
Paradoxical lesions, plasticity and active
inference

Noor Sajid, Thomas Parr, Andrea Gajardo-Vidal, Cathy J. Price and Karl J. Friston

Paradoxical lesions are secondary brain lesions that ameliorate functional deficits caused by the initial insult. This effect has been

explained in several ways; particularly by the reduction of functional inhibition, or by increases in the excitatory-to-inhibitory

synaptic balance within perilesional tissue. In this article, we simulate how and when a modification of the excitatory–inhibitory

balance triggers the reversal of a functional deficit caused by a primary lesion. For this, we introduce in-silico lesions to an active

inference model of auditory word repetition. The first in-silico lesion simulated damage to the extrinsic (between regions)

connectivity causing a functional deficit that did not fully resolve over 100 trials of a word repetition task. The second lesion was

implemented in the intrinsic (within region) connectivity, compromising the model’s ability to rebalance excitatory–inhibitory con-

nections during learning. We found that when the second lesion was mild, there was an increase in experience-dependent plasticity

that enhanced performance relative to a single lesion. This paradoxical lesion effect disappeared when the second lesion was more

severe because plasticity-related changes were disproportionately amplified in the intrinsic connectivity, relative to lesioned extrinsic

connections. Finally, this framework was used to predict the physiological correlates of paradoxical lesions. This formal approach

provides new insights into the computational and neurophysiological mechanisms that allow some patients to recover after large or

multiple lesions.
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Introduction
Functional recovery after brain damage is a complex

process; influenced by how the initial insult disrupts

connectivity amongst intact regions (Nudo, 2006,

2013). Generally, an additional lesion—to a dysfunc-

tional brain—further complicates recovery and can con-

found functional deficits. However, in some rare

instances, an additional (paradoxical) lesion may reverse

a cognitive deficit (Kapur, 1996; Kapur et al., 2013). In

this paper, we simulate how a paradoxical lesion can

facilitate neuroplasticity and help to restore a previously

lost function.

Paradoxical lesions were first demonstrated in cats

(Sprague and Meikle, 1965; Sprague, 1966a, b). These

seminal studies showed that visual attentional deficits—

caused by an initial cortical lesion—were reversed by a

secondary lesion in the superior colliculus. These para-

doxical effects have been replicated independent of lesion

order (Sherman, 1974) and, lesion location in cats

(Lomber and Payne, 1996; Payne et al., 1996; Rushmore

et al., 2006), or rats (Kirvel et al., 1974; Corwin and

Vargo, 1993). Conversely, examples of paradoxical

lesions in humans, although rare, have also been reported

(Pöppel and Richards, 1974; Vuilleumier et al., 1996;

Constantino and Louis, 2003; Weddell, 2004;

Mathews et al., 2008; Jha and Brown, 2011). For

example (Vuilleumier et al., 1996) revealed that a second-

ary lesion in the left frontal eye field region reversed left-

sided visual neglect caused by right parietal damage.

Two potential explanations of paradoxical lesions have

previously been considered (Kapur, 1996; Vuilleumier

et al., 1996; Zeiler et al., 2016; Toba et al., 2020;

Valero-Cabré et al., 2020). The first is the reduction of

functional inhibition (i.e. disinhibition) that might occur

if the second lesion damaged inhibitory connections. The

other is a restoration of normal interactions between pre-

served regions that results when the second lesion triggers

a critical period of experience-dependent plasticity in per-

ilesional tissue that affects excitatory-to-inhibitory bal-

ance, i.e. postsynaptic excitability or cortical gain (Geisler

and Albrecht, 1992; Abbott et al., 1997; Pi et al., 2013;

Kanai et al., 2015; Mongillo et al., 2018). There is great

interest in these neuroplastic changes because they are

reminiscent of the critical period in brain development

(Schneider et al., 2019) and offer a potential target for

interventions to promote and facilitate recovery after

brain damage (Starkstein and Robinson, 1997). Multiple

factors may alter excitatory–inhibitory balance in perile-

sional tissue and enable repair (Bansal et al., 2019)

including changes in the uptake of neurotransmitters such

as glutamate and serotonin and the release of growth fac-

tors that promote axonal sprouting in the first 2 or

3 weeks after damage.
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To better understand the underlying causal mecha-

nisms, Hilgetag and colleagues (Hilgetag et al., 1999;

Hilgetag, 2000) simulated in-silico lesions that reversed

deficit in a system of coupled ordinary differential equa-

tions, with linear connections. Their results showed that

functional recovery can result from a re-organization of

neuronal connectivity between competing brain regions.

We build upon this work to demonstrate how heightened

plasticity, due to the modification of the excitatory–in-

hibitory balance, triggers the reversal of a functional def-

icit caused by a previous lesion.

For this purpose, we introduce in-silico lesions to com-

putational models that produce, and allow for reversal

of, a functional deficit using a word repetition task (i.e.

hear a word and repeat it back). Our model (and accom-

panying simulations) should be considered a vehicle to il-

lustrate mechanisms underlying paradoxical lesions—

rather than an explanation of how paradoxical lesions

have been demonstrated empirically. We modelled the

word repetition task using active inference (Friston et al.,
2017a, b). Central to this theory are prior beliefs, about

their environment, that patients would have to hold to

render their behaviour appropriate (i.e. Bayes optimal)

when maximizing model evidence or minimizing free en-

ergy. In other words, we move from asking why behav-

iour appears pathological (i.e. suboptimal) and instead

ask ‘what would we have to believe for this behaviour to

appear optimal?’ This allows us to characterize patients

with brain damage as operating under ideal Bayesian

assumptions but with a poor (i.e. lesioned) model of their

sensory milieu (Schwartenbeck and Friston, 2016; Parr

et al., 2018). Conveniently, active inference also provides

a principled way of modelling and measuring (plastic)

changes in the synaptic connectivity (Friston et al.,

2017a).

Our model (and accompanying simulations) should be

considered a vehicle to illustrate the mechanisms that

may underlie empirically demonstrated paradoxical

lesions—and to motivate future studies of whether and

how these mechanisms disclose pathways to recovery

after neurological damage. For example, we have shown

(computationally) how a secondary lesion to the excita-

tory-to-inhibitory balance in perilesional tissue could trig-

ger a critical period of experience-dependent plasticity.

Understanding the neurobiological nature of these mecha-

nisms could lead to novel ways to facilitate the recovery

process.

In what follows, we present simulations of paradoxical

lesions, with accompanying physiological predictions from

the same model, and conclude with a brief discussion of

the implications of this kind of in silico neuropsychology.

In brief, we will see that the simulations endorse the

hypotheses (Kapur, 1996; Vuilleumier et al., 1996;

Hilgetag et al., 1999; Hilgetag, 2000; Zeiler et al., 2016;

Bansal et al., 2019; Valero-Cabré et al., 2020) concerning

synaptic disinhibition and plasticity as key mechanisms

that underwrite paradoxical lesions. In this sense, the

following simulations provide proof of principle that

these mechanisms can explain the phenomenology of

paradoxical lesions and, furthermore, these mechanisms

emerge naturally from a Bayes-optimal response to brain

injury.

Materials and methods
Our aim was to illustrate how secondary lesions to in-

trinsic connections (within the cortical grey matter) could

reverse the functional deficits caused by the initial insult

to extrinsic connections (between cortical hierarchies).

For this purpose, we used a word repetition task in

which the subject repeats a heard word on each trial

(Ueno et al., 2011; Moritz-Gasser and Duffau, 2013;

Nozari and Dell, 2013; Hope et al., 2014). If the subject

repeats the word correctly, they are given a positive

evaluation (and negative otherwise). The word repetition

task was stimulated using a (Markov decision process)

generative model of discrete outcomes (Friston et al.,

2017a; Sajid et al., 2019; Da Costa et al., 2020), previ-

ously introduced in (Sajid et al., 2020). The model con-

siders a left-lateralized neuronal circuitry involved in

word repetition, but this can be extended—via additional

state factors or hierarchies—to include the right hemi-

sphere. For the interested reader, the Supplementary ma-

terial provides a detailed description of the generative

model (S.1, S.4), accompanying belief updates (S.2) and

the learning process (S.3). The generative model—on

which these update equations are based—is very general.

It can be applied in most settings, where outcomes and

their causes can be expressed in terms of distinct (i.e. dis-

crete) states. In addition, the probability distributions that

instantiate belief updating were based on an empirical

understanding of how subjects respond in a word repeti-

tion paradigm. Specifically, belief updating is based on a

generative model of how stimuli are produced during an

experiment. We assume that real subjects adopt similar

generative models when performing this task.

We employ a standard message passing scheme and

requisite computational neuroanatomy—defined by the

generative model—based on nodes (e.g. neuronal popula-

tions) and edges (e.g. neuronal connections) along which

messages (e.g. action potentials) are passed (Friston et al.,

2017a; Parr and Friston, 2018). There are certain aspects

of this message passing that can be mapped onto the

functional anatomy in the brain e.g. components involved

in policy selection (Friston et al., 2014, 2017a) or hy-

pothesis-driven assignment of states and outcomes to par-

ticular neuronal populations in particular cortical and

subcortical structures or, indeed, within the cortical lam-

ina of canonical microcircuits. See Friston et al. (2017b)

for further details and references.

We introduced in-silico lesions to the generative model

by systematically removing two types of connections that

encode different kinds of model parameters: A and B.
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These structural (i.e. synaptic) changes have consequences

for how the belief-updating unfolds. Here, the parameter

matrix A—mapping outcomes given their causes—couples

adjacent levels of a deep or hierarchical model and can

be associated with extrinsic (between region) connectivity.

The matrix A parameterizes the likelihood, i.e. given the

observations about the current verbal cue presented, what

is the most likely target word. These structural assump-

tions mean that we can regard lesions to the A matrix as

reproducing the kind of disconnections that follow from

destruction of white matter tracts; in the sense of

Geschwind (Catani and Ffytche, 2005). However, the re-

lationship between a functional and a structural discon-

nection may be more nuanced. Lesions of extrinsic

connections could refer to any pathology of projection

neurons, including both axonal (white matter) lesions and

or synaptopathy; e.g. Moser and Starr (2016).

Conversely, the parameter matrix B can be regarded as

the intrinsic (within region) connectivity because the tran-

sitions are local to a given cortical hierarchy. The matrix

B parameterizes prior beliefs about state transitions, e.g.

given the recent past, what word do I expect to repeat in

the present before observing myself repeat it.

A crucial hyperparameter in simulating in-silico lesions

is precision,x—which scores confidence in beliefs. Here,

precision is the inverse uncertainty over the probabilities

in A (sensory precision—xA) and B (state precision—xB).

For example, if A is extremely precise (xA ¼ 1) then the

model can be confident that a particular verbal cue (out-

come) will be generated reliably by the appropriate target

word (cause). In contrast, an extremely imprecise distri-

bution (xA ¼ 0:5) implies an ambiguous relationship be-

tween causes and outcomes—and observations do little to

resolve uncertainty about their causes. Thus, precision

over A corresponds to the confidence with which the

model can infer a cause from observations and precision

over B corresponds to confidence with which the model

can predict the present from the past (i.e. infer state

transitions).

In what follows, plasticity or experience-dependent

learning was implemented by accumulating evidence (i.e.

pseudo-counts) under the assumption that the parameters

of the likelihood and prior transition matrices parameter-

ized a multinomial probability distribution over outcomes

and states (S.3). Here, a pseudo-count is an amount

added to the number of observed state-outcome or state

transition pairs to update the expected probability. This

is like remembering the number of times an event has

taken place to infer the probability of its recurrence. This

follows standard schemes in active inference in which

parameters are updated to minimize variational free en-

ergy (or maximize and evidence lower bound).

Neurobiologically, this corresponds to associative plasti-

city of a Hebbian sort—see Friston et al. (2016) for

details.

Plasticity (re-learning) was quantified using Kullback–

Leibler (KL)-divergence from the prior to the posterior

i.e. a measurement of how the (posterior) probability dis-

tribution is different from the (prior) reference probability

distribution. Technically, the KL-divergence is between

the Dirichlet distributions of our model parameters: the

prior is the distribution at the first trial and the posterior

is the distribution after each trial following the accumula-

tion of evidence in the form of Dirichlet parameters; c.f.,

pseudo-counts. These differential learning updates assume

that the quality of the observed data (e.g. feedback

received by the model) is consistent across precision

changes in model parameters, but differences arise due to

changes in prior beliefs over model parameters.

Intuitively, one should expect precise priors to reveal low

KL-divergence, i.e. negligible changes from prior to the

posterior distribution, because the cause of the data was

predicted confidently—and there is little to learn from the

observations. Conversely, imprecise priors are expected to

evince greater experience-dependent plasticity and a

higher KL-divergence (i.e. changes from prior to the pos-

terior) because the cause of the data was not confidently

established prior to the observations and there is there-

fore more to learn from the observations.

Data availability

The data presented below has been simulated using gen-

eric belief updating and can be implemented using stand-

ard routines (here spm_MDP_VB_X.m). These routines

are available as MATLAB code in the SPM academic

software: http://www.fil.ion.ucl.ac.uk/spm/software/. In

addition, the code required to reproduce the simulations

and figures has been included in the following GitHub

repository: https://github.com/ucbtns/paradoxicalesions.

Results

Control model

To measure the effect of primary and secondary lesions,

we simulated a control model without any lesion. This

control model was simulated across 100 trials, for 50 dif-

ferent configurations of the task (based on random ini-

tialization seeds). This model had (on average) 95%

correct responses, after 100 trials. Figure 1 shows the

performance trajectory—as measured by proportion of

correct responses (blue line). Here, the appearance of per-

formance degradation is reflective of (on average) 5 in-

correct responses across the 100 trials and is an attribute

of imprecise action selection (i.e. 4). The precision of ac-

tion selection is a model hyperparameter that determines

how confidently actions are selected during the course of

the trial (Schwartenbeck et al., 2015) and is kept consist-

ent across the remaining simulations.

We also measured the changes in plasticity—using the

KL-divergence—for model parameters of interest (Figs 2

and 3—blue line). The negligible change in natural units

4 | BRAIN COMMUNICATIONS 2020: Page 4 of 10 N. Sajid et al.

http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/ucbtns/paradoxicalesions


reflects the model parameterization, which was near opti-

mal: i.e. little to no learning was required.

Single lesion model

The first lesion was to the parameter matrix A (i.e. ex-

trinsic connections): the strength of the most plausible

connections was reduced relative to the strength of im-

plausible connections by lowering the precision hyper-

parameter,xA, from 1 (as in the control model) to 0.8.

This partial disconnection decreases the posterior confi-

dence over the causes of what the model hears and there-

fore impedes belief updating. We introduced this lesion at

the first trial. The ensuing primary lesion model was

simulated across 100 trials, for 50 different iterations

(using the same random initialization seeds as the control

model). By using the same initialization seeds we test for

specific counterfactuals, i.e. had it not been for the lesion,

the control and this model would have performed in

exactly the same way.

The effect of the first lesion is determined by the mod-

el’s capacity to update beliefs, which triggers experience-

dependent plasticity and changes in KL-divergence. Over

time this effect is inevitably diminished as the model

becomes confident about particular causes of data (even

if they maybe wrong).

This model attained (on average) 62% correct

responses, after 100 trials. Figure 1 shows the perform-

ance trajectory—as measured by proportion of correct

responses (black line). We observed a sharp initial drop

in performance that plateaued after the 40th trial.

Figure 2 shows the plasticity-related changes for the par-

ameter matrix A after the first lesion, i.e. the changes in

KL-divergence (Fig. 2A—black line). Initially, there was a

heightened period of plasticity: the rate of plasticity-

related change (Fig. 2B—black line gradient) was 1.75–

1.25 during the first 5 trials. However, there was a slow-

ing of changes after the 20th trial, as the gradient

dropped to below 0.2.

Dual lesion models

The second lesion was to the parameter matrix B (i.e. in-

trinsic connections): the strength of plausible connections

was reduced relative to the implausible connections by

lowering the precision hyperparameter, xB from 1 (in the

control and single lesion models) to 0.7 (severe lesion) or

0.9 (mild lesion). These lesions correspond to reduced

confidence with which the model can predict the present

from the past, relative to control and single lesion mod-

els. Anatomically, they imply a disruption to the (intrin-

sic) recurrent excitatory self-connections that we have

associated with transition probabilities; slightly inter-

rupted for mild and substantially interrupted for severe

lesions. Heuristically, these can be thought of as different

levels of attenuation of the gain of a post-synaptic neu-

ron’s response to a presynaptic afferent. Computationally,

slightly interrupted connections (i.e. mild lesions) can still

maintain appropriate beliefs over time, in contrast to sub-

stantially interrupted synaptic connectivity (i.e. severe le-

sion). Consequently, experience-dependent plasticity is

substantially reduced with severe lesions because beliefs

cannot be updated over time—in response to precise fluc-

tuations in pre- and post-synaptic activity (see the belief

update equations in the Supplementary material).

We introduced these B lesions to two lesion models at

the 20th trial. Both lesion models had previously experi-

enced the primary A lesion, at the first trial. The effect

of the first lesion is negligible at the point of the second

lesion i.e. changes in KL-divergence are <0.5 nats

(Fig. 2). Similar effects would be expected in late stages

of recovery after neurological damage.

The lesion models were simulated across 100 trials, for

50 different iterations (using the same random initializa-

tion seeds as the control model). As before, the same

seeds imply that with no dual lesions, the control and le-

sion models would have identical performance. Model

no. 1 (severe secondary lesion) had (on average) 34%

correct responses, after 100 trials. This simulation had an

initial performance drop, as measured by proportion of

correct responses, after the second lesion, with perform-

ance stabilizing after the 80th trial (Fig. 1—green line).

In contrast, model no. 2 (mild secondary lesion) had (on

average) 84.5% correct responses, after 100 trials which

is better than the model with the single lesion. The per-

formance after the mild second lesion improved rapidly,

with plateauing after the 80th trial (Fig. 1—magenta

line). The second (milder) lesion is an example of a

Figure 1 Proportion correct. The line plot shows the

stimulated (mean) proportion of correct responses for each model

across the 100 trials, with 95% confidence interval. The x-axis is the

trial number and the y-axis is the correct number of responses (%).

Blue line reports the control model, black line reports the model

with single lesion, green line reports the model with dual lesion no.

1 (severe dual lesion) and magenta line reports the model with dual

lesion no. 2 (mild dual lesion). The vertical black dashed line

represents when the first lesion was introduced (1st trial), and the

vertical grey dashed line represents when the second lesion was

introduced (20th trial) to the model.
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paradoxical lesion, where the second lesion undoes the

functional deficit caused by the initial insult. These per-

formance differences are explained below by (i) observing

how the system relearns when the ability to update

beliefs is progressively impaired and (ii) simulating how

electrophysiological responses in the intrinsic connections

differ with each type of lesion.

Plasticity-related changes after secondary lesions to the

intrinsic connections were evaluated for the both model

parameters (A and B). The effects on the extrinsic con-

nections (A) are illustrated in Fig. 2 and the effects on

the intrinsic connections (B) are shown in Fig. 3. In

model no. 1, the second (severe) lesion impedes plasticity

in the extrinsic connections A—note the negative rate of

change in the green line in Fig. 2B—and augments learn-

ing in the intrinsic connections B as the system attempts

to recover (see green line in Fig. 3B where the rate of

change is �10% to 30% until the 25th trial). That is, a

severe lesion to the parameter matrix B intensifies the

volatility of state transitions and impairs the model’s abil-

ity to repeat the target word. Thus, any additional trials

do little in terms of resolving uncertainty about states,

due to the ambiguous relationship between state transi-

tions, but cause an overall decline in sensory precision

via learning as the model recurrently repeats the wrong

target word. This results in maladaptive plasticity—and

functional recovery.

In contrast, the second (mild) lesion in model no. 2,

augments the plasticity in extrinsic connections A i.e. an

(average) rate of change (gradient) increase in �0.3, com-

pared to the single lesion simulation (magenta versus

black line in Fig. 2B) and this is maintained over 100

trials (Fig. 2A magenta versus black line). In the intrinsic

connections B, however, the mild (model no. 2) second-

ary lesion produces an initial increase in plasticity (�0.2),

compared to the single lesion with no change, which rap-

idly drops to 0.0–0.4 (magenta line in Fig. 3B). That is,

a mild lesion to parameter matrix B only minimally

affects the precision over state transitions and facilitates

the model’s ability to repeat the target word. Thus, add-

itional trials help resolve the (slight) uncertainty about

states, by allowing for more confident beliefs over state

transitions, and cause an increase in sensory precision as

the model learns to repeat the correct target word. This

results in adaptive plastic changes in the model.

Physiological predictions

In the above simulations, we saw that mild secondary

lesions to the (within region) intrinsic connections facili-

tate recovery from an initial lesion to the extrinsic con-

nections. We now investigate how the simulated

electrophysiology differs for the different types of lesions

investigated. The simulated local field potential responses

are based on the belief updating described in the

Supplementary material. More concretely, the form of the

(variational) message passing mandated by active infer-

ence allows us to associate variables with idealized elec-

trophysiological recordings (Friston et al., 2017a; Parr et

al., 2020). Here, we plot local field potentials, after

bandpass filtering between 4 and 32 Hz (Friston et al.,

2017a). This is calculated from membrane depolarization

(i.e. post-synaptic potential) gradients computed using the

inputs from other neurons.

Figure 2 Measuring plasticity in extrinsic (likelihood) connections A— the first lesion location. (A) Plots plasticity in the first lesion

location, for each model across 100 trials, with 95% confidence intervals and (B) shows the gradients (rate of change) for the plasticity-related

changes for the lesioned models over 10 trials to ensure smoothing out of any noise. (A) The x-axis is the trial number and the y-axis represents

the KL-divergence (measured in nats) between initial and current distribution. Blue line reports the control model, black line reports the model

with single lesion, green line reports dual lesion model no. 1 (with the severe dual lesion), magenta line reports dual lesion model no. 2 (with the

mild dual lesion). The vertical black dashed line indicates when the first lesion was introduced (1st trial), and the vertical grey dashed line

indicates when the second lesion was introduced (20th trial). (B) The x-axis is the trial number and the y-axis represents the gradient for all

lesioned models.
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Figure 4 shows these simulated local field potentials for

a particular neuronal ensemble at the second lesion loca-

tion (in the intrinsic connections). Both the control and

single lesion simulations (that preserve intrinsic connec-

tions) exhibit similar, balanced evoked responses for the

duration of the 100 trials. In contrast, the two dual le-

sion models exhibit a distinct change in evoked responses

after the second lesion. Both models exhibit an increase

in total inhibitory potential, which is greater with mild

(model no. 2) than with severe (model no. 1) lesions.

However, while model no. 1 (severe dual lesion) shows

an attenuation of excitatory evoked response after the

first few trials, model no. 2 (with mild dual lesions)

shows a marked increase in excitatory synaptic potential,

across trials. The simulated local field potentials therefore

illustrate how the mild secondary lesions rebalance the in-

hibitory synaptic potentials seen with the severe second-

ary lesions. This results in accentuated excitatory and

inhibitory responses compared to control and single le-

sion model. It is these enhanced responses that may facili-

tate learning following a mild secondary lesion to the

intrinsic connectivity compared to a single lesion to the

extrinsic connectivity.

Discussion
The brain is a dynamic system, where specific (steady)

states are determined from complex interactions among

neuronal ensembles (Sporns et al., 2004; Parr et al.,

2020). Damage to the brain will disrupt these interactions

(Kinsbourne, 1970; Alstott et al., 2009). Under some cir-

cumstances, the introduction of additional lesions to an

already dysfunctional brain may lead to changes that

partly or wholly rectify the imbalance by creating or

amplifying new kinds of excitatory and inhibitory interac-

tions. In this article, we demonstrate that the severity of

the secondary lesion to intrinsic connections can trigger

qualitatively different responses; paradoxical or otherwise.

Our electrophysiological simulations illustrate that learn-

ing differences can manifest as changes to the excitatory–

inhibitory balance that underwrite evoked neuronal

responses.

Our results highlight a complementary interpretation of

the narrative surrounding excitatory–inhibitory balance,

in terms of Bayesian inference. This is because we distin-

guish between two types of parameters—mediating prior

beliefs and likelihoods. The intrinsic (B) parameters can

be regarded as encoding prior beliefs (given the recent

past, what is expected in the present before observing it),

while the extrinsic (A) parameters encode likelihoods

(given the states of the world, what is expected to be

seen or heard). Precise priors preclude large updates from

prior to posterior (i.e. inhibition), while precise likeli-

hoods promote such updates (i.e. excitation). Following a

loss of precision in the likelihood, the belief-updating

becomes restricted by the prior which, when attenuated,

restores balance.

Following on from (Zeiler et al., 2016), our results

revealed a self-limiting period of plasticity that could me-

diate recovery from a previous insult by amplifying and

rebalancing excitatory and inhibitory connections—and

thereby improving the overall message passing within (a

simulated) cortical hierarchy. It is this type of plasticity

that may underlie recovery of function after dual lesions.

The neurobiological manifestation of this plasticity corre-

sponds to long-term synaptic plasticity, as previously dis-

cussed in Friston et al. (2017a). At the neuronal level,

the persistent synaptic activation—determined by changes

in the estimated state—induces plasticity leading to either

Figure 3 Measuring plasticity in intrinsic (prior transition) connections B—the second lesion location. This figure uses the same

format as previous figure: (A) plots plasticity in the second lesion location, for each model across 100 trials, with 95% confidence intervals and

(B) shows the gradients (rate of change) for the plasticity-related changes for the lesioned models. (A) The x-axis is the trial number and the y-

axis represents the KL-divergence (measured in nats) between initial and current distribution. (B) The x-axis is the trial number and the y-axis

represents the gradient for the dual lesioned models.

Paradoxical lesions and plasticity BRAIN COMMUNICATIONS 2020: Page 7 of 10 | 7



strengthening or weakening of the connections between

synaptically connected neurons (i.e. outcomes and states

or state transitions). Neurobiological, this can be read as

long-term potentiation (Bliss and Lømo, 1973; Malenka

and Nicoll, 1999); namely, a persistent strengthening of

connections (states-outcomes) based on stimuli (outcomes)

or long-term depression (Lynch et al., 1977), which

entails a long-lasting decrease in synaptic strength.

However, in our model we consider neuronal populations

and synaptic plasticity is modelled at an aggregated level.

When the secondary lesion is severe, however, height-

ened plasticity can be maladaptive—as the lesioned area

disproportionally tries to recover lost connectivity (model

no. 1 with severe dual lesions). Our simulations therefore

highlight a specific type of inhibitory–excitatory balance:

increased inhibitory and excitatory synaptic potential—

that promotes plasticity. This forms a testable hypothesis

for future work: can introducing this particular type of

modification to inhibitory–excitatory balance in perile-

sional regions—via pharmacological modulation or deep

brain stimulation (Bestmann, 2015; Little and Bestmann,

2015)—reverse functional deficits? Our results suggest

that targeted rehabilitative therapy may only engender

functional improvements if it (i) induces wide-spread plas-

ticity in the neural network and (ii) is delivered during

the post-infarction sensitive period. In a sense, such thera-

pies tend to target the attenuated likelihood, focusing on

re-learning of this excitatory input. There is potential to

complement this with concurrent ‘unlearning’ of priors

that have become maladaptive.

The main limitation of this work stems from the sim-

plicity of the generative model used and the type of in-

Figure 4 Simulated local field potentials. These plots show the simulated local field potentials for each model for a target word across the

100 trials (x-axis). These are plotted after bandpass filtering between 4 and 32 Hz (Friston et al., 2017a). This is calculated from membrane

depolarization (i.e. post-synaptic potential) gradients computed using the inputs from other neurons. The blue shows the trajectory of evoked

responses over arbitrary units (y-axis), where positive indicates excitatory responses and negative indicates inhibitory responses. The top row

presents the control model, the second row shows the single lesion model and the last two rows show the dual lesion models. Each plot

represents a single instantiation of the simulated models.
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silico lesions. In most instances, patient data suggests

multiple areas lesioned in a single instance of brain dam-

age. However, this model provides new (theoretical)

insights into one way that patients could recover after

secondary lesions. Specifically, we have shown that func-

tional facilitation, after a secondary lesion to the intrinsic

connections, can result from changes in the inhibitory–ex-

citatory balances that promote appropriate levels of plas-

ticity in the overall system. In this work, the results are

implementation-agnostic i.e. practically, inhibitory–excita-

tory changes could have been mediated by transcallosal

commissural projections linking homotopic regions

(Sprague, 1966a; Kapur, 1996) or intra-hemispheric in-

hibitory–excitatory updates. Future work is needed to dis-

tinguish between the two types of inhibitory–excitatory

interactions (inter and intra) after an in-silico lesion. This

would involve equipping the current generative model

with additional state factors that represent homologue

regions. This would allow the inclusion of other types of

damage (e.g. to inhibitory extrinsic connections) that

might also facilitate recovery.

In this work, we have focused on discrete definitions of

mild and severe lesions; as parameterized by the precision

hyperparameter. This allowed us to demonstrate that a

secondary mild lesion can trigger paradoxical responses,

relative to a severe one. However, for future work, a suf-

ficiently large space of lesion sub-types might need to be

considered by adjusting the precision hyperparameter on

a more fine-grained scale. This would allow for a more

quantitative definition of mild, severe and perhaps other

lesions.

Lastly, an interesting avenue of future research would

be to focus on whether and how non-invasive neurosti-

mulation techniques such as direct current stimulation,

transcranial magnetic stimulation and/or focused ultra-

sound can induce a paradoxical response (without the

need for a second lesion).

Conclusions
In this paper, we used an active inference model (Friston

et al., 2017a) to ask how certain secondary brain lesions

can reverse the functional deficits caused by an initial in-

sult to the extrinsic connections. By introducing severe

and mild secondary lesions to the intrinsic connections,

we show that plasticity-related changes and relearning

were increased when the second lesion was mild. In con-

trast, a severe secondary lesion resulted in maladaptive

plasticity which impeded relearning. The same model was

also used to make physiological predictions, by appealing

to Bayesian belief updating schemes used in active infer-

ence. The simulated local field potentials suggest that

paradoxical functional facilitation is a result of a specific

form of inhibitory–excitatory rebalancing: increased in-

hibitory and excitatory synaptic potentials to evince an

apparent increase in cortical excitability. In contrast, non-

paradoxical lesions reduced the amplitude of evoked

responses. These quantitative predictions indicate how

this framework could be used to investigate the neuro-

physiology of paradoxical lesions.

In summary, the above simulations fully endorse the

hypotheses concerning synaptic disinhibition and plasticity

as key mechanisms that underwrite paradoxical lesions

(Kapur, 1996; Vuilleumier et al., 1996; Hilgetag et al.,

1999; Hilgetag, 2000; Zeiler et al., 2016; Bansal et al.,

2019; Valero-Cabré et al., 2020). Not only do the simu-

lations offer proofs of principle that these mechanisms

can explain the phenomenology of paradoxical lesions,

the implicit mechanisms emerge directly from a Bayes-op-

timal response to brain injury.

Funding
This work was funded by Medical Research Council

(MR/S502522/1 to N.S.; MR/M023672/1 to C.J.P.),

Wellcome Trust (Ref: 203147/Z/16/Z and 205103/Z/16/Z

to C.J.P. and K.J.F.).

Supplementary material
Supplementary material is available at Brain

Communications online.

Competing interests
The authors report no competing interests.

References
Abbott LF, Varela J, Sen K, Nelson S. Synaptic depression and cortical

gain control. Science 1997; 275: 221–4.
Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O.

Modeling the Impact of lesions in the human brain. PLoS Comput

Biol 2009; 5: e1000408.

Bansal A, Prathap R, Gupta S, Chaurasia A, Chaudhary P. Role of

microRNAs in stroke recovery. J Family Med Prim Care 2019; 8:

1850–4.
Bestmann S. Computational neurostimulation. Netherlands: Elsevier;

2015.

Bliss TV, Lømo T. Long-lasting potentiation of synaptic transmission

in the dentate area of the anaesthetized rabbit following stimulation

of the perforant path. J Physiol 1973; 232: 331–56.
Catani M, Ffytche DH. The rises and falls of disconnection syndromes.

Brain 2005; 128: 2224–39.
Constantino AE, Louis ED. Unilateral disappearance of essential

tremor after cerebral hemispheric infarct. J Neurol 2003; 250:

354–5.
Corwin JV, Vargo JM. Light deprivation produces accelerated behav-

ioral recovery of function from neglect produced by unilateral med-

ial agranular prefrontal cortex lesions in rats. Behav Brain Res

1993; 56: 187–96.
Da Costa L, Parr T, Sajid N, Veselic S, Neacsu V, Friston K, Active in-

ference on discrete state-spaces: a synthesis. arXiv preprint arXiv

2020; 200107203.

Paradoxical lesions and plasticity BRAIN COMMUNICATIONS 2020: Page 9 of 10 | 9

https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa164#supplementary-data


Friston K, Schwartenbeck P, Fitzgerald T, Moutoussis M, Behrens T,

Dolan RJ. The anatomy of choice: dopamine and decision-making.
Phil Trans R Soc B 2014; 369: 20130481.

Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O‘Doherty J,

Pezzulo G. Active inference and learning. Neurosci Biobeh Rev
2016; 68: 862–79.

Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G. Active
inference: a process theory. Neural Comput 2017a; 29: 1–49.

Friston KJ, Parr T, de Vries B. The graphical brain: belief propagation

and active inference. Netw Neurosci 2017b; 1: 381–414.
Geisler WS, Albrecht DG. Cortical neurons: isolation of contrast gain

control. Vis Res 1992; 32: 1409–10.

Hilgetag C-C. Spatial neglect and paradoxical lesion effects in the
cat—a model based on midbrain connectivity. Neurocomputing

2000; 32–33: 793–9.
Hilgetag C-C, Kötter R, Young MP. Inter-hemispheric competition of

sub-cortical structures is a crucial mechanism in paradoxical lesion

effects and spatial neglect. In: Progress in brain research.
Netherlands: Elsevier; 1999. p. 121.

Hope TMH, Prejawa S, Parker Jones �O, Oberhuber M, Seghier ML,
Green DW, et al. Dissecting the functional anatomy of auditory
word repetition. Front Hum Neurosci 2014; 8: 246.

Jha A, Brown P, Paradoxes in Parkinson’s disease and other movement
disorders. Cambridge: University Press Cambridge; 2011.

Kanai R, Komura Y, Shipp S, Friston K. Cerebral hierarchies: predict-
ive processing, precision and the pulvinar. Philos Trans R Soc Lond
Ser B, Biol Sci 2015; 370:20140169.

Kapur N. Paradoxical functional facilitation in brain-behaviour re-
search. Brain 1996; 119: 1775–90.

Kapur N, Cole J, Manly T, Viskontas I, Ninteman A, Hasher L, et al.

Positive clinical neuroscience: explorations in positive neurology.
Neuroscientist 2013; 19: 354–69.

Kinsbourne M. Mechanisms of unilateral neglect. In: Advances in
psychology, vol. 45. North-Holland; 1987, p. 69–86.

Kirvel R, Greenfield R, Meyer D. Multimodal sensory neglect in rats

with radical unilateral posterior isocortical and superior collicular
ablations. J Comp and Physiol Psychol 1974; 87: 156–62.

Little S, Bestmann S. Computational neurostimulation for Parkinson’s
disease. Progress in brain research. Netherlands: Elsevier; 2015. p.
163.

Lomber SG, Payne BR. Removal of two halves restores the whole: re-
versal of visual hemineglect during bilateral cortical or collicular in-

activation in the cat. Vis Neurosci 1996; 13: 1143–56.
Lynch GS, Dunwiddie T, Gribkoff V. Heterosynaptic depression: a

postsynaptic correlate of long-term potentiation. Nature 1977; 266:

737–9.
Malenka RC, Nicoll RA. Long-term potentiation—a decade of pro-

gress? Science 1999; 285: 1870–4.
Mathews MS, Linskey ME, Binder DK. William P. van Wagenen and

the first corpus callosotomies for epilepsy: historical vignette. JNS

2008; 108: 608–13.
Mongillo G, Rumpel S, Loewenstein Y. Inhibitory connectivity defines

the realm of excitatory plasticity. Nat Neurosci 2018; 21: 1463–70.

Moritz-Gasser S, Duffau H. The anatomo-functional connectivity of
word repetition: insights provided by awake brain tumor surgery.

Front Hum Neurosci 2013; 7: 405.
Moser T, Starr A. Auditory neuropathy—neural and synaptic mecha-

nisms. Nat Rev Neurol 2016; 12: 135–49.

Nozari N, Dell GS. How damaged brains repeat words: a computa-
tional approach. Brain Lang 2013; 126: 327–37.

Nudo RJ. Mechanisms for recovery of motor function following cor-
tical damage. Curr Opin Neurobiol 2006; 16: 638–44.

Nudo RJ. Recovery after brain injury: mechanisms and principles.

Front Hum Neurosci 2013; 7: 887.

Parr T, Rikhye RV, Halassa MM, Friston KJ. Prefrontal computation

as active inference. Cerebral Cortex 2020; 30: 682–95.
Parr T, Friston KJ. The anatomy of inference: generative models and

brain structure. Front Comput Neurosci 2018; 12: 90.

Parr T, Rees G, Friston KJ. Computational neuropsychology and
Bayesian inference. Front Hum Neurosci 2018; 12:61.

Parr T, Sajid N, Friston KJ. Modules or mean-fields? Entropy 2020;
22: 552.

Payne BR, Lomber SG, Geeraerts S, Van Der Gucht E, Vandenbussche

E. Reversible visual hemineglect. Proc Natl Acad Sci 1996; 93:
290–4.

Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A.

Cortical interneurons that specialize in disinhibitory control. Nature
2013; 503: 521–4.
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