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Abstract 

Engineered probiotics are a kind of new microorganisms produced by modifying original probiotics through gene 
editing. With the continuous development of tools and technology progresses, engineering renovation of probiotics 
are becoming more diverse and more feasible. In the past few years there have been some advances in the develop‑
ment of engineered probiotics that will benefit humankind. This review briefly introduces the theoretical basis of gene 
editing technology and focuses on some recent engineered probiotics researches, including inflammatory bowel 
disease, bacterial infection, tumor and metabolic diseases. It is hoped that it can provide help for the further develop‑
ment of genetically modified microorganisms, stimulate the potential of engineered probiotics to treat intractable 
diseases, and provide new ideas for the diagnosis of some diseases or some industrial production.
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Background
Probiotics have been studied for decades. The word "pro-
biotics" first appeared in 1974, and, in 2001, the Food 
and Agriculture Organization of the United Nations 
and the World Health Organization defined probiot-
ics as "live microorganisms which when administered in 
adequate amounts confer a health benefit on the host" [1, 
2]. Probiotics play a great role in many aspects, such as 
preventing and treating various clinical diseases, improv-
ing the intestinal microenvironment, inducing immune 
regulation, preventing physiological stress, inhibiting the 
growth of pathogens, and improving the barrier function 
of the intestinal epithelium, etc. [3]. Probiotics are there-
fore of great interest to the scientific community.

In recent years, genome sequencing has become 
more affordable and some of the tools for editing and 

modifying microbial genomes have become more pow-
erful, enable us to engineer probiotics according to our 
own ideas, so that we can develop customized probiot-
ics [4]. By means of gene editing, probiotics can have a 
variety of beneficial properties, and can treat specific 
diseases, which is beneficial to human health. Genetic 
engineering of microbial strains such as probiotics is a 
promising research (Table 1). We are at a turning point 
in the research of probiotics. Engineered probiotics may 
become new ideas and new methods to solve some prob-
lems. This review briefly introduces the theoretical basis 
of gene editing technology and focuses on some recent 
engineered probiotics studies on diseases, including 
inflammatory bowel disease, bacterial infection, tumor 
and metabolic diseases. We hope to provide help for the 
further development of engineered probiotics.

Theoretical basis of engineered probiotics‑gene 
editing
Through gene editing, the existing probiotics are modi-
fied to obtain the desired new probiotics. Such engineer-
ing modification allow us to directly verify whether the 
genetic material, proteins and functional roles of these 
novel microorganisms have been changed as desired. 
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Gene editing technology continues to develop, from 
homologous recombination to the first-generation 
Zincfinger Nucleases (ZFNs) technology, to the sec-
ond-generation Transcription Activator-like Effector 
Nucleases (TALEN) technology and to the more popu-
lar third-generation Clustered Regularly Spaced Short 
Palindromic Repeats CRISPR associated (CRISPR-Cas) 
technology in recent years [30]. Among them, ZFN 
and TALEN were selected as the method of the year by 
Nature Methods, CRISPR gene editing technology was 
selected as the best breakthrough of 2015 by Science 
news, and CRISPR-Cas9 technology won the 2020 Nobel 
Prize in Chemistry, which has a revolutionary impact on 
life sciences. This part will mainly give a brief introduc-
tion to these three generations of technologies.

These gene-editing tools introduce Double Strand 
Break (DSB) into target genes, DNA Repair is induced 
by an error-prone Non-homologous End Joining (NHEJ) 
pathway or Homology Directed Repair (HDR) [31]. ZFNs 
and TALEN are two artificial restriction endonucleases 

which use zincfinger DNA domains or TAL-effect DNA 
domains to edit or cut specific target DNA [32]. How-
ever, there have been some problems in the use of these 
two technologies, such as the lack of specificity of ZFN 
and easy introduction of non-targeted mutations [33]. 
The construction of standard ZFNs and TALENs is time-
consuming and laborious [34]. Therefore, although ZFNs 
and TALENs have been used in gene editing of human, 
animal, and plant cells since 2002 and 2011, these limit-
ing factors have hindered their wide application to a cer-
tain extent [35]. Since the end of 2012, researchers have 
turned their attention to the CRISPR technology, which 
has more powerful editing efficiency and is simpler and 
more flexible to use, so that the application of this tech-
nology brings a whole new direction to gene editing [36].

CRISPR and related Cas genes are considered to be 
part of the bacterial immune system, which is a self-
protective sequence of bacteria and can provide phage 
resistance [37]. At the molecular level, bacteria inte-
grate the virus gene from the first invasion into their 

Table 1 Summary of engineered probiotics for diagnosis and therapy

Disease Probiotic used Object Refs.

Clostridioides difficile infection An S. boulardii strain Mice [5]

Cancer E. coli Nissle 1917 Mice [6]

Cancer E. coli Nissle 1917 Mice [7]

Cancer E. coli Nissle 1917 Mice [8]

Cancer E. coli Nissle 1917 Mice [9]

Cancer E. coli Nissle 1917 Mice and human [10]

Cholera L. lactis CSL Mice [11]

Colitis E. coli Nissle 1917 Mice [12]

Diabetes L. gasseri ATCC 33,323 Rats [13]

Hyperammonemia E. coli Nissle 1917 Mice and human [14]

Inflammatory bowel disease E. coli Nissle 1917 Mice [15]

Inflammatory bowel disease E. coli NGF‑1 Mice [16]

Inflammatory bowel disease E. coli Nissle 1917 In vitro [17]

Inflammatory bowel disease E. coli Nissle 1917 Mice [18]

Inflammatory bowel disease E. coli Nissle 1917 Mice [19]

Inflammatory bowel disease Yeast strain BS016 Mice [20]

Inflammatory bowel disease E. coli Nissle 1917 Mice [21]

Listeria infection L. casei ATCC334 Mice [22]

Obesity E. coli Nissle 1917 Mice [23]

Phenylketonuria L. reuteri 100‑23C Mice [24]

Phenylketonuria E. coli Nissle 1917 Human [25]

Pseudomonas aeruginosa
Infection

E. coli Nissle 1917 Caenorhabditis elegans
and mice

[26]

Staphylococcus aureus
Infection

L. reuteri DSM20016 In vitro [27]

Ulcerative colitis E. coli Nissle 1917 Mice [28]

Vancomycin‑resistant
Enterococci infection

E. coli Nissle 1917 Mice [29]
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CRISPR spacer, and when the virus invasions again, 
CRISPR transcribed to produce the precursor CRISPR 
RNA (pre-crRNA), which is further processed to con-
tain crRNA that matches the viral gene sequence. 
CrRNA recognizes homologous sequences of viral 
genomes and mediates binding to viral genes and 
cleavage of Cas proteins [38, 39]. The CRISPR-Cas sys-
tem is generally classified by the Cas protein gene adja-
cent to CRISPR. The currently reported CRISPR-Cas 
system is mainly divided into 2 classes, 6 types and 33 
subtypes [40]. The nucleases Cas9 and Cas12a (Cpf1) 
in the 2 classes of Cas protein family are more widely 
used which are easy to edit to identify specific DNA 
sequences [41]. Among them, the type II CRISPR-Cas9 
system is currently the more commonly used protein 
for genome editing [42].The CRISPR-Cas9 system is 
composed of Cas9 protein, crRNA and trans-activating 
RNA (tracrRNA). The Cas9 protein is the only protein 
with DNA catalytic activity among the many CaS pro-
teins in Streptococcus thermophilus [43], It snips dou-
ble-stranded DNA at sequence targets through crRNA 
matching [30]. By artificial design, crRNA and tracr-
RNA can be converted into small Guide RNA (sgRNA), 
which can guide Cas9 to perform site-specific DNA 
cutting, gene knockout and insertion [44].

CRISPR technology can be used not only for the 
study of loss of function such as CRISPR knock out 
(CRISPRKO) and CRISPR interference or inhibition 
(CRISPRi), but also for the screening study of gain of 
function such as CRISPR activation (CRISPRa) [30]. 
The development of gene editing technologies espe-
cially CRISPR provides essential supports for the 
emergence of the next generation of probiotics.

Research and application of engineered probiotics
Advances in gene editing technology provide new possi-
bilities for gene editing of probiotics. Engineered probi-
otics have developed rapidly in recent years. Researchers 
have conducted a variety of biomedical studies on engi-
neered probiotics for disease diagnosis and treatment. 
In particular, several engineered probiotics have also 
entered the clinical trial stage (Table  2). Scientists have 
also developed engineered microorganisms that are rel-
evant to industrial applications. These studies are briefly 
discussed below.

Engineered probiotics and inflammatory bowel disease
Microbiota imbalance is closely related to the develop-
ment of inflammatory bowel disease (IBD). Probiot-
ics have been shown to improve the microbiome of the 
microbiota by changing the intestinal environment and 
inhibiting the growth of harmful bacteria, also, they can 
prevent inflammatory diseases from further affecting the 
host immune system, and have positive significance for 
the regulation of inflammation [45, 46]. Advances in gene 
editing technology have increased the link between pro-
biotics and inflammatory bowel disease.

Specific probiotics have been designed to diagnose 
and treat IBD. Around 2017, researchers have used engi-
neered bacteria to diagnose IBD [15–17]. Based on bio-
markers such as thiosulfate, tetrasulfate, and nitric oxide 
(NO), they constructed stably genetically engineered bac-
teria as recognition elements of biosensors to diagnose 
IBD. In recent years, research on the use of engineered 
probiotics for the treatment of IBD has also emerged. 
Pichet Praveschotinunt and others of Harvard Univer-
sity genetically engineered E. coli Nissle 1917 (ECN) to 

Table 2 Examples of engineering probiotics in clinical trials

*The researchers did not list specific species

Species Engineered probiotic Disease/function Research facility Stage Result ClinicalTrials.gov 
identifier

E. coli SYNB1934 SYNB1618 Phenylketonuria Synlogic Phase 1 – NCT04984525

E. coli SYNB1618 Phenylketonuria Synlogic Phase 1/2a – NCT03516487 
NCT04534842

E. coli SYNB8802 Enteric Hyperoxaluria Synlogic Phase 1 – NCT04629170

E. coli SYNB1891 Metastatic Solid Neoplasm 
and Lymphoma

Synlogic Phase 1 – NCT04167137

E. coli SYNB1020 Cirrhosis and Hyperam‑
monemia

Synlogic Phase 1/2 Terminated NCT03447730

Bacteroides* NB1000S Enteric Hyperoxaluria Novome Phase 1/2a – NCT04909723

Lactococcus lactis AG013 Oral Mucositis Oragenics/Precigen 
ActoBio

Phase 2 Terminated NCT03234465

Lactococcus lactis AG019 Type 1 diabetes Precigen ActoBio Phase 1/2 – NCT03751007

B. longum bacTRL‑IL‑12 Solid Tumours Iqvia Pty Ltd Phase 1 – NCT04025307
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produce a curly fiber matrix that promotes intestinal 
epithelial integrity, and the trefoil factor (TFF) compo-
nent in the matrix promotes intestinal barrier function 
and epithelial repair [18]. Their study confirmed that the 
engineered ECN could in situ produce proteins that were 
protective against dextran sodium sulfate (DSS)-induced 
colitis model mice. This provides an engineered probi-
otic treatment for IBD. Engineered ECN is also used by 
many other researchers to treat intestinal-related inflam-
mation. Researchers engineered ECN to express inter-
leukin-10 (IL-10), ketone body (R)-3-hydroxybutyrate 
(3HB) and Schistosoma immunomodulatory protein Sj16 
and other substances. These substances can protect the 
intestinal mucosa by promoting the growth of probiot-
ics, inhibiting the growth of harmful bacteria, improving 
the intestinal microenvironment, and downregulating 
inflammatory response-related cells or proteins, so as to 
achieve the purpose of treating and relieving the symp-
toms of intestinal inflammation [12, 19, 28]. However, 
these studies have only made progress in mouse models. 
We believe that after further clinical trials, these engi-
neered ECNs must have the opportunity to be used for 
the relief and treatment of human IBD. Benjamin M. 
Scott of the University of Maryland and Cristina Gut-
ierrez-Vazquez of Harvard Medical School conducted 
a valuable study based on yeast. They developed a self-
regulating engineered yeast probiotic that can express 
human P2Y2 purinergic receptors and they linked the 
activation of the probiotic’s P2Y2 receptor with the 
secretion of ATP-degrading enzymes, enabling it to sense 
pro-inflammatory molecules and neutralize pro-inflam-
matory molecules through self-regulation and secre-
tion of corresponding proteins [20]. This self-regulating 
engineered yeast probiotic inhibits intestinal inflamma-
tion and reduces intestinal fibrosis and dysbiosis in IBD 
mouse models and we think their self-regulating strategy 
may provide a new way for engineered probiotics to treat 
IBD or other diseases. Liu Jinyao’s team at Shanghai Jiao-
tong University School of Medicine in China synthesized 
a polydopamine nano immunosuppressant and used it to 
coat E. coli Nissle 1917 to inhibit the excessive immune 
response in the local tissues of mouse colitis and regu-
late the intestinal microbiota to promote the reversal of 
inflammation [21]. Liu et al.’s study showed that applying 
immunosuppressants on the surface of beneficial bac-
teria can promote improved colitis responses in mice. 
Through their research, can we engineer probiotics to 
express immunosuppressants to wrap themselves to treat 
inflammatory disease?

Engineered probiotics and bacterial infections
Bacterial infections have a great impact on people’s 
health and nearly one million people die from bacterial 

infections worldwide each year, and the lack of bacte-
rial resistance and new antibiotics has become an obsta-
cle to solving the problem of bacterial infections [47]. 
Researchers have found some new ways to alleviate this 
problem.

Some researchers have successfully developed engi-
neered probiotics. The American team of Arun K. Bhu-
nia designed an engineered Lactobacillus casei strain that 
can produce Listeria adhesion protein [22]. This strain is 
colonized in the intestine of mice, competitively reducing 
the colonization of Listeria mucosa and systemic trans-
mission, protecting mice from fatal infections. They can 
also enhance the intestinal immune regulation function 
by accumulating intestinal mucosal regulatory T cells, 
 CD11c+ dendritic cells and natural killer cells. The method 
of engineering L. casei ATCC334 to reduce Listeria infec-
tion and protect the intestinal tract is worth learning. 
Some researchers have designed and constructed an engi-
neered probiotic based on E. coli Nissle 1917, which can 
specifically target and kill the two most common vanco-
mycin-resistant Enterococcus, and significantly reduce 
the number of Enterococcus faecalis and Enterococcus 
faecium in the feces of model mice [29]. Some research-
ers have engineered Saccharomyces boulardii so that the 
engineered bacteria secrete a fusion protein (ABAB) that 
can neutralize 4 different Clostridium difficile toxins [5]. 
The preventive administration of these bacteria can signifi-
cantly relieve the inflammation and tissue damage related 
to the infection of Clostridium difficile in the mouse intes-
tines mucosa, therefore reduce the mortality of these mice. 
In addition, researchers have developed some engineered 
probiotics to better prevent and prevent and diagnose bac-
terial infections. Some researchers have genetically modi-
fied Lactobacillus lactis to produce engineered probiotics 
that recognize the cholera autoinducer 1 (CAI-1) produced 
by Vibrio cholerae and cause color changes in feces [11]. 
Another researcher has constructed an engineered lactic 
acid bacteria that can be used to detect real-time changes 
in autoinducer peptide-I (AIP-I) produced by Staphylococ-
cus aureus [27]. The researchers also engineered E. coli 
Nissle 1917 to specifically kill pathogens by detecting the 
autoinducer N-acyl homoserine lactone (AHL) of Pseu-
domonas aeruginosa and releasing antibiotics and anti-
biofilm enzymes [26]. This series of studies may provide a 
new direction for the treatment and prevention of drug-
resistant bacterial infections. It is hoped that the safety and 
effectiveness of these engineered probiotics can be further 
confirmed, and these products can serve the clinic as soon 
as possible.

Engineered probiotics and tumors
The discussion about the treatment of cancer by bacte-
ria has existed for decades [48, 49]. Some probiotics can 
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induce anti-cancer effects by enhancing the apoptosis 
of cancer cells and preventing oxidative stress [50–52]. 
With the development of modern gene editing technol-
ogy, it has become possible to design probiotics that can 
play a positive role in fighting cancer. Researchers are 
constantly searching and developing new probiotics to 
fight tumors.

In the study of Candice R. Gurbatri and others at 
Columbia University, researchers used synthetic biology 
methods to modify bacteria and obtained an engineered 
E. coli strain subtype called "SLIC" [6]. SLIC colonizes 
tumor cells, when it proliferates to a certain extent, it can 
spontaneously lyse and then release PD-L1 and CTLA-4 
nano antibodies. So that SLIC can promote T cell activa-
tion, increase memory T cells, and enhance anti-tumor 
immune response, thereby effectively inhibiting tumor 
growth, causing tumor regression, and inhibiting tumor 
metastasis. Their research has positive significance for 
enhancing the effect of tumor treatment and inhibiting 
tumor cell proliferation. In a similar study, researchers in 
China engineered E. coli Nissle 1917 to target the angio-
genic inhibitor TUM-5 and tumor suppressor p53 to the 
anaerobic tumor region [7]. This treatment significantly 
inhibited the growth of transplanted tumor in mice, and 
their idea of using the tumor tropism of some bacteria 
to target tumors provides a direction for the use of anti-
tumor drugs. An engineered E. coli Nissle 1917 that can 
be targeted to colonize tumors has also been published 
recently. It can convert the metabolic waste produced 
by tumors into L-arginine that enhances the anti-tumor 
immune response, and can effectively enhance the thera-
peutic effect of programmed cell death protein-1 and its 
ligand inhibitors on mouse tumors [8]. An engineered 
E. coli Nissle 1917 that can achieve precise tumor treat-
ment in  vivo through the control of light color changes 
has also been successfully  constructed(9). These studies 
have provided some help for the treatment of tumors. 
Now there are two engineering probiotics related to the 
treatment of tumors in clinical trials (NCT04167137 
and NCT04025307). The most notable of these is the 
SYNB1891 strain obtained by the engineering of E. coli 
Nissle 1917 by Synlogic (NCT04167137). This strain can 
produce cyclic di-AMP to stimulate the interferon gene 
pathway, and then trigger innate immunity by activating 
antigen-presenting cells to present tumor antigens [10]. 
Their phase1 clinical trials are underway, and we believe 
that the emergence of this engineered probiotic drug will 
be seen clinically in the near future.

Engineered probiotics and metabolic diseases
The content of metabolism-related substances is gen-
erally in a relatively stable state in the body. When 
the biochemical process in the body is hindered, the 

accumulation or lack of certain metabolites can cause 
diseases [53–55]. These diseases are difficult to treat, and 
often require long-term control of living and eating hab-
its, which brings serious economic burdens and life pres-
sures to patients [51]. Engineered probiotics can break 
down or transform these accumulated substances to help 
treat such diseases.

Phenylketonuria (PKU) is caused by mutations in the 
phenylalanine hydroxylase gene. Patients with phenyla-
lanine hydroxylase deficiency cannot effectively decom-
pose phenylalanine, causing phenylalanine to accumulate 
in the blood, which seriously affects the patients’ health 
[53]. The researchers expressed the phenylalanine lyase 
gene in Lactobacillus reuteri 100-23C, so that the engi-
neered probiotic strain can produce phenylalanine lyase, 
which can reduce the blood phenylalanine of the PKU 
mouse model [24]. Their experiment provides an idea 
for the treatment of phenylketonuria with engineered 
probiotics. However, the strain may colonize the host 
body for a long time, which is also a problem waiting to 
be solved. Synlogic also conducted a similar study. They 
inserted the genes encoding phenylalanine ammonia 
lyase and l-amino acid deaminase into the genome of E. 
coli Nissle 1917, and constructed a strain of E. coli named 
SYNB1618 [25]. This engineered probiotic strain can 
consume phenylalanine in the gastrointestinal tract and 
will not colonize the intestinal tract. It has clinical safety 
(NCT03516487). And they also extended the model used 
to predict the therapeutic potential of SYNB1618 based 
on this study, which combined in vitro experiments and 
knowledge of human physiology to predict the degree 
of plasma phenylalanine reduction by SYNB1618 [56]. 
This facilitates the use of the biologic SYNB1618. Fol-
low-up clinical trials for SYNB1618 are also underway 
(NCT04534842 and NCT04984525), and it is hoped that 
this bioactive drug can bring good news to patients with 
phenylketonuria.

Mutations in the alanine glyoxylate aminotransferase 
gene can cause hyperoxalic acid. The accumulation of 
glyoxylic acid can lead to the increase of oxalate and 
even the production of urinary stones [54]. Synlogic 
has also constructed an orally engineered E. coli strain 
called SYNB8802, which can ingest oxalic acid in the 
gastrointestinal tract to reduce urinary oxalic acid lev-
els and reduce kidney damage caused by hyperoxaluria. 
Results from a Phase 1a study of this trial demonstrated 
the strain’s safety profile, and the later trials are still in 
progress (NCT04629170). Novome has also developed 
a drug named NOV-001 for the treatment of intesti-
nal hyperoxalic acid. This drug is composed of engi-
neered strain NB1000S and plant-derived polysaccharide 
NB2000P. It is now undergoing clinical trials to verify 
its efficacy (NCT04909723). In our opinion, engineered 
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probiotics could be a good way to treat diseases in com-
bination with other drugs.

Ammonia is a highly neurotoxic metabolite. Impaired 
ammonia clearance occurs when urea cycle enzyme 
deficiency or liver cell dysfunction occur. If hyperam-
monemia is not treated in time, coma or even death may 
occur [55]. Researchers genetically modified the oral pro-
biotic E. coli Nissle1917 to obtain an engineered strain 
named SYNB1020. This strain can convert ammonia into 
L-arginine, reduce the ammonia content in the intestine 
of a mouse model of hyperammonemia, and improve 
the survival rate of mice [14]. However, in patients with 
cirrhosis, SYNB1020 was discontinued due to lack of 
efficacy (plasma ammonia AUC) compared to placebo 
(NCT03447730). Clinical trials in patients with urea 
cycle disorders are still underway (NCT03179878), hop-
ing to produce a good result.

Researchers have also developed engineered probi-
otics for some other metabolic-related diseases. Some 
researchers have constructed an engineered commensal 
Lactobacillus gasseri that secretes glucagon-like pep-
tide-1 (GLP-1) to improve diabetes [13]. GLP-1 secreted 
by this strain can reprogram intestinal cells into insulin-
producing cells, thereby reducing hyperglycemia in mice. 
Similar studies have shown an engineered EcN-GM that 
induces GLP-1 expression, which may have a beneficial 
effect on obesity, hyperglycemia and liver steatosis [23]. 
Precigen ActoBio has genetically modified Lactococcus 
lactis to obtain a engineered bacteria named AG019. 
AG019 can deliver proinsulin and interleukin-10 to the 
gastrointestinal mucosa tissues, reduce or eliminate the 
damage to pancreatic β cells, and potentially stabilize or 
improve endogenous insulin production. Their experi-
ment Also in progress (NCT03751007).

Engineered bacterias and industrial production
Engineered probiotics can not only be used for the diag-
nosis and treatment of some diseases, but also be closely 
related to industrial production. Jaewoo Son and others 
of the Korea Academy of Science and Technology used 
the CRISPRi system to develop an engineered Leuconos-
toc citrate [57]. The strain down-regulated the expression 
of two genes and introduced a co-expression operon to 
increase the production of riboflavin. Recently, research-
ers conducted similar studies on E. coli LS31T to increase 
the production of riboflavin [58]. Thus the industrial pro-
duction of riboflavin, as a food additive, may find a new 
direction. Photosynthetic cyanobacteria convert carbon 
dioxide into monosaccharides, and some researchers 
have designed an engineered E. coli that can further con-
vert the products of photosynthetic cyanobacteria into 
2,3-butanediol [59]. The study of this engineered microbe 
is worth digging deeper, and perhaps in the future it can 

really provide propellant for rocket launches and be used 
as return material for interstellar travel, just as research-
ers designed. Studies have reported an engineered E. coli 
strain that can produce benzoic acid from plant-derived 
glucose [60]. Their research may provide a safer new 
idea for the production of benzoic acid as a preservative. 
Some researchers engineered Clostridium ljungdahlii to 
produce isopropanol, 3-hydroxybutyric acid, ethanol and 
other substances [61], which research provides condi-
tions for the use of single-carbon source materials to pro-
duce a large number of chemicals. There are also some 
studies providing a platform for the production of some 
industrial substances such as L-citrulline, flavan-3-ols, 
β-carotene, etc. by designing E. coli, lactic acid bacteria 
and yeast into engineered bacteria [62–66].

Other research on engineered bacterias
Zbiotics has added an acetaldehyde dehydrogenase gene 
that decomposes acetaldehyde in Bacillus subtilis, which 
can further convert the acetaldehyde converted from 
ethanol into acetic acid to reduce the harm of alcohol. 
They used the spores of this strain to conduct a 90-day 
repeated administration toxicological evaluation on 
mice, and proved that the bacterium has no side effects 
[67]. Zbiotics is the first company in the world to pro-
duce and sell genetically engineered probiotic products. 
Although their products are already on sale, the safety 
of this bacteria in the human body may still need to be 
demonstrated. To use CRISPR for genetic modification 
of microorganisms. Some researchers have constructed 
engineered Lactobacillus plantarum WCFS1 to produce 
n-acetylglucosamine [68]. Some researchers have found 
that the modified Brucella ATCC MYA-796 can ferment 
galactose faster [69, 70]. There are also more and more 
researchers constructing gene editing platforms for engi-
neered bacteria such as Corynebacterium glutamicum, 
Candida parapsilosis, Lactobacillus casei, Lactobacil-
lus reuteri, Bifidobacterium, Clostridium butyricum, 
and Escherichia coli [71–78]. They successfully applied 
CRISPR-related technology to the genetic modification 
of microorganisms. Their research will certainly provide 
help for the application of this technology in engineered 
probiotics, and the engineering of probiotics based on 
this technology will surely make it easier to produce the 
desired engineered probiotics.

Prospects
The emerging gene-editing methods used to develop 
synthetic engineered probiotics have great potential for 
the treatment and diagnosis of different types of human 
diseases, and engineered probiotics may become a new 
method for the treatment of cancer, inflammation, infec-
tion and some other diseases. The engineered probiotics 
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designed by the researchers are more effective, have 
fewer side effects and are more affordable than tradi-
tional treatments or wild-type strains, benefiting more 
patients and families. The advantages of engineering 
probiotics such as stability, specificity, preference, low 
cost, and relative safety may make them a new choice 
for the treatment of many of the diseases mentioned 
above and more. However, the application of engineered 
probiotics still faces a series of challenges. For example, 
many microorganisms have few genetic tools that can be 
manipulated, and the microorganisms currently used for 
research design are only a small part of the vast family 
of microorganisms, which leads to the restriction of pro-
biotic modification to a few strains. There are still a few 
engineered probiotics that go from the laboratory to the 
clinic, and even if they enter clinical trials, it cannot be 
guaranteed that it can achieve the intended effect, which 
hinders the efforts of some researchers to construct engi-
neered probiotics. Some argue that genetically modified 
organisms (GMOs) are harmful, preventing the effective 
deployment of engineered probiotic therapies.

Conclusions
Despite these limitations in the research and application 
of engineered probiotics, we cannot ignore their poten-
tial role in improving human health. Success and failure 
are inevitable in the research and development of engi-
neered probiotics. We need more research to find the 
possibility of success, not only in the research of various 
probiotic modification tools, but also in-depth under-
standing of disease pathology, so as to make it easier for 
us to design the desired probiotics. The efficacy of engi-
neered probiotics is a problem that we must consider, but 
before these probiotics undergo clinical transformation, 
safety issues must be resolved. It is necessary to ensure 
that the guidelines established by various health regula-
tory agencies are followed to design and construct safe 
and effective probiotics. We believe that with the increas-
ing understanding of the human microbiome and disease 
mechanisms, the rapid development of gene editing tech-
nology, safe, stable and effective engineered probiotics 
will surely shine in many fields.
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