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Abstract Background: Considering that the Lactobacillus casei group is strongly associated with

caries progression, the use of lactobacilli as probiotics must be balanced due to their possible

involvement in dental caries.

Objective: This study aimed to detect and quantify L. paracasei, L. rhamnosus, and L. casei

group species in the active and arrested dentinal lesions of preschoolers. It also aimed to determine

the expression profiles of lactobacilli genes related to adhesion, extracellular polymeric substance

regulation, and pyruvate oxidation.

Methods: Total ribonucleic acid (RNA) was extracted from dentinal lesion samples (25 active, 13

arrested) of children between 2 and 5 years of age. The samples were converted to complementary
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deoxyribonucleic acid (cDNA), and quantitative polymerase chain reaction (qPCR) analyses were

performed to quantify and determine the relative abundance (measured by percentage of total bac-

teria) of L. paracasei, L. rhamnosus, and L. casei group species. The expression profiles of L. para-

casei/casei genes (spaC and spxB) and L. rhamnosus genes (spaE and wzb) were assessed. The

Student t-test and the Mann-Whitney U test were used for comparisons.

Results: The L. casei group species were found to be part of the viable microbial community in

dentinal caries. L. paracasei (p = 0.001), L. rhamnosus (p = 0.022), and L. casei (p = 0.004) group

species were abundant in the active dentinal lesions compared to the arrested dentinal lesions. Only

the wzb gene (p = 0.006) exhibited a statistically significant difference between the active and

arrested lesions in terms of its expression profile; it was expressed to a higher extent in the active

dentinal lesions.

Conclusions: The L. casei group species presented in large numbers in the active dentinal caries

lesions, indicating that these microorganisms are related to caries activity, and the wzb gene may

play an important role in caries progression.

� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dental caries is a polymicrobial biofilm-mediated disease

(Fejerskov, 2004; Philip et al., 2018) resulting from a dysbiosis
caused by frequent sugar consumption (Mira, 2018; Solbiati
and Frias-Lopez, 2018; Zhan, 2018). It presents globally

(Gao et al., 2016; Tanner et al., 2016) as one of the most com-
mon chronic childhood diseases (Jiang et al., 2014; Simón-
Soro and Mira, 2015). Early childhood caries (ECC) affects

children between 0 and 6 years of age and is a serious public
health problem due to its early beginning, rapid clinical devel-
opment, high treatment cost, and negative effects on preschool
children ´s quality of life (Li et al., 2015; Colombo et al., 2017).

Low levels of Streptococcus mutans have been found in
dentinal lesions, despite the recognition of its pathogenicity
in dental caries (Aas et al., 2008; Simón-Soro et al., 2014). Sim-

ilar prevalence and quantification of S. mutans have previously
been reported in active and arrested dentinal lesions (Bezerra
et al., 2016), suggesting that S. mutans may play an accessory

role in dentinal caries progression. Lactobacillus spp., a late
colonizer that is not necessary for caries initiation (Young
and Featherstone, 2013; Obata et al., 2014; Takahashi and
Nyvad, 2016), has been frequently detected in ECC, being

more closely related to dentinal caries lesions than to enamel
lesions (Badet and Thebaud, 2008; Li et al., 2015; Shimada
et al., 2015; Mitrakul et al., 2017) and more numerous in chil-

dren with ECC than in cavity-free children (Ledder et al.,
2018). The L. casei group (a closely related taxonomic group)
formed by L. rhamnosus, L. casei, and L. paracasei (Hill et al.,

2019) is a predominant group in the biofilms and dentin lesions
of children with ECC (Badet and Thebaud, 2008; Neves et al.,
2017), and the L. rhamnosus and L. paracasei species seem to

be present at all caries stages of deep carious lesions in decid-
uous molars (Kneist et al., 2010).

The Lactobacillus casei group is studied mainly due to its
marketing, industrial, and health potential (Salvetti et al.,

2012), and clear support was recently found for the short-
term persistence of Lactobacillus in the saliva microbiome,
showing that the ingestion of commercially accessible probi-

otics may affect the diversity and constitution of the saliva
microbiome (Dassi et al., 2018). In addition, several L. paraca-
sei and L. rhamnosus strains, which are used to ferment dairy
products and have been widely studied as probiotics, are cap-
able of surviving in the oral cavity (Smokvina et al., 2013; Toh

et al., 2013; Surachat et al., 2017; Coqueiro et al., 2018;
Pahumunto et al., 2019; Zaura and Twetman, 2019). L. rham-
nosus is the most widely used and clinically researched L. casei
group probiotic for caries prevention, followed by L. paracasei

(Lebeer et al., 2007; Silva et al., 2008; Twetman and Keller,
2012; Cagetti et al., 2013; Seminario-Amez et al., 2017;
Coqueiro et al., 2018; Pahumunto et al., 2019; Zaura and

Twetman, 2019). However, although lactobacilli present a very
restricted capacity to inhabit the healthy human oral cavity, it
has been suggested that they might colonize cavity lesions and

cause caries (Twetman and Keller, 2012), inducing mineral
loss, especially in dentinal cavities, and contributing to
in vitro caries processes (Schwendicke et al., 2014). This

demonstrates that probiotic species can also be cariogenic
under peculiar growth circumstances, such as low pH
(Vuotto et al., 2014). Bacteria from the L. casei group can fer-
ment glucose and produce lactic acid, and, depending on the

pH, lactate can be metabolized into ethanol, acetic acid, and
CO2 (Sharpe, 1979; Salvetti et al., 2012). Beyond acid produc-
tion, the L. casei group species have a high tolerance for low

pH (Obata et al., 2014) and H2O2 production when the spxB
gene catalyzes pyruvate oxidation (Zotta et al., 2014; Savo
Sardaro et al., 2016; Li et al., 2017). Furthermore, L. paracasei

and L. rhamnosus play a role in microbial adhesion and biofilm
formation, binding to mucin, collagen, and cultured epithelial
cells (Lebeer et al., 2012; Smokvina et al., 2013; Toh et al.,
2013; Miljkovic et al., 2015). These bacteria have genes related

to transport and carbohydrate metabolism, biosynthesis of
extracellular polysaccharides (EPS), production of bacteri-
ocins, and pili (Toh et al., 2013; Ceapa et al., 2016). The pro-

tein pilin is encoded by genes (including spaC and spaE)
related to adhesion, and the wzb gene is involved in the regu-
lation of EPS synthesis (von Ossowski et al., 2010; Lebeer

et al., 2012; Nadkarni et al., 2014; Rintahaka et al., 2014;
Miljkovic et al., 2015). L. paracasei and L. rhamnosus have
high capacity for adhesion, but few details are known about

the adhesion mechanism of these bacteria in dental caries
(Piwat et al., 2015; Ciandrini et al., 2017).

In this context, the consumption of lactobacilli probiotics
based on the claim that they provide health benefits needs to

http://creativecommons.org/licenses/by-nc-nd/4.0/
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be pondered, considering their possible contribution to dental
caries when associated with sugar intake. It is hypothesized
that species of Lactobacillus are associated with dentinal caries,

especially in ECC, and have specific genetic elements that
enable adhesion, biofilm formation, and production of biocide
agents, thus modulating caries activity processes. Therefore,

the objective of this study was to detect and quantify 1) the
metabolically active cells of the L. casei group and the L. para-
casei and L. rhamnosus species and 2) the expression of the

spaC, spxB, spaE, and wzb genes of L. paracasei/casei and L.
rhamnosus, respectively, in the active and arrested dentinal car-
ies lesions of children with ECC.

2. Materials and methods

2.1. Study population and sample collection

The dentin samples used in this study were derived from a pre-
vious study (Bezerra et al., 2016), in which informed consent

was obtained from the legally responsible parents, guardians,
or custodians of the children after the research protocol was
approved by the Ethics Committee of the Federal University

of Ceará (protocol no. 548.405). The use of the stored samples
was authorized by the Research Ethics Committee of the Fed-
eral University of Ceará (protocol no. 3.227.777).

In sum, a group of 32 children aged between 40 and
71 months from four public schools in Fortaleza (Ceará, Bra-
zil) were diagnosed with ECC and selected according to the

inclusion criteria: presence of a minimum of one cavitated
dentinal carious lesion with visible dentin in teeth with pulpal
health, assessed by clinical and radiographic exams. Patients
who had any health problems, were not cooperative during

clinical examination, or had used antibiotics 3 months before
the study were excluded (Bezerra et al., 2016). The carious den-
tin samples were collected and rapidly transported to sterile

RNAse free microtubes (Axygen, Union City, CA, USA), in
which they were combined with ribonucleic acid (RNA) stabi-
lization reagent (RNAlaterTM, Ambion Inc., Austin, TX,

USA) for 18 h (at 4 �C), following the manufacturer’s specifi-
cations. Prior to RNA extraction, the microtubes remained at
�80 �C.

2.2. RNA extraction and purification

The dentin samples were processed according to the method
described by Bezerra et al. (2016). Briefly, all the samples were

thawed, centrifuged (11,000 � g/1 min/4 �C), and transferred
to cryogenic tubes containing 0.16 g of zirconia beads
(0.1 mm in diameter) (Biospec Products, Bartlesville, OK,

USA) for mechanical disruption in a mini-beadbeater (BioSpec
Products). Supernatants (350 ll) were submitted to RNA
extraction using RNeasy Mini KitTM (Qiagen, Valencia, CA,

USA) in accordance with the manufacturer’s guidance. Subse-
quently, genomic deoxyribonucleic acid (DNA) was removed
using TurboTM DNAse (Applied Biosystems, Ambion, Austin,
TX, USA), and the RNA solution was cleaned using the

RNeasy MinieluteTM CleanUp Kit (Qiagen, Dus, Bundesland,
Germany). Measurements of RNA concentration (A260/A280)
and purity (A260/A230) were determined by absorbance ratios

obtained in a spectrophotometer (Nanodrop 2000c, Thermo
Scientific, Wilmington, DE, USA).
2.3. cDNA synthesis

The complementary DNA (cDNA) was synthesized from the
RNA using the iScriptTM cDNA Synthesis Kit (Bio-Rad, Her-
cules, CA, USA). Reverse transcription reactions were pre-

pared with 6 ll of 5x iScript reaction mix, 1 ll of iScript
reverse transcriptase, 1 lg of purified RNA, and RNAse-free
water in a sufficient amount to yield a final volume of 30 ll.
The reaction cycle (5 min at 25 �C, 120 min at 42 �C, and
5 min at 85 �C) was carried out in a thermocycler (VeritiTM,
Applied Biosystems, Foster City, CA, USA) (Bezerra et al.,
2019). Afterward, the cDNA concentration for each sample

was normalized to obtain a concentration of 10 ng/ll and then
reserved at �20 �C.

2.4. Design of the primers

We designed specific primers for the expression of genes (spxB
and spaC) from Lactobacillus casei/paracasei, using Primer3

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi)
and BLAST� (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Gene
sequences (Table 1) were deposited in the GenBank (https://
www.ncbi.nlm.nih.gov/genbank/). The other genes used in this

analysis (spaE and wzb) were previously described by
Nadkarni et al. (2014).

All the primers used in this research (Table 2) were synthe-

sized by Exxtend (Campinas, São Paulo, Brazil); they were
analyzed in the BLAST� and Netprimer� (https://www.pre-
mierbiosoft.com/netprimer/) target, and the specificity was

then confirmed experimentally with polymerase chain reaction
(PCR) reactions. The individual standardization for the reac-
tions of the primers was performed with genomic DNA
obtained with strains of culture collections being positive con-

trols (L. paracasei for the primers in Table 1 and L. rhamnosus
to spaE and wzb). Amplifications were made in volumes of
25 ml with 200 mM of deoxyribonucleotide triphosphates

(dNTPs), 2.5 mM of MgCl2, 0.3 mM of each primer, 1.25 U
of Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA),
and approximately 10 ng of genomic DNA, using a thermocy-

cler (VeritiTM, Applied Biosystems). All the primers were
tested in accordance with the preliminary patterns for ideal
thermal condition determinations (Table 3): DNA denatura-

tion at 95 �C for 5 min, 35 cycles at 95 �C for 30 sec, primer
hybridization at 55 �C (for the primers in Table 1), 58 �C
(for spaE and wzb), and 60 �C (for the L. casei group, L. para-
casei and L. rhamnosus primers) for 30 sec, extension at 72 �C
for 30 sec, and conclusion of the process at 72 �C for 5 min.
Tris-borate-EDTA buffer on 2% agarose gel was used for sep-
arating the PCR products by electrophoresis, and staining

agent ethidium bromide (0.5 ug/ml) was employed for visualiz-
ing the bands under ultraviolet (UV) light (Gel Logic 100
Imaging System, Kodak, Tokyo, Japan). For a well-defined

examination of all the bands, a 100 bp DNA ladder (Invitro-
gen, Carlsbad, CA, USA) was included on each gel.

2.5. Quantitative PCR

Quantitative PCR (qPCR) assays were performed both to
quantify the 16S rRNA genes of L. rhamnosus, L. paracasei,
and L. casei group species (Furet et al., 2004) and to assess

the levels of expression of the spaC, spaE, spxB, and wzb genes.

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.premierbiosoft.com/netprimer/
https://www.premierbiosoft.com/netprimer/


Table 1 Primers designed in this study.

Gene Locus tag Description Primer Sequence 5´- 3´ Product

(bp)

spxB LBPG_02063 pyruvate oxidase spxBLbp For

spxBLbp Rev

GTGCCGACGTTATTTCTTG

ATCACAACAATCGCAGCTC

200

spaC LBPG_02639 pilus specific protein spaCLbp For

spaCLbp Rev

GGTCAGGGAGAAGCGTACT

CGGTGTGACGACTTACCAT

202

Table 2 List of primers used in this study.

Target or genes Sequence (50 30) References

Total Bacteria* F: TCCTACGGGAGGCAGCAGT

R: GGACTACCAGGGTATCTAATCCTGTT

(Nadkarni et al., 2002)

L. casei group* F: GCGGACGGGTGAGTAACACG

R: GCTTACGCCATCTTTCAGCCAA

(Furet et al., 2004)

L. paracasei* F: GTGCTTGCACCGAGATTCAACATG

R: TGCGGTTCTTGGATCTATGCG

(Furet et al., 2004)

L. rhamnosus* F: GTGCTTGCATCTTGATTTAATTTT

R: TGCGGTTCTTGGATCTATGCG

(Furet et al., 2004)

spxB F: GTGCCGACGTTATTTCTTG

R: ATCACAACAATCGCAGCTC

(This study)

spaC F: GGTCAGGGAGAAGCGTACT

R: CGGTGTGACGACTTACCAT

(This study)

wzb F: CTTGAACGCTGCACTCATCTC

R: CGGATTAACGGTCAGTTGTTAGA

(Nadkarni et al., 2014)

spaE F: TGGCCGTCAATTAACACAAA

R: TATGACGCGTAAGCAAGCAC

(Nadkarni et al., 2014)

* 16S rDNA.

Table 3 Ideal thermal conditions applied for qPCR analysis.

Genes Thermal conditions

Pre-heating Denaturation Annealing Elongation Cycles

L. rhamnosus*
50 �C, 2 min/ 95 �C, 10 min 95 �C, 15 sec 60 �C, 30 sec 60 �C, 30 sec 40L. paracasei*

L. casei group* 95 �C, 10 min 95 �C, 15 sec 60 �C, 30 sec 60 �C, 30 sec 40

spaC
95 �C, 15 min 95 �C, 15 sec 55 �C, 30 sec 60 �C, 60 sec 40spxB

spaE
95 �C, 15 min 95 �C, 15 sec 58 �C, 30 sec 60 �C, 60 sec 40wzb

* Not determined in this study.
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Assays of qPCR were also used to determine the ideal concen-
tration and efficiency of all the primers used in this study.

Standard curves used serial dilutions from 400 ng to
0.0004 ng (detection limit) (10-fold) of genomic DNA
extracted from L. paracasei ATCC 335 and L. rhamnosus

ATCC 53103. Standard amplification and melting-point curves
were obtained for all the primer sets. The qPCR conditions are
specified in Table 3.

The qPCR assays were made in duplicate in a MicroAmp�
Fast Optical 48-Well Reaction Plate (Applied Biosystems,
Ambion, Austin, TX, USA) covered with optical adhesive film
(Applied Biosystems) in a StepOneTM Real-Time PCR System
(Applied Biosystems). All the reaction mixtures (10 ll) con-
tained 5 ll of Power SYBRTM Green PCR Master Mix

(Applied Biosystems), nuclease-free water (3.4 ll), each for-
ward/reverse primer (0.3 ll), and 1 ll of cDNA (10 ng/ll) or
1 ll of genomic DNA individually placed into the respective

wells of a 48-well plate. The final analyses were obtained from
the means of the two duplicates. The negative control con-
sisted of reactions without the template. After the final qPCR

cycle, analysis of the cycle threshold (CT) values, melting tem-
perature (Tm) values, melting curve, and standard curve (cor-
relation coefficient, R2, and efficiency %) was conducted for all
the amplified samples. For all the bacteria, samples with CT



Fig. 1 Quantification of L. casei group, L. paracasei and L. rhamnosus in active (n = 25) and arrested (n = 13) dentin caries lesions.

Data are expressed in bars (means ± standard deviation). *Statistical difference (p < 0.05) between the groups according to Student t-test

for L. casei group and Mann-Whitney test for L. paracasei and L. rhamnosus.
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and Tm values lower than the detection level in the standard
DNA curves were counted as negative (Colombo et al., 2017).

2.6. Statistical analysis

Data analyses were accomplished using the BioEstat 5.3 pro-

gram with a 95% confidence level. The D’Agostino-Pearson
normality test was used to examine the sample distribution
patterns, and the Student t-test or the Mann-Whitney U test
was used to compare the groups in terms of parametric or non-

parametric data, respectively. The response variables L. casei
group abundance and wzb gene expression were compared
using the Student t-test. Meanwhile, the Mann-Whitney U test

was used to compare the abundance of L. paracasei and L.
rhamnosus, the proportion of the L. casei group, L. paracasei,
and L. rhamnosus in relation to the total bacteria, and the gene

expression profiles of spaC, spxB, and spaE.

3. Results

The results showed that L. paracasei and L. rhamnosus are part
of the metabolically active community in dentinal caries
lesions of children with ECC, since L. paracasei, L. rhamnosus,

and L. casei group species were detected in all the samples,
regardless of the lesion type. In addition, L. paracasei
(p = 0.001), L. rhamnosus (p = 0.022), and L. casei
(p = 0.004) group species were more abundant in active denti-

nal lesions than in inactive dentinal lesions (Fig. 1).
The proportion of L. paracasei (p = 0.022), L. rhamnosus

(p = 0.009), and L. casei group species (p = 0.018) in relation

to the total bacteria (TB) load was also significantly higher in
active dentinal lesions, as illustrated in Fig. 2.

The spaC and spxB genes from the L. paracasei designed in

this research were equally expressed in active and arrested
lesions (p > 0.05) (Fig. 3). The spaE gene from the L. rhamno-
sus was also equally expressed in both types of lesions

(p > 0.05), but the wzb gene exhibited greater expression in
active lesions than in arrested lesions (p = 0.006) (Fig. 4).

4. Discussion

The current results corroborate those of previous studies,
which have revealed that L. rhamnosus, L. paracasei, and L.
casei group species are frequently isolated from dentine sites
in ECC (Švec et al., 2009; Caufield et al., 2015; Takahashi,
2015), as they are part of the metabolically active bacteria in

dentinal caries and probably related to caries progression
(Kneist et al., 2010). Caries progression is associated with
the increase in disease severity and the frequency of biofilm

acidification due to pH reduction (Obata et al., 2014;
Takahashi and Nyvad, 2016). Increased dental biofilm acidifi-
cation results in the proliferation of acidogenic and acidogenic/
aciduric strains (such as the L. casei group) in an adaptive

manner and the suppression of acid-sensitive species (Jiang
et al., 2014; Caufield et al., 2015).

In this research, a greater abundance of L. rhamnosus, L.

paracasei, and L. casei group species was observed in active
dentinal lesions than in arrested dentinal lesions; this was pre-
viously demonstrated in the case of the L. casei group (Neves

et al., 2017) when DNA analyses were performed.
These microorganisms ferment glucose, producing lactic

acid (Sharpe, 1979; Salvetti et al., 2012), which is the dominant

acid in active dentinal lesions, and causing the low pH levels
found (Hojo et al., 1994; Takahashi and Nyvad, 2016). By con-
trast, arrested dentinal lesions exhibit a weakly acidic pH,
which can be related to the lower quantities of L. paracasei,

L. rhamnosus, and L. casei group species in these lesions
(Shimada et al., 2015; Takahashi and Nyvad, 2016).

The use of probiotics strains, especially L. rhamnosus and

L. paracasei, has been identified as beneficial in maintaining
oral health, playing an important role as an antagonistic agent
for S. mutans growth (Twetman and Keller, 2012; Cagetti

et al., 2013; Seminario-Amez et al., 2017; Coqueiro et al.,
2018; Pahumunto et al., 2019). However, with the current con-
cept of caries being the result of a dysbiosis, the eradication of
a particular bacterial group, even one consisting of bacteria

that are considered pathogens, would not be meaningful
(Zaura and Twetman, 2019). In addition, clinical data are con-
sidered insufficient to demonstrate that such bacterial interfer-

ence can be effective in controlling dental caries (Twetman and
Keller, 2012; Cagetti et al., 2013; Seminario-Amez et al., 2017;
Coqueiro et al., 2018). The inefficacy of bacteriotherapy may

be due to the S. mutans associated with the caries rise; mean-
while, lactobacilli are opportunistic and are favored by the
acidic environment created at the beginning of the lesion

because they are more aciduric than S. mutans (Takahashi
and Nyvad, 2011). Thus, in vitro studies where these microor-
ganisms are grown together would seem to be an inappropriate
way of testing the probiotic effects of Lactobacillus in control-



Fig. 2 Proportion of L. casei group, L. paracasei and L. rhamnosus in relation to the total bacteria (TB). Data are expressed in bars

(means ± standard deviation). *Statistical difference (p < 0.05) between the groups according to Mann-Whitney test.

Fig. 3 The spaC and spxB from L. paracasei genes expression in active (n = 25) and arrested (n = 13) dentin caries lesions. Data are

expressed in bars (means ± standard deviation). *Statistical difference (p < 0.05) between the groups according to Mann-Whitney test.

Fig. 4 L. rhamnosus genes (wzb and spaE) expression in active (n = 25) and arrested (n = 13) dentin caries lesions. Data are expressed in

bars (means ± standard deviation). *Statistical difference (p < 0.05) between the groups according to Student t-test for wzb and Mann-

Whitney test for spaE.
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ling dental caries (Twetman and Keller, 2012), particularly in

dentinal caries.
It is worth highlighting that infections such as abscesses

related to L. paracasei and L. rhamnosus have been reported

(Salminen et al., 2004, Burns et al., 2007; Chan et al., 2010;
Sherid et al., 2016; Pararajasingam and Uwagwu, 2017;
Harding-Theobald and Maraj, 2018), albeit rarely, demon-

strating Lactobacillus as opportunistic pathogens.
The in vitro inhibitory activity presented by strains of L.

rhamnosus and L. paracasei in decreasing streptococci (S.
mutans and S. oralis) biofilm formation (Ciandrini et al.,
2017) may be related to the production and delivery of hydro-

gen peroxide (H2O2), which is an interspecific competition
mechanism in oral biofilms (Reis et al., 2012; Zhu et al.,
2014). In this study, the spxB gene was expressed in dentinal

lesions, but although it presented a numerical trend toward
greater expression in active lesions, no statistically significant
difference was observed between arrested and active dentinal

lesions. This might be as a result of the conditions for both
types of lesion, since this gene catalyzes the transformation
of pyruvate to acetyl phosphate, CO2, and H2O2 in aerobic
environments (Zotta et al., 2014; Zhu et al., 2014). Moreover,
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a recent study concluded that dental caries progression seems
to be related to Lactobacillus spp. strains that are not capable
of producing H2O2 and that the H2O2 released by Lactobacil-

lus strains acts antagonistically toward mutans streptococci
(Szkaradkiewicz-Karpinska et al., 2018). Expression of spxB
has been suggested to play an active role in the biofilm physi-

ology (Zotta et al., 2014), preventing the growth of other bac-
terial species by inhibiting DNA synthesis via H2O2.

The adhesion mechanism mediated by the spaC pilus in L.

paracasei and L. rhamnosus is the major binding factor to
mucus and collagen, stimulating biofilm formation for these
bacteria (Lebeer et al., 2012; Toh et al., 2013; Tripathi et al.,
2013; von Ossowski et al., 2013). Thus, the function of the

pilus is essentially to facilitate cell adhesion to the ‘‘first con-
tact” (von Ossowski et al., 2010; Rintahaka et al., 2014). The
spaC gene was equally expressed in active and arrested lesions,

suggesting that this surface component employs the same
mechanism of adhesion for both types of dentinal lesions (ar-
rested and active). No relationship can be suggested between

the spaC and spaE genes, which encode the protein pilin, in
Lactobacillus and the caries activity in dentinal lesions.

Although low values of wzb gene expression were pre-

sented, a higher wzb expression in active dentinal lesions than
in arrested dentinal lesions was recorded. It can be hypothe-
sized that the regulation of EPS biosynthesis (Lebeer et al.,
2007; Nadkarni et al., 2014), which is the function of this gene,

is more crucial in active lesions. This result was expected
because the presence of simpler biofilms is more associated
with caries arrestment processes (Cury and Tenuta, 2009;

Maltz et al., 2010). Furthermore, it is important to note that
inverse processes are related to active lesions, since caries pro-
gression is strongly associated with dental biofilm presence

(Wolff and Larson, 2009). Research using clinical isolates of
L. rhamnosus from dental pulp infection has shown that the
silencing of wzb expression resulted in the largest reduction

in biofilm formation and that the L. rhamnosus biofilm is
strongly modulated by environmental factors, such as low
pH (Lebeer et al., 2007; Lebeer et al., 2012; Nadkarni et al.,
2014), commonly found in active dentinal lesions (Hojo

et al., 1994).
An important limitation of this study was to distinguish the

L. paracasei from the L. casei species using the spaC and spxB

genes, since in silico comparisons revealed the alignment of
both species with these genes. However, although no dietary
data was collected, this study demonstrated that genes

described in probiotic strains (Lebeer et al., 2007; von
Ossowski et al., 2010; Rintahaka et al., 2014; Savo Sardaro
et al., 2016) are expressed in isolated clinical strains of L. para-
casei and L. rhamnosus. Thus, it is possible that microorgan-

isms from dairy/probiotic products can survive in the mouth
(Wolff and Larson, 2009) and eventually become associated
with caries progression.
5. Conclusion

The L. casei group and the L. paracasei and L. rhamnosus spe-

cies are part of the metabolically active community of the
dentinal caries of children with ECC and are related to caries
activity. The higher wzb gene expression in active lesions may

be associated with the higher activity of microorganisms pre-
sent in lesions with progressive caries processes.
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Seminario-Amez, M., López-López, J., Estrugo-Devesa, A., Ayuso-
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