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Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can 
cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cho-
lesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, 
and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are 
triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, 
it is important to understand how macrophages recognize crystals. However, it is unlikely 
that macrophages have evolutionally acquired receptors specific for crystals or recently 
emerged nanoparticles. Several recent studies have reported that some crystal particles 
are negatively charged and are recognized by scavenger receptor family members in 
a charge-dependent manner. Alternatively, a model for receptor-independent phago-
cytosis of crystals has also been proposed. This review focuses on the mechanisms by 
which macrophages recognize crystals and nanoparticles.
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iNTRODUCTiON

Phagocytosis of crystals such as silica, asbestos, monosodium urate (MSU), and hydroxyapatite by 
macrophages was initially observed by electron microscopy about 40 years ago (1–4). These early 
studies showed that upon phagocytosis, crystals are not digested but instead cause lysosomal dam-
age. Although the underlying mechanism was unclear, this process was referred to as “frustrated 
phagocytosis” and was implicated in the pathogenesis of inflammatory diseases such as fibrosis and 
cancer (5).

Recent studies have revealed that silica and asbestos induce IL-1β secretion via NLRP3 inflam-
masome activation in macrophages (6–8). Likewise, various crystals such as MSU, hydroxyapatite, 
cholesterol, and alum crystals, and nanomaterials such as TiO2 nanoparticles and carbon nanotubes 
(CNTs) have also been reported to induce NLRP3 inflammasome activation in macrophages  
(7, 9–12). The molecular mechanism for inflammasome activation has been extensively studied and 
is well summarized in several recent reviews (6, 13–15). Briefly, at least two signals are required 
for the activation of NLRP3 inflammasome. The first signal (signal 1) is mediated via pathogen-
associated molecular patterns, damage-associated molecular patterns (DAMPs), or cytokines 
that trigger nuclear factor-κB (NF-κB)-mediated upregulation of NLRP3 along with pro-IL-1β 
(Figure 1). The second signal (signal 2) stimulates the assembly of a complex of multiple proteins 
including NLRP3, ASC, and pro-caspase-1, resulting in the activation of caspase-1. Subsequently, 
active caspase-1 processes pro-IL-1β to mature IL-1β, which is then released into the extracellular 
environment through damaged membranes of dying macrophages (Figure 1).

Upon recognition of crystals, macrophage surface receptors transmit signal 1 and/or 2. It is also 
proposed that the receptor-independent recognition of crystals transmits signal 2. This review sum-
marizes and discusses the recent findings regarding the recognition of crystals and nanoparticles by 
macrophages.
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FigURe 1 | Particle-induced NLRP3 inflammasome activation and cell death. Signal 1 induces pro-IL-1β along with NLRP3 through the nuclear factor-kappa B 
(NF-κB) pathway. Signal 2 causes lysosomal damages and stimulates the assembly of a complex of multiple proteins including NLRP3, ASC, and procaspase-1, 
resulting in the formation of inflammasomes. Active caspase-1 processes pro-IL-1β and pro-gasdermin D to mature IL-1β and gasdermin D. Lysosomal damage 
results in the release of the lysosomal enzyme cathepsins, which may induce NLRP3 inflammasome-independent pyroptotic cell death. Receptor-interacting serine/
threonine kinase-mixed-lineage kinase domain-like protein (RIPK3-MLKL) pathway is involved in crystal-induced necroptosis in epithelial cells but not in 
macrophages.
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MACROPHAge SURFACe ReCePTORS

Macrophages express a wide variety of cell-surface receptors 
in order to recognize and internalize pathogenic particles such 
as bacteria and apoptotic cells (16–20). For instance, class A 
scavenger receptors such as SR-A1 (also known as MSR) and 
MARCO (proposed to be renamed as SR-A6) and class B scaven-
ger receptors such as SR-B1 and CD36 (proposed to be renamed 
as SR-B2) bind to various polyanionic particles such as bacteria 
and apoptotic cells (18, 21). Fc receptors such as FcγRIII and 
complement receptors (CRs) such as CR3 internalize IgG- and 
complement-opsonized particles, respectively (22, 23), while 
C-type lectins such as Dectin-1 (also called Clec7a), Mincle (also 
called Clec4e), and MICL (also called Clec12a) recognize fungi-, 
mycobacteria-, or dying host cell-associated molecules (17, 24).

Given that it is unlikely that macrophages have acquired 
the specific ability to recognize crystals and recently emerged 
nanoparticles through evolution, the abovementioned receptors 
and opsonins may be responsible for the recognition of such 
inorganic particles. A common feature of organic particles such 
as bacteria and apoptotic cells and inorganic particles such as 
MSU, silica, and titanium is that they have negatively charged 
surfaces (25, 26), which could be favored by class A and class B 
scavenger receptors. By contrast, while organic particles harbor 
various ligands (protein, lipid, etc.) on their surface, the surface of 
a crystal is remarkably uniform. Therefore, an alternative model 

for receptor-independent phagocytosis of crystals has also been 
proposed (27). The mechanisms underlying the recognition of 
each particle by macrophages are discussed below.

ReCOgNiTiON OF eXOgeNOUS 
CRYSTALS AND NANOMATeRiALS  
BY MACROPHAgeS

Silica (SiO2) and Titanium (TiO2) Particles
Silica, which comprises about 60% of the Earth’s crust, is a major 
component of sand and rocks and thus is contained in dust and 
air pollutants (28, 29). Therefore, it can be assumed that most 
organisms are exposed to crystalline silica (30, 31), and prolonged 
inhalation of large amounts of crystalline silica dust is known to 
cause lung fibrosis and cancer (8).

Compared with crystalline silica, amorphous silica is bio-
compatible and is contained in various foods and medicines 
(32). However, recent studies have shown that nanoparticles 
(diameter <100 nm), but not micro-sized particles, can trigger 
inflammation (32–34). Silica and titanium nanoparticles are 
the most frequently used nanomaterials (35), and titanium 
nanoparticles have also been reported to trigger inflammation 
(36, 37). Under physiological conditions, nanoparticles tend 
to aggregate irreversibly, resulting in particles of submicron or 
micrometer size in order to reduce their high surface energy 
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FigURe 2 | The recognition of crystals and nanoparticles on the macrophage surface. Macrophages recognize and internalize crystals and nanoparticles through 
cell-surface receptors and membrane cholesterol. Silica particles are recognized by SR-A1, MARCO, SR-B1, and CD36. Alum, poly(methyl methacrylate) (PMMA), 
and monosodium urate (MSU) crystals bind directly to membrane cholesterol to be internalized. MSU and cholesterol crystals activate complement pathways. 
Soluble oxidized low-density lipoprotein (oxLDL) is internalized by CD36 and then crystallized in phagosomes. P2X7R does not cause lysosomal damage. In addition 
to these, many unknown pathways of phagocytosis remain to be identified.
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(26, 38, 39). Nevertheless, their toxicity largely depends on their 
primary size and not on the secondary aggregate size (34, 40) 
with smaller particles being more toxic. However, the molecular 
mechanism underlying size-dependent toxicity remains largely 
unknown.

Class A scavenger receptors such as SR-A1 and MARCO 
are known to bind to silica and titanium particles (Figure  2) 
(41); however, given that SR-A1- and MARCO-deficient mice 
and macrophages still show inflammatory responses to these 
particles (42–44), it seems likely that additional receptor(s) may 
be involved. Using unbiased functional screening, our labora-
tory recently identified the class B scavenger receptor member 
1 (SR-B1) as a novel silica receptor (Figure 2) (26). In contrast 
to SR-A1 and MARCO, which bind to both silica and titanium 
particles (41), SR-B1 binds to silica but not to titanium particles 
(26). Moreover, SR-B1-deficient macrophages showed impaired 
internalization of silica and subsequent inflammasome activa-
tion (26). However, since SR-B1 binds to both crystalline and 
amorphous silica irrespective of particle size (26), the recogni-
tion by SR-B1 does not account for the size-dependent toxicity of 
silica particles. On the other hand, Nishijima et al. have recently 
shown that anti-SR-A1 mAb inhibits THP-1 cell-inflammatory 
responses to 50-nm silica particles, but not to other sizes of silica 
particles, suggesting that the recognition by SR-A1 may account 
for the size-dependent toxicity of silica (45).

The class B scavenger receptor CD36 also binds to silica 
particles (Figure 2) (26); however, CD36 is not involved in silica-
induced acute lung inflammation in mice (26, 46). This is prob-
ably due to the marginal expression of CD36 on resident alveolar 
macrophages (26, 47). Nevertheless, since CD36 is expressed 

on inflammatory macrophages infiltrating alveolar spaces (47), 
CD36 may contribute to the chronic lung inflammation.

Because scavenger receptors have only a short cytoplasmic 
tail (18), they probably work as tethering receptors rather than 
as signaling receptors following particle recognition. Therefore, 
co-receptors may also be required in order to internalize 
particles. Indeed, the ectopic expression of SR-A1 or SR-B1 on 
non-phagocytic cells enables these cells to bind, but not internal-
ize, to silica particles (26). It has been reported that a chemical 
inhibitor of Mer receptor tyrosine kinase (MerTK) inhibits 
IL-1β secretion from THP-1 cells, which use SR-A1 to recognize 
silica particles. This suggests that MerTK works as a co-receptor 
of the scavenger receptor (45). Therefore, it would be intriguing 
to address whether the co-expression of MerTK and the scav-
enger receptor impart cells with the ability to internalize silica 
particles.

Asbestos and CNTs
It is well known that the prolonged inhalation of large amounts 
of asbestos causes mesothelioma and lung cancer (48). Like silica, 
asbestos is also efficiently internalized by macrophages, resulting 
in NLRP3 inflammasome activation and cell death (49). Since 
asbestos is a silicate mineral, asbestos may also bind to scavenger 
receptors. Murthy et  al. reported that MARCO-deficient mice 
show less fibrosis following exposure to chrysotile asbestos (50). 
Although the authors did not show the direct binding of MARCO 
to asbestos, these data suggest that MARCO may contribute to 
asbestos-induced lung fibrosis.

Carbon nanotubes are a highly representative product of nano-
technology (51), and although the worldwide production of CNTs 
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is less than that of silica and titanium nanoparticles (35, 51), the 
production of CNTs has been increasing drastically year after year 
as they are applied to a wide variety of commercial products includ-
ing rechargeable batteries and automotive parts (51). Electron 
microscopy reveals that some CNTs have a needle-like structure 
reminiscent of asbestos (52, 53). Indeed, recent animal studies have 
shown that these CNTs have asbestos-like pathogenic behavior  
(9, 54). For instance, a seminal study by Poland et al. showed that 
the intraperitoneal injection with multi-walled CNTs (MWCNTs) 
as well as asbestos causes massive granulomatous inflammation 
in the diaphragms of wild-type mice (55). Furthermore, Takagi 
et al. showed that the intraperitoneal injection of MWCNT caused 
mesothelioma in p53+/– mice (56), while Palomaki et  al. found 
that CNTs and asbestos induce NLPR3 inflammasome activation 
in human macrophages (57). However, it remains unknown how 
macrophages recognize CNTs on their cell surface.

Alum Crystals
Alums (aluminum adjuvants) are widely used for vaccination in 
both humans and animals (58). It has been reported that upon 
being internalized, alum activates NLRP3 inflammasomes, which 
are essential for alum-induced acute inflammation (59, 60). 
However, recent studies have proposed that the adjuvant effect of 
alum is mediated via NLRP3-independent phagocyte cell death 
(Figure  1) (61, 62). This occurs when dying cells release their 
intracellular contents, some of which trigger innate immune 
responses. Specifically, alum-induced Th2 responses have been 
reported to be mediated via host DNA and uric acid (61, 62). On 
the other hand, it has been reported that NLRP3 is expressed in 
the nuclei of Th2 cells and works as a transcriptional regulator of 
Th2 differentiation (63). Thus, the requirement of NLRP3 for Th2 
responses remains controversial.

Shi and colleagues have reported that the phagocytosis of  
alum as well as MSU crystals (discussed below) is not mediated by 
cell-surface receptors (64, 65). By using atomic force microscopy, 
they showed that alum directly binds to membrane lipids, and 
this lipid ligation activates Syk and PI3K (Figure 2) (64, 65).

In addition to the direct recognition of crystals and nano-
particles by macrophage receptors and membrane cholesterol, 
these particles may also be opsonized and recognized indirectly 
by macrophages. Indeed, nanoparticles are absorbed by various 
plasma proteins called the protein corona (66–68). For instance, 
it has been reported that albumin and complement bind to silica 
nanoparticles (69), although it remains unknown whether the 
protein corona contributes to phagocytosis. Some in vitro studies 
have shown that the protein corona does not enhance but rather 
suppresses the phagocytosis of nanoparticles by macrophages 
(70, 71). As discussed below, endogenous crystals such as MSU 
and cholesterol activate complement pathways.

ReCOgNiTiON OF eNDOgeNOUS 
CRYSTALS BY MACROPHAgeS

MSU Crystals
Dying cells release uric acid, and these crystals trigger inflam-
mation (72). In addition, the saturation of uric acid in body 

fluids results in the formation of MSU crystals, which trigger 
macrophage NLRP3 inflammasome activation and are associ-
ated with the pathogenesis of gout (10, 73). Early studies reported 
that MSU crystals activate complement pathways (74, 75), and 
this has been confirmed by a recent study which showed that 
MSU and cholesterol crystals (discussed below), but not silica 
or alum, activate complement pathways (76). Although MSU-
activated C5a binds to C5aR, a G protein-coupled receptor 
(Figure 2), to activate signal 1 (Figure 1) in human monocytes 
(76), C5aR was not found to contribute to the phagocytosis of 
MSU (76).

FcγRIII (CD16) has been reported to bind to MSU directly, 
resulting in the activation of the Syk pathway in human neutro-
phils (Figure 2) (77). FcγRIII associates with the FcRγ chain, and 
this receptor complex is a well-characterized phagocytic receptor 
for IgG-opsonized particles (22); however, the internalization of 
MSU by FcγRIII has not been demonstrated. Although we and 
others have observed that MSU crystals have negatively charged 
surfaces (26, 27), we failed to observe the binding of MSU crystals 
to scavenger receptors, which can bind to polyanionic particles 
(26). These results suggest that scavenger receptors may recognize 
not only surface charges but also shapes and/or substances of 
particles. Phagocytic receptors for MSU crystals remain to be 
identified.

Shi and colleagues proposed that MSU crystals bind directly 
to plasma membrane cholesterols, a driving force for their 
internalization (Figure  2) (65). This group also proposed that 
the receptor-independent model can be applied for alum (64) 
and biomaterial microspheres of poly(methyl methacrylate) 
(Figure 2) (78). While this is an attractive model for understand-
ing the recognition of crystals and nanoparticles with uniform 
surfaces by phagocytes, it remains unknown why these particles 
preferentially bind to phagocytes when cholesterol is present in 
the membrane of all cell types.

Clec12a (also called MICL, DCAL2, and CLL-1), a C-type 
lectin receptor, has been recently reported to recognize MSU, 
but not other particles such as polystyrene, silica, or zymosan 
(Figure  2) (79). Clec12a has an ITIM in its cytoplasmic 
domain, and the activation of this receptor has been shown to 
inhibit Syk signaling. Moreover, Clec12a-deficient mice showed 
enhanced inflammation in response to MSU (79), although it 
remains unknown whether Clec12a suppresses phagocytosis  
of MSU.

A recent study has shown that soluble uric acid also triggers 
NLRP3 inflammasome activation, although the authors do not 
exclude the possibility that this activation could be caused by 
undetectable microcrystals of uric acid (80). It is also possible that 
internalized soluble uric acid is crystallized in phagocytes just like 
soluble oxidized LDL as described below (81) (Figure 2). Either 
way, this finding may propose that uric acid released from dying 
cells or hyperuricemia directly causes inflammation without 
crystal deposition.

Cholesterol Crystals
Cholesterol accumulation leads to the formation of crystals, 
which have been shown to be engulfed by macrophages in 
atherosclerotic sinus lesions (12), leading to pro-inflammatory 
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responses through NLRP3 inflammasome activation (10, 82). 
In addition, early studies have shown that cholesterol crystals 
as well as MSU crystals activate complement pathways (83, 
84). Recently, Samstad et  al. showed that cholesterol crystals 
activate the C5a and the C5aR pathways leading to the upregu-
lation of CR3 (CD11b and CD18 complexes) (Figure  2) (85). 
Mechanistically, C5aR, a G-protein-coupled receptor, activates 
ERK and NF-κB pathways (signal 1) (86). These pathways lead 
to the induction of the expression of CR3, a phagocytic receptor 
for iC3b-tagged particles (19), which contributes to the phago-
cytosis of cholesterol crystals (signal 2) (85). Indeed, this group 
showed that the inhibition of C5 or C3 reduces the phagocytosis 
of cholesterol crystals by human monocytes (85, 87).

The human, but not mouse, C-type lectin Mincle (also called 
Clec4e) has been shown to have a cholesterol recognition amino 
acid consensus (CRAC) motif in its extracellular domain (88). 
Through this CRAC motif, human Mincle binds to cholesterol 
crystals, resulting in the activation of pro-inflammatory signals 
via the associated FcRγ chain (Figure  2) (88). Although the 
FcRγ chain is able to mediate a phagocytic signal (22), it remains 
unknown whether human Mincle is involved in the phagocytosis 
of cholesterol crystals.

In addition to cholesterol crystals, soluble oxidized low-
density lipoprotein (oxLDL) is internalized by macrophages, 
and the crystals are then nucleated, resulting in the lysosomal 
disruption and activation of the NLRP3 inflammasome (81, 82). 
CD36 is a receptor for oxLDL and is essential for both signal 1 
(NF-κB activation in conjunction with TLR4 and -6) and signal 
2 (internalization of oxLDL), resulting in NLRP3 inflammasome 
activation (Figures 1 and 2) (81, 89).

Hydroxyapatite Crystals
Hydroxyapatite, a basic calcium phosphate crystal, is a major 
component of bones and teeth. The ectopic deposition of these 
crystals is predominantly observed in osteoarthritis (OA) 
joints and is implicated in the pathogenesis of OA (10, 90). 
In addition, synthetic hydroxyapatite crystals are the widely 
used biomaterials, although it has been shown that these 
crystals can trigger local inflammation upon being released 
from implanted prosthetics (91). Recent studies have reported 
that hydroxyapatite crystals are internalized by macrophages 
through unknown mechanisms where they trigger NLRP3 
inflammasome activation (Figure  2) (92, 93). NLRP3 is 
essential for crystal-induced IL-1β secretion in vitro; however, 
the requirement for NLRP3 is only partial in mouse models 
of arthritis (92, 94) as shown in NLRP3-deficient mice where 
various crystals such as silica and alum still induce mac-
rophage cell death and inflammation (discussed below). Thus, 
hydroxyapatite crystal-induced arthritis may be mediated via 
NLRP3-independent macrophage death.

PARTiCLe-iNDUCeD CeLL DeATH AND 
DiSeASeS

Crystals cause lysosomal damages, resulting in the release of 
the lysosomal enzyme cathepsins to cytosol (95), which is the 

upstream of NLRP3 inflammasome activation (Figure 1). Rock 
and colleagues have recently shown that multiple cathepsins 
including cathepsins b, l, x, and s contribute to NLRP3- and 
caspase-1-independent cell death (Figure  1) (96). However, 
the downstream mechanisms of action of the cathepsins 
remain unknown. It would be intriguing to address whether 
cathepsins directly cause membrane damage or activate pore-
forming proteins such as gasdermin D (97–99). It has also been 
reported that receptor-interacting serine/threonine kinase-3 
and mixed-lineage kinase domain-like protein-mediated 
necroptosis pathways (100) are involved in crystal-induced cell 
death in epithelial cells (101) but not in macrophages (Figure 1) 
(96, 102).

Dying cells release DAMPs such as uric acid and ATP (72). 
As mentioned earlier, uric acid induces inflammation (80). ATP, 
which is released from pannexin-1, binds to P2X7 receptor to 
induce cell death and NLRP3 inflammasome activation without 
causing lysosomal damage (Figure  2) (103). Besides DAMPs, 
dying macrophages release internalized crystals, which could 
induce cell death of the neighboring macrophages. This sequen-
tial cell death may be more crucial than NLRP3 inflammasome 
activation in the pathogenesis of crystal-induced chronic 
inflammation and fibrosis such as arthritis (92, 94), silicosis 
(104), and asbestosis (105) as these diseases develop in NLRP3-
deficient mice.

CONCLUSiON

Crystals such as silica, asbestos, and MSU cause inflammatory 
diseases through macrophage activation and cell death. As 
discussed here, macrophages have been found to recognize 
crystals via cell-surface receptors and/or membrane choles-
terol, although these pathways account for only a fraction of 
crystal phagocytosis. Therefore, many unknown pathways of 
phagocytosis remain to be identified. While phagocytosis and 
subsequent lysosomal damage appear to be essential for the 
pathogenesis of particle-induced-inflammatory diseases, it 
remains unknown how the physicochemical properties (element,  
size, etc.) of particles impact lysosomal damage. A better under-
standing of the molecular mechanisms underlying particle- 
induced inflammation will provide opportunities not only 
for the development of therapeutic approaches for incurable 
silicosis and asbestosis but also for the development of safer 
nanomaterials in the future.
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