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Abstract

Cassava is the third largest food crop of the world and has strong ability of drought toler-

ance. In order to evaluate the molecular diversity and to discover novel alleles for drought

tolerance in cassava germplasms, we examined a total of 107 abiotic stress related

expressed sequence tags—simple sequence repeat (EST-SSR) markers in 134 cassava

genotypes coming from planting regions worldwide and performed drought related marker-

traits association mapping. As results, we successfully amplified 98 of 107 markers in 97

polymorphic loci and 279 alleles, with 2.87 alleles per locus, gene diversity of 0.48 and poly-

morphic information content (PIC) of 0.41 on average. The genetic coefficient between

every two lines was 0.37 on average, ranging from 0.21 to 0.82. According to our population

structure analysis, these samples could be divided into three sub-populations showing obvi-

ous gene flow between them. We also performed water stress experiments using 100-day

old cassava plants in two years and calculated the drought tolerance coefficients (DTCs)

and used them as phenotypes for marker-trait association mapping. We found that 53 mark-

ers were significantly associated with these drought-related traits, with a contribution rate for

trait variation of 8.60% on average, ranging between 2.66 and 28.09%. Twenty-four of these

53 associated genes showed differential transcription or protein levels which were con-

firmed by qRT-PCR under drought stress when compared to the control conditions in cas-

sava. Twelve of twenty-four genes were the same differential expression patterns in omics

data and results of qRT-PCR. Out of 33 marker-traits combinations on 24 loci, 34 were posi-

tive and 53 negative alleles according to their phenotypic effects and we also obtained the

typical materials which carried these elite alleles. We also found 23 positive average allele

effects while 10 loci were negative according to their allele effects (AAEs). Our results on

molecular diversity, locus association and differential expression under drought can prove

PLOS ONE | https://doi.org/10.1371/journal.pone.0177456 May 11, 2017 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang B, Guo X, Zhao P, Ruan M, Yu X,

Zou L, et al. (2017) Molecular diversity analysis,

drought related marker-traits association mapping

and discovery of excellent alleles for 100-day old

plants by EST-SSRs in cassava germplasms

(Manihot esculenta Cranz). PLoS ONE 12(5):

e0177456. https://doi.org/10.1371/journal.

pone.0177456

Editor: Tapan Kumar Mondal, National Bureau of

Plant Genetic Resources, INDIA

Received: November 30, 2016

Accepted: April 27, 2017

Published: May 11, 2017

Copyright: © 2017 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was financially supported by

the National Natural Science Foundation of China

NSFC-CGIAR Project (grant no. 31561143012), the

National Science Foundation of China (grant no.

31501378), the national key technology R&D

program of China (grant no. 2015BAD15B01) and

https://doi.org/10.1371/journal.pone.0177456
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177456&domain=pdf&date_stamp=2017-05-11
https://doi.org/10.1371/journal.pone.0177456
https://doi.org/10.1371/journal.pone.0177456
http://creativecommons.org/licenses/by/4.0/


beneficial to select excellent materials through marker assisted selection and for functional

genes research in the future.

Introduction

Cassava, an important food and starch crop, has excellent adaptability to multiple environ-

ments. However, seasonal drought every year reduces its yield in major planting regions [1, 2].

One approach to solve this problem is to develop new cultivars which are not only drought-tol-

erant but also have high yield.

Analysis of the genetic diversity of germplasms is a valuable tool for cassava breeding, espe-

cially when aiming for drought tolerance [2]. High genetic diversity in germplasm improves

the probability to select excellent new germplasms. Genetic diversity is also used as a reference

to select materials with outstanding characteristics, such as high yield and drought tolerance,

and parent materials with excellent breeding potential and multiple elite alleles of interest.

DNA markers have become a powerful tool for genetic diversity analysis of germplasms

and for discovering alleles of interest. Single nucleotide polymorphism (SNP) chips, such as

GoldenGate Infinium from Illumina, SNPStream from Beckman Coulter or GeneChip from

MegAllel and Affymetrix [3], and high throughout sequencing methods, such as reduced-

representation sequencing, restrict site associated DNA (RAD) or exon trapping sequencing,

are the two major techniques used in modern molecular marker technology. While GBS strat-

egy become more and more popular for its cheaper and massive information, SSR markers

remained to be widely used in MAS and primary mapping researches. At present, SSR markers

that detect co-domainance and higher polymorphisms are also valid alternative. EST-SSRs are

designed on expressed sequences which involved in the variety of metabolic functions [4].

Gene-based SSR markers are located in target genes, returning clear information the same as

EST-SSRs. Thus, both of EST-SSRs and gene-based SSRs had potential use in quantitative trait

loci (QTL) mapping and association mapping researches.

Molecular marker technology has also rapidly developed in cassava, with more and more

studies using EST-SSRs in combination with other molecular markers such as genomic SSRs

[5], amplified fragment length polymorphism (AFLP)[6] or EST-SNPs [7]. This allowed con-

structing cassava linkage maps in F1 generation segregation population derived from heterozy-

gote parents. Gene-based SSRs have also been used in cassava researches. A previous report

studied 846 putative SSRs in 8577 cassava unigene sets and evaluated 124 new, unique poly-

morphic gene-based SSRs in 25 cassava cultivars and their wild relatives [8]. Moreover, SNP

genotyping methods were also used in cassava [9, 10]. For all this, SNP chips in cassava genetic

linkage and physical mapping, genotype-by-sequencing (GBS) approaches in re-sequencing

cassava cultivars and their wild ancestor, together with the announcement of a database con-

taining cassava genome and SNPs information database derived from 53 cassava cultivars pro-

moted molecular marker development in cassava [11–13].

Linkage QTL mapping and association mapping are used to explore novel alleles in crops

such as rice, maize, wheat, cotton, soybean, rape and sugar beet. However, their application in

cassava is still rare. The major method to explore novel alleles in cassava is linkage QTL map-

ping in F1 generation derived from heterozygous parents. Previous studies used this for yield

related traits [6, 14], starch pasting viscosity [15], cyanogenic glucoside [14, 16] and cassava

mosaic disease (CMD) resistance related traits [17, 18]. Due to the high frequency natural

cross-pollination in cassava, the presence of just a few flowers and a high rate of heterozygosis,

it is difficult to cultivate homozygote lines and it is impossible to fine map them using high
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generation backcross populations as done in other crops. Even so, application of association

mapping methods in natural population to discover novel alleles of important agronomic traits

in cassava might be a viable option.

Because of the complexity of drought stress responses and the bottle necks of breeding

methods based on phenotype selection, researchers need to consider QTL mapping in drought

tolerance breeding projects [19]. In order to analyze population structure, association mapping

of drought tolerance related traits and excellent alleles for drought tolerance in available cas-

sava germplasms, we genotyped 134 germplasms by using 107 EST-SSR markers. Moreover,

we used reverse genetics data to confirm our association mapping results. Finally, we obtained

a series of casual associated loci with elite alleles and their carriers.

Materials and methods

Plant materials

The 134 cassava accessions used in our study were obtained from 11 countries and areas as

described in S1 Table. They were major cultivars or breeding materials in these countries or

areas which could be considered as hybrids and were vegetative reproduction by stems. All of

these accessions were used as the basic population to analyze genetic diversity, water depress

experiment and marker-traits association mapping. Two cassava cultivars Arg7 and SC124

which had different growing strategies under drought stress [20] were used to perform water

depress experiment for qRT-PCR verification.

Water stress experiments, phenotyping and statistical methods

In order to evaluate the drought tolerance of cassava germplasms, we preformed water stress

experiments in the year 2014 and 2015 in Haikou, Hainan province, China. Stems of cassava

germplasms which were harvested in January in 2014 were cut into equal length fragments

and grown in flowerpots which were filled with 1:2 ratio of sand to soil. Water depress experi-

ment was performed after 100 days accessions were planted. Plants with even growth potential

were chosen for water stress experiments. Drought treatment group and control group con-

tained six plants respectively and be divided to two repeats. The former was not watered for 12

days while the latter continued to be watered. Three plants of both two repeats with uniform

phenotypes were taken as samples from drought treatment group and control group respec-

tively. Above-ground fresh weight (AGFW), storage root fresh weight (SRFW), storage root

number (SRN), storage root dry weight (SRDW) and storage root dry matter percentage

(SRDMP) per plant were measured. And leaves and root were cut into pieces and mixed to put

into the liquid nitrogen and then turn to ultra-low temperature freezer (-80˚C). Samples were

used to test the physiological traits containing content of proline, soluble reducing sugar (SRS)

and malondialdehyde (MDA) per unit fresh weight and activity of superoxide dismutase

(SOD), peroxidase (POD) and catalase (CAT) per unit fresh weight. The measure method of

proline content is ninhydrin colorimetry, anthrone colorimetry for SRS content, thiobarbituric

acid chromatomety (TBA) for MDA content, nitroblue tetrazolium reduced (NBT) method

for SOD activity, guaiacol method for POD activity and hydrogen peroxide (H2O2) ultraviolet

(UV) absorption method for CAT activity. And all of tests for 6 physiological phenotypes were

performed by using respective assay kit (Comin biotechnology Co., ltd. Suzhou, China). We

used only 95 germplasms in 2015 to water depress experiment due to limited breeding stems

and low seedling emergence rate of some germplasms. And seven traits of these cassava geno-

types, including AGFW, Proline, MDA, SRS, SOD, POD and CAT, were also detected in 2015.

All phenotypes were turned into drought tolerance coefficients (DTC), as described before

[21]. And then, maximum, minimum, average, standard deviation and coefficient variation
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were analyzed by SPSS18.0 software (http://www-01.ibm.com/software/analytics/spss/). Box-

plot figures of DTCs were drawn by using GraphPad Prism version 5.0 for Windows, Graph-

Pad Software (San Diego, California, USA, www.graphpad.com)

DNA extraction and SSR genotyping

Young leaves of 134 accessions were used for genomic DNA as described before [5]. We chose

107 pairs of SSR markers, containing 55 pairs of EST-SSRs [5] and 52 pairs of gene-SSRs [8],

to genotyping cassava germplasm using a previously described PCR program [22]. PCR prod-

ucts were mixed with a florescent dye to perform capillary electrophoresis. SSR fragments

were assigned to genotypes according to the method reported by Wang et al. [23].

Genetic diversity analysis

Number of alleles per locus, major allele frequency, gene diversity and polymorphic informa-

tion content (PIC) were calculated using Powermarker Version 3.25 software [24]. Genetic

coefficient between every two genotypes was calculated using NTSYSPC2.10e software [25].

Analysis of molecular variation and sub-population genetic differences (PhiPT) and gene flow

(Nm) was performed using Genalex 6.2 [26].

Population structure analysis

In order to analyze the population genetic structure and deal with its interference for associa-

tion mapping, STRUCTURE V2.0 software [27, 28] was applied to analyze the genotype data

of cassava germplasms. Both of burnin and MCMC were set to 100,000 and K ranged from 1

to 10 with three integrations for every K value. LnP(D) and Variance of LnP(D) which were

calculated by STRUCUTRE software were used to estimate the ΔK for every K value as previ-

ously described [29]. Two curve graphs were drawn that LnP(D) and ΔK ranged with K value

increasing from 1 to 10 respectively. The real K value was that one co-responding the first tun-

nel of ΔK. These three Q matrices of the real K values, estimated by using STRUCTURE, were

combined with CLUMPP 2.0 [30]. The combined Q matrix was used as covariance matrix in

association mapping and source data to draw the stacked column chart of Q matrix in excel.

Besides, all of these 134 genotypes were divided into three clusters and mixed cluster according

to the method reported by Yang et al. [31].

Marker-trait association mapping

DTCs of traits obtained in 2014 and 2015 were used as the phenotypes in association mapping

while the SSR fragments information of germplasms as genotypes. Marker-trait association

mapping was performed in TASSEL V2.1 [32] by using Q + K+ MLM with MAF > 0.05 filter

condition. We obtained significance P values and phenotypes variation R2 and P values were

modified according to the FDR method [33]. Marker-trait associations were considered signif-

icant if the FDR of the P values were lower than 0.05. All of significant associated markers

were mapped in the Manihot esculenta Cranz genome v6.1 (https://phytozome.jgi.doe.gov/pz/

portal.html)[13] and were used to draw a graph of distributions of the associated markers by

MAPChart V2.0 software [34] according to the physical position of 107 EST-SSR markers.

Expression analysis of associated genes

In order to confirm whether associated genes were actual functional genes, gene codes in the

cassava genome v6.1 and v4.1 were used to search the transcriptomics under water stress,

obtained from genebank and containing the controls and drought data of three genotypes:

Genetic architecture and drought related marker-trait association mapping in cassava
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SC124, Arg7 and W14, sequenced by Illumina HiSeq 2000 by the Institute of tropical bioscience

and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China

(Accession numbers of genebank, SRR2360410, SRR2361999, SRR2388947, SRR2388956,

SRR2404199, SRR2404206, SRR2495946, SRR2495947, SRR2495949, SRR2495950, SRR2496326,

SRR2496093) [35] and the iTRAQ-based proteomics database [20]. Log2 based FPKM change

fold values equal to FPKM of associated genes under drought condition based on the transcrip-

tomics reported by Wei et al. [35] were calculated divide them for the controls and used to draw

a heat map using the MeV2.0 software [36].

Furthermore, in order to confirm significantly different expressed genes, relative expression

level of the 24 genes which were selected from previous omics database were detected in two

cassava cultivars Arg7 and SC124 by qRT-PCR method. Samples which were used to qRT-PCR

experiment derived from independent drought stress experiment of cassava cultivars. Every

pot contained both of the two cultivars plants to keep them in coincident water depression.

The conditions of plants growing, methods of drought treatments and tissues collection were

the same as described before. Tissues of every cultivar were collected from the mixed materials

of five independent plants in both of the drought treatment groups and control groups respec-

tively. Total RNA extraction and cDNA first strand reverse experiments were performed by

using RNAprep Pure Plant Kit (Polysaccharides&Plolyphenolics-rich, Tiangen Biotech, Bei-

Jing Co. Ltd) and FastQuant RT Kit (with gDnase, Tiangen Biotech, BeiJing Co. Ltd) repec-

tively. All of primers used to amplify target genes were shown in S2 Table. House-keeping

gene MeActin with JGI ID code Manes.12G150500 was used as internal control and three tech-

nique repeats were performed for every sample. qRT-PCR performed by using SYBR Premix

Ex TaqTM II (perfect real time) kit (Takara Biotechnology, Dalian, China) on StepOne plus

system. RQ was estimated by StepOne software v2.1 through 2-ΔΔCT method based on CT val-

ues [37]. Significance level of relative expression between drought treatment groups and con-

trol groups were calculated by two-tailed T test method in Microsoft excel. And differential

expression genes were selected with P<0.05 at least in one tissue vs. cultivars.

Discovery of elite alleles

Our association mapping and expression analysis indicated that there were total twenty-four

genes significantly associated with drought tolerance. Phenotypic effects of the alleles at these

loci were estimated as previously reported [38] and alleles whose phenotypic effects were posi-

tive would be considered positive alleles, while alleles whose phenotypic effects were negative

values would be considered as negative alleles. The average positive (negative) allele effect of

the locus (AAE) was also calculated according to a previously reported method [38]. Loci of

which AAE had positive values were considered positive loci of associated traits; otherwise

they were counted as negative loci.

Results

Genetic diversity analysis

To evaluate the molecular diversity and genetic structure of cassava germplasm resources, we

used 107 EST-SSR markers, 98 of which were located in cassava chromosomes (S1 Fig.) while

others were mapped in scaffolds of cassava genome version 6.1. Ninety-eight genes were

aligned and other nine markers were not successfully mapped. Finally, Ninety-eight SSRs

primers couples successfully amplified 97 polymorphic loci and 279 alleles. The MAF per locus

was 0.62 on average, ranging from 0.29 to 0.99. The number of alleles per locus was 2.87 on

average, ranging from 2 to 8. Gene diversity per locus was 0.48 on average, ranging from 0.02–

0.80. Average PIC value per locus was 0.41, ranging from 0.02 to 0.77. Genetic coefficient
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between every two accessions was 0.37 on average, with a maximum of 0.82 measured between

Xinxuan048 and Royang9-1 and a minimum of 0.21 between ECU81 and R7. Genetic coeffi-

cients between every two lines were widely ranged, indicating that the genetic relationships

between germplasms were very complex.

All of 134 germplasms were divided into four groups according to their area of origin (Asia,

South America, Central America and Africa). As was shown in Table 1, result of AMOVA

analysis estimated that molecular variations were present mainly within subpopulations. How-

ever, the PhiPT was 4.00E-3 with a P value of 0.41), indicating that this was not significant.

The gene flow (Nm) was 116.87. These data could indicate that there was no significant sub-

population differentiation among the 134 cassava germplasms and that the gene flow was very

strong among subpopulations.

Population structure

In order to distinct the genetic structure of the 134 germplasms, we used the Structure software

to estimate the number of sub-populations. As shown in Fig 1A and 1B, LnP(D) was the first

significant peak at K = 3 while the ΔK was also the first tunnel and peak value at K = 3. Thus,

total 134 germplasms were divided into three clusters. Then, we obtained the results of three

integrations of K = 3 and combined the Q values of every germplasms into one Q matrix using

CLUMPP V2.0 (Fig 1C). We divided the sub-groups using the STRUCTURE software accord-

ing to previously reported (Yang et al. 2011), obtaining a number of genotypes for the three

clusters and mixed cluster of 4, 46, 74 and 10, accounting for 3.00%, 34.33%, 55.22% and

7.46% of the total, respectively. AMOVA for these three clusters, performed by using the Gena-

lex software, showed that PhiPT was 0.03 (P = 0.02) and Nm was 18.73, indicating that these

three clusters were significantly different with a strong gene flow. However, we found no sig-

nificant association between the three clusters and their original countries or areas (Fig 1D).

Summary of description statistics for drought-related traits

In order to evaluate the drought tolerance of cassava germplasms, we preformed water stress

experiments in the years 2014 and 2015, as described in the methods section. We tested seven

physiological phenotypes of 100-day old plants, including AGFW, Proline, SRS and MDA con-

tent, as well as SOD, POD and CAT activity. Storage root-related traits of 100-day old plants

were only tested in 2014 (Fig 2). Using the DTC definition reported by [21], we translated

these phenotypes into the respective DTCs and analyzed the results using the descriptive statis-

tics function of the SPSS software (S3 Table). All of these traits were qualitative traits with a

continuous distribution character. The maximum DTC range was that of POD in leaves in

2015 while the minimum was that of SRS in leaves in 2015. Coefficient DTC variation were

very different for different traits. Among them, the biggest CV % value was that of DTC in

leaves in 2014 and the smallest CV % value was that of SRS in leaves in 2015. This indicated

that DTCs were very distinct in different germplasms.

Marker-traits association mapping

To explore novel allele for drought tolerance in cassava, we performed marker-traits associa-

tion mapping by using the Q+K+MLM model. As shown in S4 Table, fifty-three pairs of

Table 1. AMOVA of cassava germplasm resources.

Source df SS MS Est. Var. %

Among Pops 3 87.741 29.247 0.115 0.4

Within Pops 126 3377.212 26.803 26.803 99.6

Total 129 3464.954 26.918 100%

https://doi.org/10.1371/journal.pone.0177456.t001
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EST-SSR markers, located in 17 chromosomes of cassava except the 4th chromosome (Fig 3),

were associated to DTCs of drought tolerance related traits (P_FDR<0.05). Explanation of

phenotypic variation (R2) was 8.60% on average, ranging from 2.66% to 28.09% (S4 Table).

Fig 1. Population structure analysis. A, LnP(D) value graphed against K from 1 to 10. B, ΔK values at K from 1 to 10. C, stacked column chart of Q

matrix. D, Origin distributions of the three clusters and mixed cluster.

https://doi.org/10.1371/journal.pone.0177456.g001
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Twenty-two marker-trait combinations had an explanation of phenotypic variation of them

higher that 10% and accounted for the 22% of total significant marker-trait combinations. In

our two-year water stress experiment, 3 SSRs, EME309, MESSR64 and MESSR71, were associ-

ated with the same traits and organs. Another marker, EME164, was associated with the same

traits but in different organs. In 2014, we detected 47 marker-trait combinations of 33 loci, of

which ten associated to multiple phenotypes while 23 others were associated to a single pheno-

type. In 2015, forty marker-trait combinations of 31 loci were associated, with eight of them

that were multiple-association while 23 were associated to one phenotype. Besides, there were

13 markers that were associated not only to the physiological traits but also to biomass and

storage root related traits of 100-day old plant.

Fig 2. Boxplots of DTCs of cassava germplasm phenotypes in water stress experiments.

https://doi.org/10.1371/journal.pone.0177456.g002
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Expression pattern analysis

In order to confirm these genes co-localized with associated EST-SSRs and to discover the real

functional genes, these 53 associated makers were mapped in the cassava genome. 51 of them

were located in coding genes in cassava genome version 4.1 and 6.1 (S4 Table). 44 genes were

also present in cassava RNA sequencing data in control and water-stressed cassava plants

Fig 3. Distribution of associated markers in cassava genome (P<0.05).

https://doi.org/10.1371/journal.pone.0177456.g003
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derived from genebank. We used Log2 based on FPKM change fold values under water stress

to draw the heat map, with 2.0 and -2.0 as the upper and lower limit respectively. As results, 24

genes that were differently expressed at least in one sample vs. cultivar under drought stress

and control condition (Fig 4). And according to the protein database reported by previous

study [20], four proteins encoded by four associated genes differential expressed in response to

water stress in at least one organ, cultivar or time point (Table 2). According to the transcrip-

tomics and proteomics database of cassava water stress plants, there were four genes that were

associated to water stress as for DNA and mRNA expression, as well as protein levels, while 24

genes that were associated at least two or three of them.

All of 24 genes were confirmed by qRT-PCR and the relative expression of every tissue

compared drought to control groups were calculated and T test was performed to estimate

whether they were significantly differential expression (P<0.05) or not (Fig 5). As was shown

in Fig 5 and Table 3, there were 9 genes, Manes.02G009300 (co-located with MeSSR36), Man-

es.09G068800 (co-located with EME628), Manes.02G062400 (co-localized with EME212),

Manes.02G124800 (co-localized with MeSSR38), Manes.03G053400 (co-located with MeSSR44),

Manes.06G045100 (co-located with MeSSR71), Manes.07G029200 (co-located with MeSSR18),

Manes.13G013400 (co-located with EME171) and Manes.10G078800 (co-located with EME710)

which were significantly up-regulated expression while other 3 genes, Manes.12G005000 (co-

located with EME425), Manes.12G129800 (co-located with MeSSR74) and Manes.13G127100

(co-located with MeSSR31) were significantly down-regulated expression under water stress.

They were consistent with previous omics data described above and results of qRT-PCR. In addi-

tion, there were 8 genes were partly consensus with omics data while another 4 were opposite

(Fig 5). All of the twenty-four differential expression genes revealed by qRT-PCR were meaning-

ful to marker assistant selection in cassava breeding.

Discovery of elite alleles

To estimate the phenotypic effects of alleles and their AAEs, we used 24 loci co-locating with

genes were significantly differential expression under water stress confirmed by qRT-PCR as

target for elite allele’s discovery, as previously reported [38]. As were shown in S5 Table, all of

these 24 associated loci contained 33 marker-trait combinations and 87 allele-trait combina-

tions, and these 87 allele-trait combinations also included 34 positive and 53 negative alleles.

All of these positive alleles except alleles which were associated with MDA content were elite

alleles while negative alleles associated with MDA content were elite alleles because of MDA

effects to drought tolerance. We obtained the typical materials that carried elite alleles were

obtained (S5 Table). Finally, total of 23 positive and 10 negative AAEs were identified.

Discussion

Drought tolerance is a complex trait and difficult to study for it’s more affected. We performed

the water stress experiments by using 100-day old plants of cassava germplasms for their suit-

able size of plants, being convenient to control the water stress condition in the green house

and 100-day old also is a key time point for cassava storage root development and enlarge-

ment. So, we could not only evaluate the survival rate but also potential of biomass and storage

root development and enlargement of cassava under water stress. Besides, it is valid for multi-

ple crops that water stress experiment is performed in their seedling stage [39–45].

Molecular diversity, water depressed experiment and association mapping in our study

were based on 134 cassava genotypes. Although 134 genotypes are too little for a large scale

GWAS study, it was difficult to water stress experiment of cassava, a big plant crops, in green-

house and our researches should be considered as a candidate association mapping strategy.

Genetic architecture and drought related marker-trait association mapping in cassava
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Besides, results of association mapping in our study were valid which has been verified by

drought-related transcriptomics and proteomics of cassava and qRT-PCR and many other

direct or indirect evidences.

Fig 4. Expression profiles of associated genes in cassava. Log2 based FPKM change fold values drought

stress plants by respective control value were used to create the heat map. The differential expression thresholds of

significant up and down regulation were set to 2.0 and -2.0 respectively.

https://doi.org/10.1371/journal.pone.0177456.g004
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Genetic diversity and population structure

All 107 EST-SSR markers used in this study were localized in all 18 cassava chromosomes that

had potential to analysis of genetic diversity and population structure. Compared with previ-

ous studies on genetic diversity of cassava germplasms, the number of alleles per locus in our

study was lower than that previously reported for 42 cassava land races in Brazil [46]. This

might be due to the EST-SSR markers used in our study, that is, 55 previously reported EST-

SSRs [5] and 52 EST-SSRs which were developed against unique polymorphism [8], were natu-

rally lower abundant polymorphisms SSRs than genomic SSRs. Genetic coefficients between

every two accessions were very low on average with a wide range. These indicated that genetic

relationships between these germplasms were very complex and should due to the intricacy of

their original areas and breeding history. However, AMOVA of germplasms showed that sub-

populations, dependent on geographical origin, were not significantly different and had a

strong gene flow among them. That might a consequence of the cassava introduction in breed-

ing projects.

Results of population structure analysis in our study showed that all 134 germplasms could

be divided into three clusters which we evaluated by AMOVA, finding significant differences

and a strong gene flow. However, there were not obviously relationship between clusters and

origin area. While the germplasms themselves derived from different areas of the world, most

of them came from China, while east-south Asia and Africa, two of major cassava producing

regions, and were rare in these accessions. Moreover, cassava land races from China represents

mostly outbred offspring derived from parent plants from other countries.

The population differential coefficients were lower than those of the 283 cassava samples

calculated by Fregene et al. [47] and that of 36 African cassava land races reported by Raji et al.

[48]. This indicates that the 134 cassava germplasms used in our study are suitable for associa-

tion mapping based on linkage disequilibrium because of that their population differentiation

was not very strong as well as abundant genetic and phenotypic diversity.

Marker-trait association mapping

In our study, fifty-three EST-SSRs located on 17 chromosomes and accounted for 54.08% of

98 markers. In order to understand the EST-SSRs used in our study, we obtained the reference

EST sequences and genebank EST library (S6 Table). Nine EST libraries contained all 107

EST-SSRs and three of them sequenced by previous reports aiming to identify the different

water or abiotic stress tolerance related genes in cassava cultivars [49–51]. 96 EST-SSRs

Table 2. Significant differential expression of associated genes in cassava leaves in the iTRAQ-based proteomics database reported by previous

(Zhao et al. 2015).

Marker Cassava genome

version 6.1

Cassava genome version

4.1

Arg-L1/

Arg-L0

SC-L1/

SC-L0

Associated

Traits

Description

EME171 Manes.13G013400 cassava4.1_015024m 0.347±0.13 0.414

±0.18

CAT SMALL HEAT-SHOCK PROTEIN

HSP20 FAMILY

EME254 Manes.08G095800 cassava4.1_013978m 0.944±0.97 0.221

±0.05

PRO,TDMP Ferritin

EME710 Manes.10G078800 cassava4.1_011832m 2.000±4.11 3.180

±10.31

CAT, POD, TN Caffeoyl-CoA O-methyltransferase

MeESSR46 Manes.05G090000 cassava4.1_018205m 4.067

±18.94

7.510

±57.53

SOD, SRS,

TDMP

MLP-LIKE PROTEIN 423-RELATED

Note: Values are expressed as the average fold change in protein abundance between stressed (L1) and control (L0) leaves of Arg7 and SC124 cassava

cultivars identified in the three experimental replicates. Significance thresholds were set at 1.67 and 0.6 for up and down regulation, respectively.

https://doi.org/10.1371/journal.pone.0177456.t002
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Fig 5. Relative expression verification of 24 selected associated genes by qRT-PCR. All of the 24 genes

were selected according to the significantly differential expression from omics data. * and ** standard for
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derived from these three libraries, accounting for 89.7% of 107 markers. This allowed us to

map functional genes for drought tolerance by association mapping and this might be the rea-

son why so many loci were associated with drought-related traits in our study.

Just as reported in other crops before, we found markers for repeat, pleiotropy markers and

one-to-one phenotype-marker association combinations in this study [23, 52–53]. Twenty-

two major marker-trait combinations (R2>10%) were explored, accounting for 25.29% of all

combinations. Seventeen markers associated with multiple phenotypes in one year. Moreover,

we found thirteen pleiotropic loci in two years that were not only associated with biomass and

storage root related traits of 100-day old plants, but also with drought tolerance. All of these

genes are potential candidate genes for drought tolerance and high yield breeding in cassava.

Due to few related reports in cassava, it was difficult for us to compare our results with pre-

vious researches. Instead, we compared our results to cassava drought related transcriptomics

and proteinomics and performed qRT-PCR to verify differential expression genes. Markers

associated mean that genes they co-localized with the map or their neighboring chromosome

regions (within covering ± LD decay distance) regulated the development of phenotypes they

were associated to, meanwhile alleles of actual functional genes had different phenotypic

effects. However, it was not to say any EST-SSR and enzymes/molecules co-localized with the

map location of identified candidate genes. Expression analysis and functional annotation

were two effective methods of the real functional candidate gene discovering for associated

region.

Some associated genes or their orthologues or paralogues have similarly functions in cas-

sava or other model plants. MeSSR50 associated with SRS content in leaf in 2014 in our study.

According to previous reports [20, 54], 14-3-3 protein family might play roles in cassava stor-

age root enlargement stage and be related to the starch and sugar metabolic and drought

responsive. That indicated that our results were supported by previous reports. Another

EST-SSR marker, MeSSR18, associated with proline content. The marker which located in the

gene annotated as MeGSTU7, with gene code ID Manes.07G029200, whose expression rose

after drought treatment for 12 days. The expression of one of its paralogous genes improved

after by drought stress and recovered to normal after cassava plants were re-watered. A previ-

ous report linked MeGSTU7 to AGFW [55]. Although results of our study and previous reports

[55] were not completely consistent, the expression pattern of the two member of the GSTU7
gene family in cassava were similarly under drought condition. Furthermore, Arabidopsis
orthologues of associated genes discovered in our study played roles in water stress or abiotic

stress resistance, such as H(+)-translocating (pyrophosphate-energized) inorganic pyropho-

sphatase (AtVHP1)[56], heat shock protein (AtHSP21)[57], homobox protein 16 (HB16)[58],

decapping 5 (DCP5)[59]. These supported loci had potential to be considered as candidate

genes for further functional verification and tag markers in MAS project for cassava drought

tolerance and yield breeding.

Discovery of elite alleles

In order to explore the elite alleles in associated loci, we estimated AEEs of 24 associated loci

whose expression changed under drought condition, indicating that they might be functional

genes (S5 Table). POD, SOD, CAT, Proline and SRS were positive factors and MDA as nega-

tive on the basis of their contribution to drought resistance. We defined elite alleles as alleles

significance of differential expression P<0.05 and P<0.01 respectively which were estimated from relative

expression between drought and control treatments by T test. Manes.09G068800 was only expressed in the leaf

of SC124 under drought and control conditions.

https://doi.org/10.1371/journal.pone.0177456.g005
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positively influencing drought tolerance and high yield breeding, therefore loci associated with

POD, SOD, CAT, Proline, AGFW and storage root-related traits and a negative association

with MDA. We found three elite alleles as for MDA content and two associated loci were nega-

tive effect according to their AAE values. All phenotypes and AAEs of these could be useful for

molecular assisted selection and pyramiding breeding in the future.

These alleles, whose phenotypes comprising multiple traits were consistent with compre-

hensive breeding targets for drought tolerance and high yield breeding in pleiotropic loci,

might be valuable for future research. For example, EME710 associated with SRN, CAT and

POD activity, with positive AAEs for three traits. Moreover, the allele B in EME710 was an

elite allele according to our definition. There were another two loci like EME710 of all 9 casual

pleiotropic loci. Another 4 loci did not show elite allele characteristics for all associated pheno-

types. Among them, MeSSR36 was associated AGFW and MDA content. As mentioned above,

MDA content is negative factor for drought tolerance. Therefore, allele B in MeSSR36 was the

allele to consider for drought tolerance and high yield breeding because of its positive effect on

AGFW content and negative on MDA content. All of these pleiotropic variations have a poten-

tial application for comprehensive breeding.

Cross-talk about associated mapping and expression analysis

Compared to associated genes and omics data and results of qRT-PCR by using independent

drought stress experiment, 24 differential expression genes were obtained under water stress.

Twelve of them selected for their consensus in multiple independent experiments would be

actual functional genes of cassava drought resistance. Furthermore, amino acid sequences of

them were used to functional annotation. And we tried to explain part of cassava drought

resistance mechanisms revealed by these functional genes.

As was shown in Table 3, Manes.02G009300 (co-localized with MeSSR36) was annotated to

UGE5 protein (EC: 5.1.3.2) and might regulate the galactose metabolism (map00052) and

amino sugar and nucleotide sugar metabolism (map00520). Homolog genes of it in Arabidop-
sis thaliana were reported to regulate cell wall biosynthesis. AtUGE2 and AtUGE4 were syner-

getic to regulate galactose content of cell wall which was correlated to shoot growth. AtUGE5
was slightly cooperated with AtUGE4 to regulate the root growth and galactose content which

might be induced by stress [60]. In our study, MeUGE5 was associated with DTCs of AGFW

and MDA and was significantly up-regulated expression. So, we indicated that MeUGE5 might

promote shoot growth and enhance the cell membrane stability. Besides, MeUGE5 was a posi-

tive effect locus for DTC of AGFW but negative one for DTC of MDA content according to

AAE. These might support our speculation.

Manes.10G07880 (co-localized with EME710) which was annotated to Caffeoyl-CoA O-

methyltransferase (EC: 2.1.1.104) might regulate multiple metabolism pathways and flavonoid

biosynthesis pathway was one of them. Flavonoid biosynthesis pathway was considered as one

of important active oxygen elimination mechanisms under stress condition [61]. In our study,

it was associated with DTCs of CAT, POD and SRN with positive effects and up-regulated

under drought stress. All of the above indicated that Manes.10G078800 might participate in

the active oxygen elimination during cassava drought resistance process.

The third up-regulated gene Manes.09G068800 (co-localized with EME628) was annotated

to AQUAPORIN PIP2-1-RELATED which was intrinsic protein of cell membrane and had

glycerol channel activity and water channel activity. Its homologous gene in Arabidopsis played

role in water absorption of root. And in our study, its expression patterns under water stress

agreed with its possible functions. It was indicated that up-regulation of MePIP2-1 might

enhance the water up-take ability of cassava root and have positive effects on DTC of SRN and
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cassava drought resistance. But it was still unknown for us how MePIP2-1 regulates DTCs of

SRN of cassava under drought stress.

Besides the three genes, another two genes, Manes.03G053400 and Manes.06G045100

which were annotated as positive regulators [62, 63] were up-regulated under drought

stress with positive AAEs (Table 3). However, there were 3 genes, Manes.02G124800. Man-

es.07G029200 and Manes.13G013400, which were annotated as positive regulators [55, 64–65]

for drought resistance were up-regulated under water deprived condition with negative AAEs

for their associated traits (Table 3). That was different from our knowledge and might due to

functional alleles and complex relationships of their associated traits and pathways these genes

directly participated in.

There were three down-regulated expression genes under water stress, Manes.12G005000

(co-localized with EME425), Manes.12G129800 (co-localized with MeSSR74) and Man-

es.13G127100 (co-localized with MeSSR31), that were annotated to MePP2C33, MeHB16 and

MeKRP6 respectively. PP2C proteins were negative regulators of ABA pathway and stress-

induced MAPK signaling pathway and they also involved in regulation the cell cycle [66, 67].

MeHB16 was a member of the HD-ZIP super-family and its homologous gene AtHB16 acted

as a negative regulator of cell expansion, leaf growth and photoperiod of Arabidopsis [68]. As

was shown in Fig 5, MePP2C33 and MeHB16 were down-regulated in Arg7 root under drought

stress while not significant changed in SC124. Besides, MePP2C33 was associated with DTC of

AGFW with positive effect of AAE. That might account for the continuous growth of Arg7

under drought condition reported previously [20]. As results of GO annotations, MeKRP6
might participate in cell cycle arrest and negative regulation of protein serine/threonine kinase

activity process. The energy sensor AtSnRK1 plays a cardinal role in the control of cell prolifer-

ation in A. thaliana plants through the inhibition of AtKRP6 biological function by phosphory-

lation [69]. However, MeKRP6 was down-regulated in leaf tissue of SC124 under drought

stress in our results which could be explained for its function and expression pattern but not

for the difference between cassava cultivars. All of these three negative regulators were down-

regulated under water depressing condition which indicated that these genes might regulate

the continuous growing ability of cassava plant under drought stress. Differential expression

patterns between MeKRP6 and the other two genes in cassava cultivars might be related to the

different strategies of cultivars for drought resistance. As was shown in Table 3, AAEs of these

negative regulators were positive. That might be for their expression patterns under drought

stress or loss of function in natural alleles of these negative genes. However, it was difficult to

explain the mechanisms based on evidences at present that these down-regulated genes were

associated with phenotypes under drought stress but it was no doubt that they were actual

functional genes under drought stress.

Conclusion

In conclusion, all of these 134 cassava accessions showed abundant genetic and phenotypic

diversity and a slight sub-population differentiation. The results of association mapping were

supported by reverse genetics evidences as well as previous study, allowing selecting elite alleles

of the associated loci. These results will make possible to choose cassava resources for drought

tolerance and to provide plant materials, candidate genes and reliable experimental support

for further research in the mechanism behind cassava drought tolerance.
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18. López C, Quesada-Ocampo LM, Bohorquez A, Duque MC, Vargas J, Tohme J et al. Mapping EST-

derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome. 2007;

50(12):1078–1088 https://doi.org/10.1139/G07-087 PMID: 18059536

19. Ashraf M, Athar HR, Harris PJC, Kwon TR. Some prospective strategies for improving crop salt toler-

ance. Adv Agron. 2008; 97:45–110

Genetic architecture and drought related marker-trait association mapping in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0177456 May 11, 2017 20 / 23

https://doi.org/10.1038/hdy.2008.35
http://www.ncbi.nlm.nih.gov/pubmed/18461083
https://doi.org/10.1371/journal.pone.0074056
http://www.ncbi.nlm.nih.gov/pubmed/24040164
https://doi.org/10.1186/s12864-015-1397-4
http://www.ncbi.nlm.nih.gov/pubmed/25887443
https://doi.org/10.1371/journal.pone.0116028
https://doi.org/10.1371/journal.pone.0116028
http://www.ncbi.nlm.nih.gov/pubmed/25551642
https://doi.org/10.1111/j.2007.0018-0661.01975.x
http://www.ncbi.nlm.nih.gov/pubmed/17850597
https://doi.org/10.1186/1471-2164-12-266
http://www.ncbi.nlm.nih.gov/pubmed/21609492
https://doi.org/10.1007/s00122-002-0891-7
https://doi.org/10.1007/s00122-002-0891-7
http://www.ncbi.nlm.nih.gov/pubmed/12582500
https://doi.org/10.1139/G07-087
http://www.ncbi.nlm.nih.gov/pubmed/18059536
https://doi.org/10.1371/journal.pone.0177456


20. Zhao PJ, Liu P, Shao JF, Li CQ, Wang B, Guo X et al. Analysis of different strategies adapted by two cas-

sava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot. 2015;

21. Bouslama M, Schapaugh WT Jr. Stress tolerance in soybeans. I. Evaluation of three screening tech-

niques for heat and drought tolerance. Crop Sci. 1984; 24(5): 933–937

22. Lin ZX, He DH, Zhang XL. Linkage map construction and mapping QTL for cotton fiber quality using

SRAP, SSR and RAPD. Plant Breeding. 2005; 124:180–187

23. Wang B, Nie YC, Lin ZX, Zhang XL, Liu JJ, Bai J. Molecular diversity, genomic constitution, and QTL

mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G.

darwinii Watt. Thero Appl Genet. 2012; 125:1263–1274

24. Liu K, Muse SV. Powermarker: integrated analysis environment for genetic marker data. Bioinformatics.

2005; 21:2128–2129 https://doi.org/10.1093/bioinformatics/bti282 PMID: 15705655

25. Adams DJ, Rolf FJ. Ecological character displacement in Plethodon: biomechanical differences found

from a geometric study. Proc Natl Acad Sci USA. 2000; 97:4106–4111 PMID: 10760280

26. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teach-

ing and research. Mol Ecol Notes. 2006; 6:288–295

27. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000a; 155:945–959

28. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations.

Am J Hum Genet. 2000b; 67:170–181

29. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

STRUCTURE: a simulation study. Mol Eco. 2005; 14:2611–2620

30. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with

label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23

(14):1801–1806 https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429

31. Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, Li JS,Yan JB. Characterization of a global

germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol

Breeding. 2011; 28: 511–526

32. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF et al. A unified mixed-model method for

association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006; 38:203–208

https://doi.org/10.1038/ng1702 PMID: 16380716

33. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. J R Stat Soc Ser C Appl Stat. 1995; 57(1):289–300

34. Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity.

2002; 93 (1):77–78

35. Wei YX, Shi HT, Xia ZQ, Tie WW, Ding ZH, Yan Y et al. Genome-wide identification and expression

analysis of the WRKY gene family in cassava. Front Plant Sci. 2016; 7:25 https://doi.org/10.3389/fpls.

2016.00025 PMID: 26904033

36. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al. TM4: a free, open-source system for

microarray data management and analysis. Biotech. 2003; 34(2):374–8

37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR

and the 2-ΔΔCT method. Methods. 2001; 25:402–408 https://doi.org/10.1006/meth.2001.1262 PMID:

11846609

38. Wen ZX, Zhao TJ, Zheng YZ, Liu SH, Wang CE, Wang F et al. Association analysis of agronomic and

quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles.

Acta Agro Sinica. 2008; 34(8):1339–1349

39. Qie LF, Jia GQ, Zhang WY, Schnable J, Shang ZL, Li W et al. Mapping of quantitative trait locus (QTLs)

that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria itali-

ca×Setaria viridis. Plos One. 2014; 9(7):e101868 https://doi.org/10.1371/journal.pone.0101868 PMID:

25033201

40. Gaviria JL, Engelbrecht BMJ. Effects of drought, pest pressure and light availability on seedling estabil-

ishment and growth: their role for distribution of tree species across a tropical rainfall gradient. Plos

One. 2015; 10(11):e0143955 https://doi.org/10.1371/journal.pone.0143955 PMID: 26619138

41. Zhou Y, Yang P, Cui FL, Zhang FT, Luo XD, Xie JK. Transcriptome analysis of salt stress responsive-

ness in the seedlings of Dongxiang wild rics (Oryza rufipogon Griff.). Plos One. 2016; 11(1):e0146242

https://doi.org/10.1371/journal.pone.0146242 PMID: 26752408

42. Tomar RSS, Tiwari S, Vinod, Naik BK, Chand S, Deshmukh R et al. Molecular and morpho-agronomical

characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat.

Plos One. 2016; 11(6):e0156528 https://doi.org/10.1371/journal.pone.0156528 PMID: 27280445

Genetic architecture and drought related marker-trait association mapping in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0177456 May 11, 2017 21 / 23

https://doi.org/10.1093/bioinformatics/bti282
http://www.ncbi.nlm.nih.gov/pubmed/15705655
http://www.ncbi.nlm.nih.gov/pubmed/10760280
https://doi.org/10.1093/bioinformatics/btm233
http://www.ncbi.nlm.nih.gov/pubmed/17485429
https://doi.org/10.1038/ng1702
http://www.ncbi.nlm.nih.gov/pubmed/16380716
https://doi.org/10.3389/fpls.2016.00025
https://doi.org/10.3389/fpls.2016.00025
http://www.ncbi.nlm.nih.gov/pubmed/26904033
https://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
https://doi.org/10.1371/journal.pone.0101868
http://www.ncbi.nlm.nih.gov/pubmed/25033201
https://doi.org/10.1371/journal.pone.0143955
http://www.ncbi.nlm.nih.gov/pubmed/26619138
https://doi.org/10.1371/journal.pone.0146242
http://www.ncbi.nlm.nih.gov/pubmed/26752408
https://doi.org/10.1371/journal.pone.0156528
http://www.ncbi.nlm.nih.gov/pubmed/27280445
https://doi.org/10.1371/journal.pone.0177456


43. Min HW, Chen CX, Wei SW, Shang XL, Sun MY, Xia R et al. Identification of drought tolerant mecha-

nisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Front Plant

Sci. 2016; 7:1080 https://doi.org/10.3389/fpls.2016.01080 PMID: 27507977

44. Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB et al. Genetic variation in ZmVPP1 contributes to

drought tolerance in maize seedlings. Nat Genet. 2016; 48:1233–1241 https://doi.org/10.1038/ng.3636

PMID: 27526320

45. Wang XB, Wang LF, Shangguan ZP. Leaf gas exchange and fluorescence of two winter wheat varieties

in response to drought stress and nitrogen supply. Plos One. 2016; 11(11):e0165733 https://doi.org/

10.1371/journal.pone.0165733 PMID: 27802318

46. Siqueira MVBM, Queiroz-Silva JR, Bressan EA, Borges A, Pereira KJC, Pinto JG et al. Genetic charac-

terization of cassava (Mainihot esculenta) landraces in Brazil assessed with simple sequence repeats.

Genet Mol Bio. 2009; 32(1):104–110

47. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A et al. Simple sequence repeat

marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated

crop. Thero App Genet. 2003; 107:1083–1093

48. Raji AAJ, Fawole I, Gedil M, Dixon AGO. Genetic differentiation analysis of African cassava (Manihot

esculenta) landraces and elite germplasm using amplified fragment length polymorphism and simple

sequence repeat markers. Ann Appl Biol. 2009b; 155:187–199

49. Bonaldo MF, Lennon G, Soares MB. Normalization and subtraction: two approaches to facilitate gene

discovery. Genome Res. 1996; 6(9): 791–806 PMID: 8889548

50. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA et al. Characterization of an 18,166 EST

dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep.

2001; 26:1605–1618

51. Sakurai T, Plata G, Rodrı́guez-Zapata, Seki M, Salcedo A, Toyoda A et al. Sequencing analysis of

20000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families

related to stress response. BMC Plant Bio. 2007; 7:66

52. Nie XH, Huang C, You CY, Li W, Zhao WX, Shen C et al. Genome-wide SSR-based association map-

ping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics. 2016;

17:352 https://doi.org/10.1186/s12864-016-2662-x PMID: 27177443

53. Nie XH, Tu JL, Wang B, Zhou XF, Lin ZX. A BIL population derived from G.hirsutum and G. barbadense

provides a resource for cotton genetics and breeding. Plos One. 2015; 10(10):e0141064 https://doi.

org/10.1371/journal.pone.0141064 PMID: 26517274

54. Wang XC, Chang LL, Tong Z, Wang DY, Yin Q, Wang D et al. Proteomics profiling reveals carbohydrate

metabolic enzymes and 14-3-3 proteins play important roles for starch accumulation. Sci Rep. 2016;

6:19643 https://doi.org/10.1038/srep19643 PMID: 26791570

55. Deng DL, Wang B, Zeng CY, Guo X, Peng M. Natural variation analysis of MeGSTU7, one drought respon-

sive gene of Cassava (Manihot esculenta Cranz). Chinese J Trop Crops. 2015; 36(11):1986–1993

56. Hernández A, Herrera-Palau R, Madroñal JM, Albi T, López-Lluch G, Perez-Castiñeira JR et al. Vacuo-
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69. Guérinier T, Millan L, Crozet P, Qury C, Rey F, Valot B et al. Phosphorylation of p27 (KIP1) homologs

KRP6 and 7 by SNF1-related protein kinase01 link plant energy homeostasis and cell proliferation.

Plant J. 2013; 75 (3):515–525 https://doi.org/10.1111/tpj.12218 PMID: 23617622

Genetic architecture and drought related marker-trait association mapping in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0177456 May 11, 2017 23 / 23

https://doi.org/10.1042/BSR20150065
https://doi.org/10.1042/BSR20150065
http://www.ncbi.nlm.nih.gov/pubmed/26182363
https://doi.org/10.1007/s00299-013-1506-2
http://www.ncbi.nlm.nih.gov/pubmed/24081610
https://doi.org/10.1016/j.tplants.2004.03.007
http://www.ncbi.nlm.nih.gov/pubmed/15130549
http://www.ncbi.nlm.nih.gov/pubmed/14623244
https://doi.org/10.1111/tpj.12218
http://www.ncbi.nlm.nih.gov/pubmed/23617622
https://doi.org/10.1371/journal.pone.0177456

