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Abstract: Background: Drug reference apps promote self-management and improve the efficiency
and quality of work for physicians, nurses, pharmacists, and patients. This study aimed to describe
a systematic and stepwise process to identify drug reference apps in Taiwan, assess the quality of
these apps, and analyze the influential factors for user ratings. Methods: A two-step algorithm
(KESS) consisting of keyword growing and systematic search was proposed. Seven independent
reviewers were trained to evaluate these apps using Mobile App Rating Scale (MARS). A logistic
regression model was fitted and average marginal effects (AME) were calculated to identify the effects
of factors for higher user ratings. Results: A total of 23 drug reference apps in Taiwan were identified
and analyzed. Generally, these drug reference apps were evaluated as acceptable quality with an
average MARS score of 3.23. Higher user engagement, more functionality, better aesthetics, and more
information associated with higher user ratings. Navigation is the most influential factor on higher
user ratings (AME: 13.15%) followed by performance (AME: 11.03%), visual appeal (AME: 10.87%),
credibility (AME: 10.67%), and quantity of information (AME: 10.42%). Conclusions: User experience
and information clearly affect user ratings of drug reference apps. Five key factors should be
considered when designing drug reference apps.

Keywords: drug reference app; keyword growing and systematic search; Mobile App Rating Scale

1. Introduction

Drug reference apps have already become a must-have tool for health providers and
patients through the whole medication therapeutic cycle [1–5]. While mobile health apps
are mostly for reference purposes, drug reference apps are the apps that help users gain a
better understanding of medications by providing up-to-date drug information including
drug names, trade names, category, classification, mechanism of action, pharmacokinetics,
availability, indications and dosages, contraindications, interactions, side effects, serious
reactions, and precautions and considerations are ranked within the top 3 most-used apps
among medical professionals [1]. There are many studies show that drug reference apps
have played a wide variety of roles as clinical decision supporting tools at the point of care
for medical professionals [6], as referencing and learning tools for medical students and
junior doctors [7,8], and also as standardized dictionaries for inter-professional collabora-
tion [9]. Moreover, drug reference apps could be an interface with up-to-date information
written for the layperson that effectively promotes patient education for nurses [10,11] and
pharmacists [4,12].

Drug reference apps could empower patients’ self-management, improve medication
safety, and optimize therapeutic effect [13,14]. Many people found mobile apps easy to use,
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that they help in managing medication, and increase treatment adherence in patients by
helping them to better understand their medicine [15]. However, it has been proved that
medication errors can be aggravated when there are several people involved in the patient’s
care by providing accessible, comprehensive, reliable, and understandable medication
information to those largely lacking from their health providers [2,16]. The more knowledge
of the medication being taken, the more significant the reduction in errors can be [17].
Recent studies also showed that drug reference apps are helpful for medically complex
patients such as the elderly [17], multi-comorbidities [18,19], home care patients [20], and
also helpful for increasing safety in care transitions [21].

A drug reference app with localized information is vital for improving the therapeutic
medication cycle [22,23]. Although there had already dozens of key players, such as
Lexicomp, Epocrates, Micromedex, Up-to-date, Drugs.com, etc., frequently mentioned by
medical professionals [1,5], these drug reference databases mainly cover medication that is
available in the U.S. and Europe and there are very few drug reference apps that provide
localized language outside of the U.S. and Europe [23]. For example, a recent report showed
that few (15%) hospitals in Taiwan, a country with high medical service availability, provide
drug information to their patients, resulting in the limitation for patients’ understanding of
their medication [22].

Although there is a need for users and app developers to evaluate the quality of drug
reference apps objectively, there is a paucity of information on how they differ, how many
and which features they have, their overall quality, and whether they are attractive to
users. Previous reviews identified medication adherence-related apps and described their
relevant features [2,24–28]. However, these reviews included only the apps in English,
without the local ones in Taiwan. This study aimed to describe a systematic and stepwise
process to identify drug reference apps with local drug information in Taiwan, assess the
quality of these apps by using a reliable quality assessment tool, and analyze influential
factors for higher user ratings.

2. Materials and Methods
2.1. Overview

Our work offers three major contributions. First, we developed a searching algorithm
combining keyword growing and systematic searches to extensively retrieve drug reference
apps from the Google Play Store and the Apple App Store. We systematically searched,
screened, and identified smartphone apps aimed at drug reference in Taiwan. Second, we
evaluated and assessed the qualities of these drug reference apps based on the Mobile App
Rating Scale (MARS) [29,30]. Last, we gathered users’ feedback and analyzed influential
factors for higher user ratings.

2.2. Searching Algorithm (KESS) for Drug Reference App: Keyword Growing and
Systematic Search

We developed an algorithm (KESS) consisting of two-steps including (1) keyword
growing: gathering keywords iteratively and accumulatively from experts and apps’
descriptions; (2) systematic search: using gathered keywords to extensively retrieve apps
relevant to drug reference, and then perform a critical review on these app for further
analysis (Figure 1).

2.2.1. Keyword Growing

The number and quality of searching result of apps depend heavily on keywords
while limited keywords may lead to a biased analysis [31]. To obtain a comprehensive,
objective, and unbiased keyword list for drug refence app, we employed a method based
on the snowballing technique that was widely used in literature search tasks in conducting
systematic reviews [32,33]. The snowballing method may increase the yield of search
results by 2.5–43% [34]. The detailed process is available in Appendix A.
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2.2.2. Systematic Search

All apps retrieved from the search were screened by two independent reviewers (YCC
and WWL) for eligibility using prespecified inclusion and exclusion criteria (Figure 1). The
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines
were adopted through the review process that aimed to identify relevant apps that were
accessible to most of the general public relevant to drug reference purposes [35].

2.3. Quality Appraisal of Apps

All apps that fit the inclusion criteria were evaluated for quality using MARS, which
allows reviewers to provide a standardized and objective appraisal across four sections:
(1) engagement, including individual items for entertainment, interest, customization,
interactivity, and whether the app was engaging for the target users; (2) functionality, in-
cluding performance, ease of use, navigation, and gestural design; (3) aesthetics, including
layout, graphics, and visual appeal; and (4) information quality, including accuracy of app
description; whether the app had specific, measurable, and achievable goals; quality of
information; quantity of information; visual information; credibility; and whether the app
was evidence-based [30,36]. Each item of MARS was evaluated and assigned a 5-point
Likert scale rating (1: inadequate, 2: poor, 3: acceptable, 4: good, and 5: excellent) by a
panel of reviewers.

In total, 7 independent reviewers (2 health professionals, 2 registered nurses, and
3 laypersons familiar with health apps) were invited and trained to use the MARS instru-
ments through a web-based training program created by the MARS developers [30]. Each
reviewer was required to independently test each app on iOS and Android devices for at
least 10 min to accomplish a predefined task. All MARS items were translated into Chinese
for internal consistency, and we calculated the means of every item and the MARS from
all reviewers.

2.4. User Ratings

We used the user rating of every app as a proxy of user preference since it is well
known that ratings and reviews greatly influence people deciding whether they should
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or should not download or use an app [37]. Both the App Store and Google Play Store
encourage users to express their sentiment towards an app by rating it from 1 to 5 stars,
5 being the best rating, and writing a review in which users put into words what they like
or dislike about it, or even ask for new features. Nowadays, apps are rated heavily and
the credibility of online ratings was considered as an indicator of users’ preferences for
apps. We extracted public user ratings of every app from the App Store or Google Play
Store and dichotomized apps into “apps with lower user star ratings (user rating < 4 stars)”
and “apps with higher user star ratings (user rating ≥ 4 stars)”.

2.5. Data and Statistical Analysis

Further data were collected and analyzed using MedCalc Statistical Software version
19.2.6 (Ostend, Belgium, 2020) and IBM SPSS Statistics for Windows, version 26.0. (Armonk,
NY, USA, 2020). We compared the quality factors of MARS for apps with higher user star
ratings to those with lower user star ratings using chi-square and t-test. Moreover, a logistic
regression model with backward elimination was used to assess the influential quality
factor for higher user star ratings. p-values < 0.05 were considered statistically significant.
To compare the impact of each item of MARS on higher user ratings, average marginal
effects (AME) of each item were computed by the average of the effect of an item for every
observation of its observed value, and 95% confidence intervals were calculated.

3. Results
3.1. Drug Reference Apps in Taiwan

Twenty-three drug reference apps in Taiwan were included after keyword growing
and systematic search (KESS algorithm) (Figure 1). The number of keywords increased
from 6 as the start set to 29 as the selected set using the keyword growing method. The
results of the App Store and Google Play Store searches using the selected set of keywords
for drug reference app yielded 7351 apps (3479 distinct apps) that were subjected to critical
review through PRISMA guidelines, resulted in 23 apps (refer to Figure 1 for a flowchart of
the exclusion process). A comprehensive list of drug reference apps in Taiwan is shown in
Supplement Table S1, with their respective properties.

Table 1 shows the characteristics of drug reference apps in Taiwan. While all drug
reference apps were freeware, two-third (65.2%) of these apps were available on the Google
Play Store. Most (69.6%) drug reference apps were classified in the medical category,
followed by health and fitness (17.4%), and tools/utilities (13.0%). More than half of
these apps were developed by hospitals (56.5%), followed by private groups (34.8%), and
universities (8.7%).

Table 1. Characteristics of drug reference apps in Taiwan. (n = 23, Taiwan, 2021).

Characteristics n = 23 (%)

App store
Google Play Store 15 (65.2)
Apple App Store 8 (34.8)

Primary category/genre
Medical 16 (69.6)

Health and fitness 4 (17.4)
Tools/Utilities 3 (13.0)
Developer type

Hospital 13 (56.5)
Private group 8 (34.8)

University 2 (8.7)
User feedbacks
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Table 1. Cont.

Characteristics n = 23 (%)

User star rating (star)
Average (SD 2) 3.65 (0.95)

≤2 5 (21.7)
3 8 (34.8)

4–5 10 (43.5)
No. of reviews

<50 14 (60.9)
50–100 6 (26.1)
>100 3 (13.0)

No. of downloads 1

500–5000 5 (33.3)
5000–10,000 2 (13.3)

10,000–50,000 5 (33.3)
>50,000 3 (20.0)

MARS score 3

≥4: good or above 1 (4.3)
3: acceptable 18 (78.3)
≤2: poor 4 (17.4)

1 Only apps in Google Play Store were shown here since the numbers of downloads were not publicly provided
by App Store. 2 SD: Standard Deviation. 3 MARS: Mobile App Rating Scale.

Less than half of drug reference apps in Taiwan were rated higher than 4 stars, and the
average user star rating of these apps was 3.69 out of 5 stars. Only two apps had more than
50,000 downloads (Table 1). Moreover, the average MARS score of these drug reference
apps was 3.23 (ranging between 2.28–4.12). AIGIA pharmacist had the highest MARS
score at 4.12 (Supplement Table S1). The majority (78.3%) of apps obtained a MARS score
higher than 3, indicating that they provide an acceptable user experience and at least some
technical functional value for the users (Table 1).

3.2. Apps with Higher User Ratings vs. Lower Ratings

Drug reference apps with higher user star ratings had higher quality scores than those
with lower user star ratings (Table 2). Either developer type or primary category had no
association with user star ratings. The average MARS score of apps with higher user star
ratings was significantly higher than that of apps with lower user star ratings (3.38 vs. 3.05,
p < 0.001). Apps with higher user star ratings had higher scores for each individual section
of the MARS than those with lower user star ratings, which indicated apps with higher
user star ratings had higher engagement (2.70 vs. 2.50, p = 0.005), functionality (3.85 vs.
3.49, p = 0.003), aesthetics (3.39 vs. 2.98, p < 0.001), and information (3.55 vs. 3.25, p = 0.005).

Figure 2 illustrates the average scores of each item in MARS of drug reference apps as
well as the difference in average score between apps with higher user ratings and those
with lower user ratings. Generally, the items in the engagement section, scored below
3 points (item numbered 1–4), were lower than items in other sections (Figure 2). The
finding suggests that these apps are lacking entertainment (item numbered 1 and item
numbered 2), interactivity (item number 3), and insufficient customization (item number 4)
to appeal to users (Figure 2).
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Table 2. Characteristics and Mobile App Rating Scale (MARS) scores of drug reference app stratified by user star ratings.
(n = 23, Taiwan, 2021).

App with Higher User Star
Rating (≥4 Stars)

App with Lower User Star
Rating (<4 Stars)

n = 10 (%) n = 13 (%) p Values Sig. 1

Developer type 0.241
Hospital 5 (50.0) 8 (61.5)

Private group 3 (30.0) 5 (38.5)
University 2 (20.0)

Primary category/genre 0.276
Medical 6 (60.0) 10 (76.9)

Health and fitness 2 (20.0) 1 (7.7)
Tools/Utilities 2 (20.0) 2 (15.4)
Quality of app

MARS 2 score (average, SD 3) 3.38 (0.64) 3.05 (0.64) <0.001 ***
Engagement 2.70 (0.60) 2.50 (0.60) 0.005 **
Functionality 3.85 (0.78) 3.49 (0.78) 0.003 **

Aesthetics 3.39 (0.77) 2.98 (0.83) <0.001 ***
Information quality 3.55 (0.82) 3.25 (0.86) 0.005 **

1 Significance: ** p < 0.01; *** p < 0.001; 2 MARS: Mobile App Rating Scale; 3 SD: standard deviation.

Five out of 18 items of MARS were independently associated with higher user star
ratings with different levels of impacts (Table 3). After fitting a binary logistic regression
model using backward elimination, navigation and performance in the functionality section,
visual appeal in the aesthetics, and credibility and quantity of information positively
associate with higher user star ratings (Table 3). Among these five influential items,
navigation had the most significant impact on higher user ratings with its AME of 13.15%,
which means every increment of navigation score would increase the probability of a
higher user star app by 13.15% (the maximal value is 100%), i.e., the chance of users voting
high would increase 13.15%. Following navigation, the remaining four items had different
levels of impact on higher user rating (AME of performance, 11.03%; visual appeal, 10.87%;
credibility, 10.67%; and quantity of information, 10.42%) (Table 3).

Table 3. Adjusted odds ratio (aOR) and average marginal effects (AME) of items of Mobile App Rating Scale (MARS)
associated with higher user star rating ordered by AME for higher user star rating 1 (n = 23, Taiwan, 2021).

Adjusted Odds Ratio (aOR) for
Higher User Ratings

Average Marginal Effects
(AME) for Higher User Ratings

Items of MARS aOR (95% CI 2) p-Value AME (%) (95% CI 2) p-Value

Navigation 2.18 (1.23–3.86) 0.008 13.15 (3.32–22.98) 0.009
Performance 2.07 (1.25–3.44) 0.005 11.03 (2.50–19.56) 0.005
Visual appeal 1.83 (1.11–3.04) 0.018 10.87 (1.57–20.18) 0.022

Credibility 1.79 (1.04–3.08) 0.035 10.67 (1.30–20.04) 0.015
Quantity of information 1.77 (1.25–2.52) 0.001 10.42 (4.41–16.43) 0.001

1 A logistic regression model with backward elimination was fitted. All 18 items of MARS were included in the initial model and five items
listed were included in the final model. For each item of MARS, AMEs were computed by the average of the effect of an item for every
observation at its observed value of such item. 2 CI: confidence interval.
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4. Discussion

Drug reference apps could provide comprehensive localized drug information that
play various distinct and vital roles to significantly improve the efficiency and quality
of work for physicians, nurses, pharmacists, and patients. The current study aimed to
describe a systematic and stepwise process to identify drug reference apps with local drug
information in Taiwan, assess the quality of the apps by a reliable quality assessment tool,
and analyze the influential factors for higher user ratings.

The two-step algorithm (KESS) consisting of keyword growing and systematic search
was proposed. A total of 23 drug reference apps in Taiwan were identified and analyzed.
Generally, these drug reference apps were evaluated as acceptable quality apps with the
average MARS score of 3.23. Higher engagement, more functionality, better aesthetics, and
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more information were associated with higher user ratings. Furthermore, the regression
model showed that among the four elements, there are five predominantly influential
factors, navigation, performance, visual appeal, credibility, and quantity of information.

The proposed KESS algorithm could be a valuable and unbiased framework for sys-
tematic searches for apps. Although collecting and identifying suitable apps is the most
crucial part and directedly affects the quality of the current study, a standard method or
guideline to obtain apps sharing relevant topics is still under research [38]. The first step
of the KESS algorithm is very similar to “keyword growing” in the process of conducting
systematic reviews [31]. We used a natural language processing toolkit to analyze the de-
scriptions of apps to generate new keywords. This method effectively increased the number
of keywords for drug reference apps from 6 to 29. Because of the rapidly changing nature
of app market dynamics, this approach would reduce the time effort to capture new key-
words (e.g., new slang words), and keep the search strategy updated and unbiased [34,38].
The second step of the KESS algorithm is conducted based on PRISMA guidelines, the
intent is to ensure the research is transparent and completed. Since the search results of
the Google Play and App Store may vary by users, time, and geo-locations, we found
the checklist of PRISMA guidelines very useful to verify that each of the app-searching
processes are completely reported and reproducible. Therefore, the KESS algorithm may
be an automating research tool which focuses on simplifying and streamlining the process
of searching and collecting the apps [39].

User experiences are the determinant of user ratings. Our result clearly showed that
navigation, performance, visual appeal, credibility, and quantity of information were the
main factors leading to higher user ratings. The finding is compatible with a previous
systematic review on barriers and facilitators of information-seeking behaviors [40]. Time is
a pain point for information seeking. As an information-seeking tool, the primary purpose
of the drug reference apps is to provide a proper amount of drug information within a
reasonable response time. Besides hardware performance and software engineering, an
optimized user interface and organized, accurate, and concise information would better
support such cognitively demanding tasks [41,42]. Our finding showed that users’ ratings
would be impacted if the time pain point was alleviated.

There is room for improvement in engagement for drug reference apps in Taiwan.
Our results showed that the lack of entertainment, interactivity, and customization in app
designs would affect the appeal to users. To keep users using the app, app developers may
need to identify potential users, understand their preferences, and ensure that the apps
cater to the requirements of each market segment [43]. Gamification is a growing trend that
can improve patients’ knowledge, skills, and satisfaction effectively, further encouraging
better medication management and adherence of patients [44]. The drug reference app
designers, whose primary target audience is the general public, may consider incorporating
some gaming/gamification factors in their future designs.

Quality and quantity of information are also vital for higher user ratings. Readability
and quality were considered the critical elements of drug information [45]. Human-factor
designs, such as the best format, layout, or amount of information, vary among different
user groups, thus the drug reference apps should be carefully designed to fit the distinct
needs of the different user groups. For example, clinicians have the requirement of easy, and
timely access to drug information, such as dosage and usage. Patients had a high demand
for updated and tailored information, such as effects and adverse effects for improving their
knowledge and understanding of the treatment and health outcomes [46,47]. Moreover,
cognitive ergonomics is necessary. For visually impaired users [48], the creative use
of pictures can help them communicate better [49]. Furthermore, for the elderly [50],
pictograms are the easiest way for them to better understand. In comparison to traditional
paper material, drug reference apps should aim to be a personalized support tool, which
can provide pertinent information in the right way at the right time [2].

A mismatch between target market and market segment should exist in the drug
reference app market in Taiwan. Although iOS devices have about half the market share
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in Taiwan (market share of iOS vs. Android; 53% vs. 46%; https://gs.statcounter.com/
os-market-share/mobile/taiwan, accessed on 6 August 2021), only one-third of drug
reference apps support these devices. There might be an opportunity to fill the gap for
drug reference apps in iOS devices without excluding commercial entities. However, such
findings could be a sign of a moribund market for drug refence apps in Taiwan. We found
that all drug reference apps are freemium, probably as a result of the public’s free mentality
(the tendency to intuitively expect that all digital services are and should be available at
no cost) toward health services in Taiwan [51]. Our findings provide information to create
rigid demands that may spur on the drug reference app market in Taiwan.

5. Limitation

This current study had some limitations. First, the quality of drug information may
not be thoroughly evaluated. Although there are dozens of tools developed explicitly for
rating medication leaflets and quality of health website information, there is no instrument
for evaluating drug reference apps yet [45]. To evaluate the quality of drug information,
this current study used MARS, a general-purpose evaluation tool for apps, to evaluate the
information from the drug reference apps after performing the same pre-defined task. This
approach may ensure inter-rater consistency, but some opinions from readability and some
quality dimensions might be insufficient. Second, under-representation bias resulting from
reviewers might exist. However, the high cost of training and conducting MARS surveys
resulted in convenience sampling being the best feasible option in the current study. While
we tried to invite reviewers from different backgrounds, the result may not represent the
whole population well. Third, bias resulting from the learning effect might exist. Cognitive
fatigue might exist for app reviewers when performing a series of tests. This issue should
be minimized since the reviewers were asked to evaluate these drug apps in random order.
Fourth, there might be an under-reporting bias for user ratings. While we used user ratings
as an objective measure gathered from the general public, those who have an extreme
experience are more likely to review than those who have a moderate experience and this
may distort the review. This issue should be minimal because such under-reporting bias
is usually prominent only for extremely poor or extremely good quality products. This
should not be the case in the current study since most drug reference apps had average
user ratings.

6. Conclusions

The proposed KESS algorithm could be a valuable and unbiased framework for
systematic searches for apps. While user ratings are clearly affected by user experience
and information, the users may prefer drug reference apps with higher engagement, more
functionality, better aesthetics, and more information. Health providers and app designers
should pay special attention to the five most influential factors including navigation,
performance, visual appeal, credibility, and quantity of information when developing drug
refence apps.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11080790/s1, Table S1: Drug reference apps included in this study ranked by MARS score
(n = 23, Taiwan, 2021).
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Appendix A. Details of Searching Algorithm (KESS) for Drug Reference App

Appendix A.1. Start Set of Keywords

The left part of Figure 1 demonstrates the whole process of keyword growing. We
started our keyword growing from a small seed set of keywords defined by authors (YCC
and WWL), called the start set of keywords. We searched two main app stores: Google Play
Store and Apple App Store with the app store country and region set to Taiwan between 1
and 15 March 2021, using 6 keywords from the start set (Box A1).

Box A1. Start set of keywords for drug reference app in Taiwan.

Searched app stores:
Google Play Store and Apple App Store

Search keywords:
藥 (drug),藥物 (medicine),藥丸 (drug pill),吃藥 (taking medicine),
用藥 (medication list),處方 (prescription)

Inclusion criteria:
App store country and region set to Taiwan

Exclusion criteria:
Apps without Chinese description

Appendix A.2. Keyword Extracting

After deduplication and removal of ineligible apps, we downloaded descriptions of
each eligible app for keyword extraction. We used a natural language processing toolkit to
perform text mining tasks, including word segmentation and part-of-speech tagging (a.k.a.
POS tagging) [52]. We calculated the word frequency of each word tagged as a noun and
picked the top 50 words as extracted keywords for expert panel voting.

Appendix A.3. Expert Panel Voting

To grade the validity of each extracted keyword, we invited 11 experts, including
health professionals, caregivers, and patients familiar with health apps to take a vote for
best recall (the degree of relevance of keyword and drug reference app). Finally, we picked
keywords with a simple majority (i.e., number of votes > 5) as the selected keyword for
drug reference apps in Taiwan.
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Box A2. Selected keywords for drug reference apps in Taiwan. (Number of keywords = 29).

Searched app stores:
Google Play Store and Apple App Store

Search keywords:
用藥資訊 (drug information),藥名 (drug name),藥 (drug),
藥品資訊 (medication information),用藥安全 (drug safety),
藥物成分 (drug ingredient),西藥 (western medicine),副作用 (side effects),
症狀 (symptoms),查詢藥品 (search for medication),
用藥 (medication list),藥物 (medicine),領藥 (refill medication),
藥品 (medication),處方 (prescription),藥品外觀 (outlook of drug),
劑量 (drug dose),交互作用 (interaction),處方用藥 (prescription drug),
藥單 (prescription),處方箋 (prescription),用藥紀錄 (drug history),
用藥知識 (drug literacy),正確用藥 (proper use of medication),
食藥署 (Food and Drug Agency),藥廠 (pharmaceutic company),
治療 (treatment),藥丸 (drug pill),吃藥 (taking medicine)

Inclusion criteria:
App store country and region set to Taiwan

Exclusion criteria:
Released > 1 year
Apps without Chinese description
Number of user review < 5
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