes slightly in this case. Next, using Ag as the ground plane and choosing
metal materials (Ag, Au, Al, Cr, Ni, and W) to replace the Ti nanostructures, the contrastive absorption
spectra are shown in Figure 5b. We can observe that using Cr, Ni, W, and Ti as the nanostructures,
broadband absorption can be achieved and only the absorption bandwidth changes a little. Differently,
using Ag, Au, and Al as the nanostructures cannot achieve broadband absorption, and there are
only a few weak absorption peaks at the resonant frequency. In addition, using Ti and Ag as the
nanostructures, we calculate the proportion of light absorbed by the surface metal pattern and the
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bottom metal film, as shown in Figure 5c,d. It indicates that the light is absorbed mainly by the surface
metal pattern. Which is also consistent with the result of the power loss profiles shown in Figure 4.
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Figure 5. The contrastive absorption spectra of the broadband absorber when (a) metallic ground plane
and (b) metallic nanostructures are replaced by the other metal materials. The contrastive absorption
spectra of the total, pattern and bottom of (c) Ti-Ag structure and (d) Ag-Ag structure. Parameters:
Λ = 800 nm, L = 700 nm, w = 150 nm, h = 280 nm, t = 100 nm, l = 275 nm.

In order to clearly understand the primary cause why different types of metal materials lead
to different absorption characteristics in the designed absorber, we use the Hagen-Rubens (H-R)
relation [41] to describe the reflection and absorption performance of the metal film. The reflection (R)
of metals at normal incidence can be derived by extended H-R relation [42,43],

R = 1−
4n

(n + 1)2 + k2
(2)

where n and k are the real and imaginary parts of the refractive index of the metal. Figure 6a shows the
calculated reflection spectra of the metal materials by the Equation (2). We can observe that most of
the incident light is reflected (k is much more than n), and the rest is absorbed for the metals of Ag,
Au, and Al. However, the reflection of the incident light reduces (n is close to k) for the metals of Cr,
Ni, W, and Ti, which is to say they have intrinsic high absorption, especially in the short wavelength.
In addition, the mechanism which the incident light is absorbed by the metal depends on that the
Fermi level in metals locates inside a continuous energy band. Consequently, light that enters a metal
can be absorbed with a tiny propagating length (skin depth), usually less than 100 nm [44]. Therefore,
these metal materials used as the ground plane are opaque and have little effect on the absorption
performance of the designed absorber when they are thicker than skin depth, which is consistent with
the result shown in Figure 5a.
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Figure 6. (a) The calculated reflection spectra of metal materials by the Equation (2). The real part (b)
and imaginary part (c) of the permittivity of metal materials.

Accordingly, we can classify these metals into two types by their permittivity (Re(ε) = n2
− k2 and

Im(ε) = 2nk), as shown in Figure 6b,c. First, Ag, Au, and Al are the first type of metals, which have
high reflection property because of having large real part of the permittivity. This characteristic can
lead to weak absorption because of impedance mismatch even if it has a large imaginary part of the
permittivity, as in the case of Al. This also explains why broadband absorber cannot be achieved by
using Ag, Au, and Al as the nanostructures, as shown in Figure 5b. Then, Cr, Ni, W, and Ti are the
second type of metals, which is high loss metal materials because of having small real part and large
imaginary part of the permittivity. Therefore, when they are used as the pattern layer of the absorber,
it is easy to achieve impedance matching to decrease the reflection of the incident light. And strong
localized electric field excited by the incident light, combining with high loss (high-εm”) property of
this metals can result in high resistance loss according to the Equation (1). Therefore, we can conclude
that the high absorption of the designed absorber mainly comes from two parts. The first part is the
power loss caused by the continuous electron transition excited by the incident light inside the metal.
And the second part is the resistance loss mainly depends on the enhanced localized electric field
caused by the nanostructures.

In addition, we investigate numerically the absorption properties of the designed broadband
absorber under different geometric parameters of the unit cell nanostructure. As shown in Figure 7,
we present the absorption spectra with four different parameters (Λ, L, h, w), when changing only one
parameter at a time, while keeping the other parameters unchanged. Similarly, through calculating
the RBW (≥90%) of the curves, we find that the bandwidth of the absorber is first increased and then
decreased with the increase of the geometric parameters. Differently, each parameter has a different
effect on the change of the absorption curve. Figure 7a shows that the period (Λ) of unit cell may
determine the long wavelength limit of RBW (≥90%). As Λ increases from 770 nm to 830 nm, the long
wavelength limit is blue-shifted, the magnitude of the dip increase, resulting in RBW (≥90%) to increase
and then decrease. From Figure 7b, although with the increase of the side length (L) the intensity
of the short wavelength resonance peak is enhanced, but the magnitude of the dip will decrease to
less than 0.9 when the L is bigger than 700 nm. Thus, the RBW (≥90%) is first increased and then
decreased. Figure 7c shows the absorption efficiency as a function of the height (h). It indicates that
as the h increases, the short and long wavelength limit and the position of two resonance peaks are
red-shifted, but the intensity of the dip is reduced, which lead to first increase and then decrease of the
RBW (≥90%). Finally, the wire width (w) has a more obvious effect on the absorption intensity at short
wavelength. As the w increases, the long wavelength limit is red-shifted, but the absorption intensity
at the short wavelength decreases rapidly, as shown in Figure 7d. The maximum RBW (≥90%) is
found when the w is 150 nm. Therefore, the results of the bandwidth dependence on these parameters
indicate that the optimized parameters are reasonable. In addition, the results of parametric analysis
also indicate that the absorption properties can be tuned by varying the geometric parameters of the Ti
unit cell nanostructure.
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For practical application, the absorption properties should consider the effect of polarization angle
and incident angles. The effect of polarization angle on the absorption spectra has been studied at
the normal incidence, as shown in Figure 8a. The absorption behavior does not show any variation
with different polarization angles, which change from 0◦ to 90◦. This is due to the high rotational
symmetry of the unit cell nanostructure [38]. Furthermore, the absorption spectra of the absorber at
oblique incidence have been calculated, the full-wave simulations are performed for both Transverse
Electric (TE) polarization (the electric field of the incident light is parallel to y-axis) and Transverse
Magnetic (TM) polarization (the magnetic field of the incident light is parallel to y-axis), as shown
in Figure 8b,c. It is observed that obvious variation of the absorption spectrum happens at different
oblique angles. In TE polarization, the absorption intensity drops obviously, and the RBW (≥90%)
decreases dramatically with the increase of the incident angle. It is because the electric resonance
mode cannot be excited effectively when the incident angle gets larger. In other words, electrics fields
at large incident angles are confined less efficiently in the pattern layer than at normal incidence,
hence leading to a weaker absorption. In TM polarization, one can clearly see the absorption intensity
drops at the short wavelength with the increase of incident angle from 0◦ to 45◦, which lead to a
decrease of the RBW (≥90%). However, the decrease of the absorption for TM mode is not obvious
compared with the one for the TE mode, since the magnetic response plays a dominant role over the
electric response for TM mode. Therefore, the absorption intensity at short wavelength decreases
slightly, and the absorption magnitude maintains higher value than 0.8 in the whole wavelength
range. Thus, the proposed broadband absorber is polarization-independent at normal incidence and
incident-angle-sensitive at oblique incidence. But for TM polarization, the absorption intensity can still
be greater than 80% at an incident angle of 45◦.
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4. Conclusions

In summary, we proposed a broadband and polarization-independent absorber based on simple
and all metallic metasurface working in the near-infrared region. The structure consists of metallic FITP
array over a continuous Ag film. Under normal incidence, the simulative absorption is over 90% in the
spectrum ranging from 895 nm to 2269 nm. Highly-efficient broadband absorption is ascribed to strong
local effect of electric field and low-Q LSPR supported by Ti nanostructures. Specifically, through
analyzing the electric field distributions, power loss profiles and reflection spectra of metal materials,
we observe that the high absorption of the designed absorber mainly comes from the power loss caused
by the continuous electron transition excited by the incident light inside the metal, and the resistance
loss depends on the enhanced localized electric field caused by the FITP structure. For absorption
spectrum, we can change the absorption bandwidth through tuning the geometric parameters of the
nanostructures. Moreover, numerical simulations show that the broadband absorber is independent of
the polarization angles at normal incidence, and has more than 80% high absorption persisting up to
the incident angle of ~45◦ at TM polarization. Therefore, the broadband absorber may have potential
applications in controllable thermal radiation and energy harvesting.
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