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In this study, a new predictive framework is proposed by integrating an improved grey wolf optimization (IGWO) and kernel
extreme learning machine (KELM), termed as IGWO-KELM, for medical diagnosis. The proposed IGWO feature selection
approach is used for the purpose of finding the optimal feature subset for medical data. In the proposed approach, genetic algorithm
(GA) was firstly adopted to generate the diversified initial positions, and then grey wolf optimization (GWO) was used to update the
current positions of population in the discrete searching space, thus getting the optimal feature subset for the better classification
purpose based on KELM. The proposed approach is compared against the original GA and GWO on the two common disease
diagnosis problems in terms of a set of performance metrics, including classification accuracy, sensitivity, specificity, precision,
G-mean, F-measure, and the size of selected features. The simulation results have proven the superiority of the proposed method

over the other two competitive counterparts.

1. Introduction

In order to make the best medical decisions, medical diag-
nosis plays a very important role for medical institutions.
As everyone knows, false medical diagnoses will lead to
incorrect medical decisions, which are likely to cause delays
in medical treatment or even loss of patients’ life. Recently,
a number of computer aided models have been proposed
for diagnosing different kinds of diseases, such as diagnostic
models for Parkinson’s disease [1, 2], breast cancer [3, 4], heart
disease [5, 6], and Alzheimer’s disease [7, 8]. As a matter
of fact, medical diagnosis could be treated as a problem of
classification. In the medical diagnosis field, datasets usually
contain a large number of features. For example, colorectal
microarray dataset [9] contains two thousand features with
highest minimal intensity across sixty-two samples. However,
there are irrelevant/redundant features in dataset which

may reduce the classification accuracy. Feature selection is
proposed to solve this problem. The process of a typical
feature selection method consists of four basic steps [10]:
(1) generation: generate the candidate subset; (2) evaluation:
evaluate the subset; (3) stopping criterion: decide when to
stop; (4) validation: check whether the subset is valid. Based
on whether the evaluation step includes a learning algorithm
or not, feature selection methods can be classified into two
categories: filter approaches and wrapper approaches. Filter
approaches are independent of any learning algorithm and
often computationally less expensive and more general than
wrapper approaches, while wrapper approaches evaluate the
feature subsets with a learning algorithm and usually produce
better results than filter approaches for particular problems.
In medical diagnosis scenario, high diagnostic perfor-
mance is always preferred, even a slight lift in accuracy can
make significant difference. Therefore, the wrapper approach
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is adopted to obtain the better classification performance in
this study. Generally, metaheuristics are commonly used for
finding the optimal feature subset in wrapper approaches. As
a vital member of metaheuristics family, evolutionary com-
putation (EC) has attracted great attention. Many EC based
methods in the literature have been proposed to perform fea-
ture selection. Raymer et al. [11] suggested using genetic algo-
rithms (GA) to select features. Authors in [12-14] proposed
to use binary particle swarm optimization (PSO) for feature
selection. Zhang and Sun applied tabu search in feature
selection [15]. Compared with above-mentioned EC tech-
niques, grey wolf optimization (GWO) is a new EC technique
proposed recently [16]. GWO mimics the social hierarchy
and hunting behavior of grey wolves in nature. Due to its
excellent search capacity, it has been successfully applied to
many real-world problems since its introduction, like optimal
reactive power dispatch problem [17], parameter estimation
in surface waves [18], static VAR compensator controller
design [19], blackout risk prevention in a smart grid [20],
capacitated vehicle routing problem [21], nonconvex eco-
nomic load dispatch problem [22], and so on. However, it
should be noted that the initial population of original GWO
is generated in a random way. It may result in the lack of
diversity for the wolf swarms during the search space. Many
studies [23-26] have shown that the quality of the initial
population may have a big impact on the global convergence
speed and the quality of final solution for the swarm intel-
ligence optimization algorithms, and initial population with
good diversity is very helpful to improve the performance
of optimization algorithms. Motivated by this core idea, we
made the first attempt to use GA to generate a much more
appropriate initial population, and then a binary version of
GWO was constructed to perform the feature selection task
based on the diversified population. On the other hand, to
find the most discriminative features in terms of classification
accuracies, the choice of an effective and efficient classifier
is also of significant importance. In this study, the kernel
extreme learning machine (KELM) classifier is adopted to
evaluate the fitness value. The KELM is selected due to the
fact that it can achieve comparative or better performance
with much easier implementation and faster training speed
in many classification tasks [27-29].

The main contributions of this paper are summarized as
follows:

(a) A novel predictive framework based on an improved
grey wolf optimization (IGWO) and KELM method
is presented.

(b) GA isintroduced into the IGWO to generate the more
suitable initial positions for GWO.

(c) The developed framework, IGWO-KELM, is success-
fully applied to medical diagnosis problems and has
achieved superior classification performance to the
other competitive counterparts.

The remainder of this paper is organized as follows.
Section 2 gives some brief background knowledge of KELM,
GWO, and GA. The detailed implementation of the IGWO-
KELM method will be explained in Section 3. Section 4
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describes the experimental design in detail. The experimental
results and discussions of the proposed approach are pre-
sented in Section 5. Finally, the conclusions are summarized
in Section 6.

2. Background

2.1. Kernel Extreme Learning Machine (KELM). The tradi-
tional back propagation (BP) learning algorithm is a stochas-
tic gradient least mean square algorithm. The gradient of each
iteration is greatly affected by the noise interference in the
sample. Therefore, it is necessary to use the batch method to
average the gradient of multiple samples to get the valuation
of the gradient. However, in the case of a large number
of training samples, this method is bound to increase the
computational complexity of each iteration, and this average
effect will ignore the difference between individual training
samples, thereby reducing the sensitivity of learning [30].

KELM is an improved algorithm proposed by Guang-Bin
Huang, which combines the kernel function into the original
extreme learning machine (ELM) [31]. ELM guarantees the
network has good generalization performance, greatly imp-
roves the learning speed of the forward neural networks, and
avoids many of the problems of gradient descent training
methods represented by BP neural networks, like ease of
being trapped into local optimum, large iterations, and so on.
KELM not only has multidominance of the ELM algorithm,
but also combines the kernel function, which nonlinearly
maps the linear nonseparable mode to the high-dimensional
feature space in order to achieve linear separability and
further improve the accuracy rate.

ELM is a training algorithm of single hidden layer feed-
forward neural networks (SLFNs). The SLFNs model can be
presented as follows [32]:

f (%) =h(x) B =HB, @

where x is sample; f(x) is the output of neural networks, a
class vector in classification; h(x) or H is hidden layer feature
mapping matrix; 8 is hidden layer output layer link weight.
In the ELM algorithm,

B=H" <HHT + é)il T, )

where T is a matrix consisting of class flag vectors of the
training sample, I is unit matrix, and C is regularization
parameter.

In the case where the hidden layer feature map h(x) is
unknown, the KELM kernel matrix can be defined as follows
[33]:

Q:HHT:QL]- :h(xi)-h(xj):K(xi,xj). (3)
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FIGURE 1: Hierarchy of grey wolves.

According to (2) and (3), (1) can be transformed as
follows:

f(x) = HB = HH" <HHT . i)_l T

C
K(x,xl) T 1 (4)
) I\~
= : <Q+ E) T
K (x, xy)

If the radial basis function (RBF) is used as kernel
function, also known as Gaussian kernel function [34], which
can be defined as follows:

2
K(x,y) =exp<—%), )

therefore, the regularization parameter C and the kernel
function parameter y are parameters that need to be tuned
carefully. The configuration of C and y is an important factor
affecting the performance of KELM classifier.

2.2. Grey Wolf Optimization (GWO). The GWO is a new
metaheuristic algorithm proposed by Mirjalili et al. [16],
which mimics the social hierarchy and hunting mechanism
of grey wolves in nature and is based on three main steps:
encircling prey, hunting, and attacking prey. In order to
mathematically model the leadership hierarchy of wolves,
assume the best solution as alpha, and the second and third
best solutions are named as beta and delta, respectively. The
rest of the candidate solutions are assumed to be omega. The
strict social dominant hierarchy of grey wolves is shown in
Figure 1.

Grey wolves encircle prey during the hunt. In order
to mathematically simulate the encircling behavior of grey
wolves, the following equations are proposed:

> o

D=[C Xpey () = Xy ()] »
) . - (6)
XWOlf (t + 1) = Xprey (t) - A . D,

where t indicates the current iteration, A and C are coefficient

vectors, X, is the position vector of the prey, and X, is

prey

D_alpha

@ Current position of alpha

@ Current position of beta
Q Current position of delta
O Current position of omega

@ Estimated position of the prey

FIGURE 2: Position updating of grey wolf.

the position vector of a grey wolf. The vectors A and C are
calculated as follows:

7)

where 4 is linearly decreased from 2 to 0 over the course of
iterations and 7, and 7, are random vectors in the interval of
[0, 1].

The hunt is usually guided by alpha. Beta and delta
might also participate in hunting occasionally. In order to
mathematically mimic the hunting behavior of grey wolves,
the first three best solutions (alpha, beta, and delta) obtained
so far are saved and the other search agents (omega) are
obliged to update their positions according to (8)-(14). The
update of positions for grey wolves is illustrated in Figure 2.

-

Djpha = |é1 Xipha — X|» (8)
Bbeta = |62 ’ Xbeta - X. > )
Dyerea = |és Xgaa = X | (10)
X, = Xypna ~ A7 D (i
Xz = Xbeta - ITZ) : Dbeta’ (12)
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Begin

popsize: size of population,

Initialize a, A, and C;

While k < maxiter
for i = 1: popsize

end for
Update a, A, and C;

k=k+1;
end while
Return alpha;
End

Initialize the parameters popsize, maxiter, ub and Ib where

maxiter: maximum number of iterations,

ub: upper bound(s) of the variables,

Ib: lower bound(s) of the variables;

Generate the initial positions of grey wolves with ub and Ib;

Calculate the fitness of each grey wolf;

alpha = the grey wolf with the first maximum fitness;
beta = the grey wolf with the second maximum fitness;
delta = the grey wolf with the third maximum fitness;

Update the position of the current grey wolf by Eq. (14);

Calculate the fitness of all grey wolves;
Update alpha, beta, and delta;

PsEUDOCODE 1: Pseudocode of the GWO algorithm.

- - — o
X3 = Xdelta - AS : Ddelta’ (13)

o o o

X, + X, + X,
3 .

X(t+1)= (14)
The pseudocode of the GWO algorithm is presented as
shown in Pseudocode 1.

2.3. Genetic Algorithm (GA). The GA was firstly proposed
by Holland [35], which is an adaptive optimization search
methodology based on analogy to Darwinian natural selec-
tion and genetic in biology systems. In GA, a population
is composed of a set of candidate solutions called chromo-
somes. Each chromosome includes several genes with binary
values 0 and 1. In this study, GA was used to generate the
initial positions for GWO. The steps of generating initial
positions of population by GA are described below.

(i) Initialization. Chromosomes are randomly generated.

(ii) Selection. A roulette choosing method is used to select
parent chromosomes.

(iii) Crossover. A single point crossover method is used to
create offspring chromosomes.

(iv) Mutation. Uniform mutation is adopted.

(v) Decode. Decode the mutated chromosomes as the
initial positions of population.

3. The Proposed IGWO-KELM Framework

This study proposed a new computational framework,
IGWO-KELM, for medical diagnosis purpose. IGWO-KELM

is comprised of two main phases. In the first stage, IGWO is
used to filter out the redundant and irrelevant information
by adaptively searching for the best feature combination in
the medical data. In the proposed IGWO, GA is firstly used
to generate the initial positions of population, and then GWO
is utilized to update the current positions of population in the
discrete searching space. In the second stage, the effective and
efficient KELM classifier is conducted based on the optimal
feature subset obtained in the first stage. Figure 3 presents a
detailed flowchart of the proposed IGWO-KELM framework.

The IGWO is mainly used to adaptively search the feature
space for best feature combination. The best feature combi-
nation is the one with maximum classification accuracy and
minimum number of selected features. The fitness function
used in IGWO to evaluate the selected features is shown as
the following equation:

N-L

Fitness = aP + f3 N (15)

where P is the accuracy of the classification model, L is
the length of selected feature subset, N is the total number
of features in the dataset, and o and f3 are two parameters
corresponding to the weight of classification accuracy and
feature selection quality, « € [0,1]and B =1 —av.

A flag vector for feature selection is shown in Figure 4.
The vector consisting of a series of binary values of 0 and
1 represents a subset of features, that is, an actual feature
vector, which has been normalized [36]. For a problem with
n dimensions, there are n bits in the vector. The ith feature
is selected if the value of the ith bit equals one; otherwise,
this feature will not be selected (i = 1,2,...,n). The size
of a feature subset is the number of bits, whose values are
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FIGURE 4: A flag vector for feature selection.

one in the vector. The pseudocode of the IGWO algorithm
is presented as shown in pseudocode 2.

4. Experimental Design

4.1. Data Description. In order to evaluate the proposed
IGWO-KELM methodology, two common medical diagnosis
problems were investigated, including the Parkinson’s dis-
ease diagnosis and breast cancer diagnosis. The datasets of
Parkinson and Wisconsin diagnostic breast cancer (WDBC)
publicly available from the UCI machine learning data
repository were used.

The Parkinson dataset is composed of a range of biomed-
ical voice measurements from 31 people, 23 with Parkinson’s

disease (PD). Each column in the table is a particular voice
measure, and each row corresponds to one of 195 voice
recordings from these individuals. The main aim of the
dataset is to discriminate healthy people from those with PD,
given the results of various medical tests carried out on a
patient. The time since diagnoses ranged from 0 to 28 years,
and the ages of the subjects ranged from 46 to 85 years,
with a mean age of 65.8. Each subject provides an average of
six phonations of the vowel (yielding 195 samples in total),
each 36 seconds in length [37]. The description of Parkinson
dataset is presented in Table 1. The Parkinson dataset contains
195 cases, including 147 Parkinson’s cases and 48 healthy
cases. The distribution of the Parkinson dataset is shown in
Figure 5.

The WDBC dataset was created from the University of
Wisconsin, Madison, by Dr. Wolberg et al. [38]. The dataset
contains 32 attributes (ID, diagnosis, and 30 real-valued input
features). Features are computed from a digitized image of
a fine needle aspirate (FNA) of a breast mass. They describe
the characteristics of the cell nuclei presenting in the image.
Interactive image processing techniques and linear-program-
ming-based inductive classifier have been used to build a
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Begin

Initialize the parameters popsize, maxiter, dim, pos, and flag where
popsize: size of population,

maxiter: maximum number of iterations,

dim: total number of features,

pos: position of grey wolf,

flag: mark vector of features;

Generate the initial positions of grey wolves using GA;

Initialize a, A, and C;

for i = 1: popsize

for j = 1: dim
if pos(i, j) > rand
flag(j) = 1;

else
Flag(j) =
end if

end for

end for

Calculate the fitness of grey wolves with selected features by Eq. (15);
alpha = the grey wolf with the first maximum fitness;

beta = the grey wolf with the second maximum fitness;

delta = the grey wolf with the third maximum fitness;

while k < maxiter
for i = 1: popsize

end for
for i = 1: popsize
for j = 1: dim
if pos(i, j) > rand
flag(j) = 1;
else
flag(j) = 0;
end if
end for
end for
Update a, A, and C;
Update alpha, beta, and delta;
k=k+1;

end while

End

Update the position of the current grey wolf by Eq. (14);

Calculate the fitness of grey wolves with selected features by Eq. (15);

Return the selected features of alpha as the optimal feature subset;

PSEUDOCODE 2: Pseudocode of the IGWO algorithm.

highly accurate system for diagnosing breast cancer. With
an interactive interface, the user initializes active contour
models, known as snakes, near the boundaries of a set of
cell nuclei. The customized snakes are deformed to the exact
shape of the nuclei. This allows for precise automated analysis
of nuclear size shape and texture. Ten such features are
computed for each nucleus and the mean value largest (or
“worst”) value and standard error of each feature are found
over the range of isolated cells [39], and they are described as
follows.

Descriptions of Features of the WDBC Dataset

(a) Radius. The mean of distances from center to points
on the perimeter

(b) Texture. The standard deviation of grey-scale values

(c) Perimeter. The total distance between consecutive
snake points

(d) Area. The number of pixels on the interior of the snake
adds one-half of the pixels on the perimeter

(e) Smoothness. The local variation in radius lengths
(f) Compactness. Perimeter?/area - 1.0

(g) Concavity. The severity of concave portions of the
contour

(h) Concave Points. The number of concave portions of
the contour
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TaBLE 1: Descriptions of attributes of the Parkinson dataset.

Attribute Description
F1 MDVP: Fo (Hz) Average vocal fundamental frequency
F2 MDVP: Fhi (Hz) Maximum vocal fundamental frequency
F3 MDVP: Flo (Hz) Minimum vocal fundamental frequency
F4 MDVP: Jitter (%)
F5 MDVP: Jitter (Abs)
F6 MDVP: RAP Several measures of variation in fundamental frequency
F7 MDVP: PPQ
F8 Jitter: DDP
F9 MDVP: Shimmer
F10 MDVP: Shimmer (dB)
FiI Shimmer: APQ3 Several measures of variation in amplitude
F12 Shimmer: APQ5
F13 MDVP: APQ
F14 Shimmer: DDA
F1> NHR Two measures of ratio of noise to tonal components in the voice
Fl16 HNR
K7 RPDE Two nonlinear dynamical complexity measures
F18 D2
F19 DFA Signal fractal scaling exponent
F20 Spreadl
F21 Spread2 Three nonlinear measures of fundamental frequency variation
F22 PPE

300

100 150

& Parkinson’s
v Healthy

FIGURE 5: Distribution of the Parkinson dataset.

(i) Symmetry. The length difference between lines per-
pendicular to the major axis to the nuclear boundary
in both directions

(j) Fractal Dimension. “Coastline approximation” - 1

The mean value, worst (mean of the three largest values),
and standard error of each feature were computed for each
image, resulting in a total of thirty features for each case in
the dataset. There are 569 samples’ data out of which 357
samples are labeled as benign breast cancer and the remaining
as malignant breast cancer patients. The distribution of the
WDBC dataset is shown in Figure 6.

3000
2500 + T
2000 f
1500 | "

1000 1 ..

500 (&

o Malignant
= Benign

FIGURE 6: Distribution of the WDBC dataset.

4.2. Experimental Setup. The experiments were conducted
in the MATLAB platform, which ran on Windows 7 ulti-
mate operating system with Intel® Core™ i3-3217U CPU
(1.80 GHz) and 8 GB of RAM. The implementation of KELM
by Huang is available at http://www3.ntu.edu.sg/home/egbh-
uang. The IGWO, GWO, and GA were implemented from
scratch.

In this study, the data were scaled into [-1, 1] by normal-
ization for the facility of computation. In order to acquire
unbiased classification results, the k-fold cross validation
(CV) was used [40]. This study took 10-fold CV to test the
performance of the proposed algorithm. However, only one
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TABLE 2: Parameter setting for experiments.
Parameter Value(s)
K for cross validation 10
Size of population 8
Number of iterations 100
Problem dimension n
Search domain [0,1]
Crossover probability in GA 0.8
Mutation probability in GA 0.01
« in the fitness function 0.99
B in the fitness function 0.01
C for KELM 32
y for KELM 0.5

*n is the total number of features.

TaBLE 3: Confusion matrix.

Actual class
P N
P True positive (TP)
False negative (FN)

Predicted class False positive (FP)

True negative (TN)

TP: the number of correct predictions that an instance is positive.
FP: the number of incorrect predictions that an instance is positive.
FN: the number of incorrect predictions that an instance is negative.
TN: the number of correct predictions that an instance is negative.

time of running the 10-fold CV will result in the inaccurate
evaluation. So the 10-fold CV will run ten times.

Regarding the parameter choice of KELM, different
penalty parameters C = {27°,27%,...,2% 2°} and different
kernel parameters y = {27°,27%,...,2%2°} were taken to
find the best classification results. In other words, 11 x 11
= 121 combinations were tried for each method. The final
experimental results demonstrate that when C is equal to
2° (32) and y is equal to 271 (0.5), KELM achieves the best
performance. Therefore, C and y for KELM are set to 32
and 0.5 in this study, respectively. The global and algorithm-
specific parameter setting is outlined in Table 2.

4.3. Performance Evaluation. Considering a two-class classi-
fier, formally, each instance is mapped to one element of the
set {P, N} of positive and negative class labels. A classifier is
a mapping from instances to predicted classes and produces
a discrete class label indicating only the predicted class of
the instance. A confusion matrix contains information about
actual and predicted classifications done by a classification
system. Performance of such systems is commonly evaluated
using the data in the matrix as shown in Table 3.

Once the model has been built, it can be applied to a
test set to predict the class labels of previously unseen data.
It is often useful to measure the performance of the model
with test data, because such a measure provides an unbiased
estimate of generation errors. In this study, we evaluate the
prediction models, utilizing the KELM classifier, based on
different evaluation criteria described below.
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Accuracy is the proportion of the total number of predic-
tions that were correct. It is determined using

TP + TN

A - x100% (16
Y = TP Y FP+ EN 1IN 6 (6)

Sensitivity is the proportion of positive instances that
were correctly classified, as calculated using

Sensitivity = x 100% (17)

P
TP + FN

Specificity is the proportion of negative instances that
were correctly classified, as calculated using

TN
Specificity = TN TP x 100% (18)

+ FP
Precision is the proportion of the predicted positive
instances that were correct, as calculated using

Precision = x 100% (19)

TP
TP + FP

The accuracy determined using (16) may not be an
adequate performance measure when the number of negative
instances is much greater than the number of positive
instances. Other performance measures account for this by
including sensitivity in literature. For example, Kubat and
Matwin [41] proposed the geometric mean (G-mean) metric
in 1998, as defined using

G-mean = \/ Sensitivity = Specificity. (20)

Lewis and Gale [42] proposed the F-measure metric in 1994,
as defined using

(ﬁz + 1) * Precision * Sensitivity

F-measure = (21)

? = Precision + Sensitivity

In (21), B has a value from 0 to infinity and is used to
control the weight assigned to precision and sensitivity. Any
classifier evaluated using (21) will have a measure value of 0,
if all positive instances are classified incorrectly. The value of
B is set to 1 in this study.

5. Experimental Results and Discussions

Comparative experiments were performed between IGWO-
KELM and the other two competitive methods, includ-
ing GWO-KELM and GA-KELM, in order to evaluate the
effectiveness of the proposed method for the two disease
prediction problems. 10-fold CV was used to estimate the
classification results of each approach; the mean values over
ten times of 10-fold CV were taken as the final experiment
results.

5.1. Parkinson’s Disease Prediction. Table 4 illustrates the
detailed classification results of the three methods in terms of
the number of selected features, accuracy, sensitivity, speci-
ficity, precision, G-mean, and F-measure on the Parkinson
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TABLE 4: Experimental results of three methods on the Parkinson dataset.

Method Features’ size ~ Accuracy (%)  Sensitivity (%)  Specificity (%)  Precision (%)  G-mean (%)  F-measure (%)
IGWO-KELM 9.2 +£2.01 97.45 + 2.65 98.08 + 2.11 96.67 +£5.27 99.29 +2.26 97.37 + 3.13 98.68 +1.78
GWO-KELM 10.7 + 2.16 95.37 + 3.55 97.90 + 2.64 94.62 + 8.64 98.00 + 3.22 96.29 + 4.96 97.99 +2.22
GA-KELM 9.4 +2.96 94.89 +3.70 96.30 + 3.09 92.49 +9.09 97.95 + 3.30 94.39 +£5.35 97.13 + 2.40

TABLE 5: Experimental results of IGWO-KELM with different population size on the Parkinson dataset.

Population size

(iteration number = 100) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) G-mean (%) F-measure (%)
4 94.34 96.71 87.67 95.95 92.08 96.33
8 96.97 98.16 94.99 97.99 96.57 98.08
12 93.37 96.04 88.48 95.29 92.18 95.66
16 95.39 96.75 92.67 97.29 94.69 97.16
20 93.24 94.70 88.83 96.62 91.72 95.65

dataset. It can be seen in Table 4 that, among the three
methods, the IGWO-KELM method performs the best with
the least number of selected features, with the highest values
of 97.45% accuracy, 98.08% sensitivity, 96.67% specificity,
99.29% precision, 97.37% G-mean, and 98.68% F-measure
and with the smallest standard deviation as well. The box plots
in Figure 7 graphically depict comparisons among IGWO-
KELM versus the other two methods in terms of accuracy,
sensitivity, specificity, precision, G-mean, and F-measure.
IGWO-KELM displays the greatest performance among the
three methods. Specially, for the measurement specificity,
as shown in Figure 7(c), the median value obtained from
IGWO-SVM is 93.83%, much higher than GA-KELM and
GWO-KELM by 88.74% and 91.99%, respectively.

To observe the optimization procedure of the algorithms
including GA, GWO, and IGWO, the iteration process was
recorded in Figure 8. It can be seen from Figure 8 that
the fitness curve of IGWO completely converges after the
17th iteration, while the fitness curves of GWO and GA
completely converge after the 30th iteration and the 45th
iteration, respectively. It indicates that the proposed IGWO
is much more effective than the other two methods and can
quickly find the best solution in the search space. Moreover,
we can also observe that the fitness value of IGWO is always
bigger than that of GWO and GA in the whole iteration
course.

The population size and the iteration number are two key
factors in swarm intelligence algorithms; thus their suitable
values were investigated on the Parkinson dataset. Firstly,
to find the best value of the population size, different sizes
of population from 4 to 20 with the step of 4 were taken
when the number of iterations was fixed to 100. It can be
observed from Table 5 that the performance of IGWO-KELM
is shown to be the best when the iteration number is equal
to 8. Secondly, to find the best value of the iteration number,
the size of population was fixed to 8 and different numbers of
iterations from 50 to 250 with step of 50 were tried. As shown
in Table 6, IGWO-KELM achieves the best performance
when the iteration number is equal to 100. Therefore, to
obtain the best performance of the proposed method for the

Parkinson dataset, the size of population and the number of
iterations were set to 8 and 100, respectively, in this study.

Figure 9 shows the selected frequency of each feature of
the Parkinson dataset in the process of the feature selection
by three methods, including GA-KELM, GWO-KELM, and
IGWO-KELM. It can be found from Figure 9 that the
frequencies of the 8th feature, the 9th feature, the 11th feature,
the 13th feature, the 14th feature, and the 20th feature selected
by IGWO-KELM are higher than the counterparts selected
by GA-KELM and GWO-KELM, and the frequency of these
features selected by IGWO-KELM is more than five. It
indicates that the 8th feature, the 9th feature, the 11th feature,
the 13th feature, the 14th feature, and the 20th feature are
much more important features than others in the Parkinson
dataset.

Table 7 presents the average selected times of features of
the Parkinson dataset, ranging from1to 10. Firstly, for IGWO-
KELM, the average selected times of the Ist feature, the 4th
feature, the 5th feature, the 8th feature, the 9th feature, the
10th feature, the 11th feature, the 13th feature, the 14th feature,
the 16th feature, the 17th feature, the 18th feature, the 19th
feature, the 20th feature, and the 22nd feature are more than
five times. Secondly, for GWO-KELM, the average selected
times of the Ist feature, the 4th feature, the 5th feature, the
6th feature, the 7th feature, the 10th feature, the 15th feature,
the 16th feature, the 17th feature, the 18th feature, the 19th
feature, the 20th feature, and the 22nd feature are more than
five times. Thirdly, for GA-KELM, the average selected times
of the Ist feature, the 17th feature, the 18th feature, the 19th
feature, and the 22nd feature are more than five times. It
is interesting to find that the average selected times of five
features including the Ist feature (MDVP: Fo), the 17th feature
(RPDE), the 18th feature (D2), the 19th feature (DFA), and the
22nd feature (PPE) are all more than five times for IGWO-
KELM, GWO-KELM, and GA-KELM. It indicates that the
three methods are highly consistent to pick out the most
important features for the Parkinson dataset. It also suggests
that these features should be paid more attention to in the
decision-making process.
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FIGURE 7: Box plots for 10 times of trials for each classification method on the Parkinson dataset.

5.2. Brest Cancer Prediction. Table 8 presents the detailed
classification results of the three methods in terms of the
number of selected features, accuracy, sensitivity, specificity,
precision, G-mean, and F-measure on the WDBC dataset.
From the table, it can be seen that the IGWO-KELM method

achieves the highest performance among the three methods
with results of 95.78% accuracy, 94.88% Sensitivity, 96.75%
Specificity, 95.24% Precision, 95.81% G-mean, and 95.06% F-
measure. The boxplots are drawn to exhibit the general values
of the accuracy, sensitivity, specificity, precision, G-mean, and
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TABLE 6: Experimental results of IGWO-KELM with different iteration number on the Parkinson dataset.

Iteration number

(population size = 8) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) G-mean (%) F-measure (%)
50 95.89 97.99 91.48 96.62 94.68 97.30
100 97.45 99.38 93.48 97.33 96.38 98.34
150 95.92 97.33 93.81 97.29 95.55 97.31
200 95.50 98.08 91.89 95.99 94.94 97.03
250 95.92 97.33 92.67 97.29 94.97 97.31
0.98 [ TABLE 7: Average selected times of features by three methods on the
0.97 b Parkinson dataset.
0.96 Average selected times
" Feature
g 095+ GA-KELM GWO-KELM IGWO-KELM
£ ool Fl 9 9.4 8.6
093 L[ F2 13 13 19
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FIGURE 8: Fitness comparison among three algorithms on the F10 3.8 5.9 5.6
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FIGURE 9: Frequency comparisons among three methods for each
feature of the Parkinson dataset.

F-measure and they are shown in Figure 10. As expected,
compared with the other two methods, IGWO-KELM yields
consistent increase of all performance measurements. For
example, for the measurement sensitivity, as can be observed
in Figure 10(b), the median value obtained from IGWO-
SVM is 94.62%, higher than GA-KELM and GWO-KELM by
92.44% and 93.52%, respectively.

Figure 11 shows the optimization procedure of the algo-
rithms including GA, GWO, and IGWO. It can be observed
from Figure 11 that the fitness curve of IGWO completely

converges after the 24th iteration, while the fitness curve of
GWO and GA just started to converge from the 28th iteration
and the 43rd iteration, respectively. Moreover, it can also be
observed that the fitness value of IGWO is always bigger than
that of GWO or GA in the whole iteration course. It indicates
that IGWO not only converges more quickly, but also obtains
better solution quality than GA and GWO. The main reason
may lie in that the GA initialization helps GWO to search
more effectively in search space; thus outperforming both GA
and GWO in converging to a better result.

As done for the Parkinson dataset, the population size and
the iteration number were also investigated on the WDBC
dataset. Firstly, to find the best value of the population size,
different sizes of population from 4 to 20 with the step of
4 were taken when the number of iterations was fixed to
100. It can be observed from Table 9 that the performance
of IGWO-KELM is shown to be the best when the iteration
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FIGURE 10: Box plots for 10 times of trials for each classification method on the WDBC dataset.
TaBLE 8: Experimental results of three methods on the WDBC dataset.
Method Features’ size ~ Accuracy (%)  Sensitivity (%)  Specificity (%)  Precision (%)  G-mean (%)  F-measure (%)
IGWO-KELM 8.7 +£2.74 95.7 £1.43 94.88 + 3.51 96.75 + 2.57 95.24 +3.35 95.81 + 1.65 95.06 + 1.94
GWO-KELM 9.8 +2.58 94.9 + 1.89 93.34 +£ 4.10 95.38 £ 2.66 94.87 + 4.56 94.35 £ 2.16 94.10 £ 2.78
GA-KELM 9.4 +3.07 93.4+£2.19 92.91 £ 4.19 94.13 £ 2.69 94.81 + 4.58 93.52 +2.84 93.85+2.79
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TABLE 9: Experimental results of IGWO-KELM with different population size on the WDBC dataset.

Population size

(iteration number = 100) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) G-mean (%) F-measure (%)
4 95.08 94.63 95.68 92.45 92.15 93.53
8 95.61 95.73 96.09 92.95 95.91 94.32
12 94.56 93.41 95.37 92.04 94.39 92.72
16 94.38 92.29 95.72 92.45 93.99 92.37
20 95.26 94.52 95.97 92.90 95.24 93.70

TaBLE 10: Experimental results of IGWO-KELM with different iteration number on the WDBC dataset.

Iteration number

(population size = 8) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) G-mean (%) F-measure (%)
50 93.67 92.83 94.58 90.54 93.70 91.67
100 95.43 94.01 96.65 94.33 95.32 94.17
150 95.25 93.25 95.64 93.85 94.44 93.55
200 94.90 94.01 96.44 92.45 95.22 93.22
250 93.15 89.99 95.27 92.01 92.59 90.99

0.98 8
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0.91 L2 e — N
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FIGURE 11: Fitness comparison among three algorithms on the
WDBC dataset.

number is equal to 8. Secondly, to find the best value of the
iteration number, the size of population was fixed to 8 and
different numbers of iterations from 50 to 250 with step of 50
were tried. As shown in Table 10, IGWO-KELM achieves the
best performance when the iteration number is equal to 100.
Therefore, to obtain the best performance of the proposed
method for the WDBC dataset, the size of population, and
the number of iterations were set to 8 and 100, respectively, in
this study.

Figure 12 shows the selected frequency of each feature
of the WDBC dataset in the course of the feature selection
by GA-KELM, GWO-KELM, and IGWO-KELM. It can be
observed from Figure 12 that the frequencies of the Ist feature,
the 2nd feature, the 3rd feature, the 5th feature, the 6th
feature, the 8th feature, the 9th feature, the 12th feature,
the 14th feature, the 16th feature, the 18th feature, the 19th
feature, the 20th feature, and the 26th feature selected by
IGWO-KELM are higher than the counterparts selected by

= GA-KELM
= GWO-KELM
= IGWO-KELM

FIGURE 12: Frequency comparisons among three methods for each
feature of the WDBC dataset.

GA-KELM and GWO-KELM. It indicates that these chosen
features are important features in the WDBC dataset; they
should be paid more attention to when the doctors make a
decision.

Table 11 presents the average selected times of features of
the WDBC dataset, ranging between 1 and 10. On the one
hand, to IGWO-KELM and GA-KELM, the average selected
times of the 2lst feature, the 22nd feature, and the 25th
feature are more than five times. On the other hand, to
GWO-KELM, the average selected times of the 21st feature,
the 22nd feature, the 23rd feature, the 24th feature, and the
25th feature are more than five times. Therefore, it can be
deduced that the 21st feature, the 22nd feature, and the 25th
feature are important features in the WDBC dataset, since
they are selected consistently by the three methods in a high
frequency.
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TABLE 11: Average selected times of features by three methods on the
WDBC dataset.

Average selected times

Feature
GA-KELM GWO-KELM IGWO-KELM

F1 2.1 2.1 32
F2 2.5 4.1 4.4
F3 1.4 2.5 2.8
F4 2.8 3.2 3.1
F5 1.5 2.9 32
F6 1.1 1.5 1.9
F7 2.8 3.7 33
F8 4.4 4.3 4.6
F9 1.2 1.4 1.5
F10 0.9 0.8 0.7
F11 3.5 4.2 37
F12 0.7 0.8 1.5
F13 2.9 2.8 2.8
F14 2.6 3.2 33
F15 2.2 2.2 2.1
F16 2.8 2 3.6
F17 1.7 3.1 21
F18 2 1.4 2.7
F19 2.2 2.9 32
F20 1.9 1.7 2.7
F21 5.7 52 5.6
F22 7.5 6.8 6.3
F23 4.4 5.1 4.6
F24 4.6 5.1 4.6
F25 6.3 59 6.3
F26 1.7 1.7 1.9
F27 2.6 4.1 3.9
F28 4.3 33 37
F29 2 1.1 1.9
F30 2.4 4.3 3.4

6. Conclusions

In this paper, an IGWO-KELM methodology is described in
detail. The proposed framework consists of two main stages
which are feature selection and classification, respectively.
Firstly, an improved grey wolf optimization, IGWO, was
proposed for selecting the most informative features in the
specific medical data. Secondly, the effective KELM classifier
was used to perform the prediction based on the represen-
tative feature subset obtained in the first stage. The proposed
method is compared against well-known feature selection
methods including GA and GWO on the two disease diagno-
sis problems using a set of criteria to assess different aspects of
the proposed framework. The simulation results have demon-
strated that the proposed IGWO method not only adaptively
converges more quickly, producing much better solution
quality, but also gains less number of selected features, achiev-
ing high classification performance. In future works, we will
apply the proposed methodology to more practical problems

Computational and Mathematical Methods in Medicine

and plan to implement our method in a parallel way with the
aid of high performance tools.
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