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ABSTRACT: Sumatranus lignans (SL) isolated from Cleistanthus
sumatranus have demonstrated bioactivities, e.g., they were shown
to exhibit immunosuppressive properties in previous research.
Their structure suggests potential antioxidant activity that has not
attracted any attention thus far. Consistently, a comprehensive
analysis of the antioxidant activity of these compounds is highly
desirable with the view of prospective medical applications. In this
work, the mechanism and kinetics of the antiradical properties of
SL against hydroperoxyl radicals were studied by using calculations
based on density functional theory (DFT). In the lipid medium, it
was discovered that SL reacted with HOO• through the formal
hydrogen transfer mechanism with a rate constant of 101−105 M−1

s−1, whereas in aqueous media, the activity primarily occurred
through the sequential proton loss electron transfer mechanism with rate constants of 102−108 M−1 s−1. In both lipidic and aqueous
environments, the antiradical activity of compounds 6 and 7 exceeds that of resveratrol, ascorbic acid, and Trolox. These substances
are therefore predicted to be good radical scavengers in physiological environments.

1. INTRODUCTION
Cleistanthus sumatranus is an evergreen tree species that thrives
in South China and Southeast Asia.1 The Cleistanthus genus is
rich in beneficial phytochemicals such as phenolic compounds,
lignans, alkaloid glucosides, and terpenoids, delivering a vast
array of bioactivities such as anticancer and antioxidant
properties.2−7 Consequently, the genus has long attracted the
interest of medicinal chemists and pharmacologists.8,9

Oxidative stress arises as a result of the disparity between the
generation and use of in biological systems.10 Free radicals,
specifically reactive oxygen species (i.e., RO RO•(HO•),
ROO•(HOO•), O2•−, etc.) and reactive nitrogen species
(NO, NO2, etc.), are implicated as the main drivers of
oxidative stress. These entities have a high degree of reactivity
and possess the capacity to initiate cascading reactions, hence
facilitating the propagation of molecular harm.10,11 The HO•

radical has the highest reactivity and electrophilicity among
reactive oxygen species.12 HO• is implicated as the primary
source of oxidative damage to DNA and the majority of tissue
damage resulting from exposure to ionizing radiation.13,14

Nevertheless, this radical exhibits comparable reaction rates to
a diverse range of molecules, often approaching or reaching the
diffusion limit.11 The HOO• radical is the most fundamental
among the biologically significant ROO• (peroxy) radicals.
Efficient elimination of these radicals is a straightforward way
of mitigating oxidative stress inside biological systems.15 The

HOO• radical, possessing intermediate reactivity and serving
as a prominent target for antioxidant research,16 has been
extensively employed as a standard radical for simulating
antioxidant efficacy in both lipid and polar media.11,17−19

A recent work reported on the isolation and evaluation of
the biological activity of 10 sumatranus lignans (SL, 1−10)
isolated from C. sumatranus (Figure 1).2 According to
immunosuppressive tests, compounds 1−3, 6, 7, and 9 had
inhibitory effects on the growth of T cells stimulated by ConA
with IC50 values of 10.1−56.2 μM and the growth of B cells
stimulated by LPS with IC50 values ranging from 2.7 to 32.8
μM. The proliferation of B lymphocytes was moderately
inhibited by compounds 3 and 9, with IC50 values of 2.7 and
3.9 μM, respectively. These compounds would have potent
antioxidant properties as members of the lignan family;20−22

however, their radical scavenging properties have not been
investigated yet.
The predictive ability of computational techniques has

significantly increased along with enormous advancements in
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computing power in recent years. In silico analysis became a
popular approach for evaluating the potential antioxidant
properties of the suspected compounds. Impressive advance-
ments in computing power have also accompanied in silico
research. In comparison to experimental methods, computa-
tional procedures offer knowledge that is reasonably accurate
while also requiring less time and money.11,17,19,23−26 Due to
the paucity of standard samples, the experimental evaluation of
the antioxidant activity of novel natural products, i.e., SL, is a
difficult task. However, computational research could effec-
tively address this issue. Thus, the purpose of this study is to
investigate, using kinetic and thermodynamic models, the
impact of solvent environments and different molecular
structures on the antioxidant properties and resistance to
oxidation caused by the HOO• radicals of SL.

2. RESULTS AND DISCUSSION
2.1. HOO• Antiradical Activity of SL in the Gas Phase.

2.1.1. Thermodynamic Evaluation. The first step in
determining the antioxidant activity was to determine the
thermochemical properties (bond dissociation enthalpy
(BDE), ionization energy (IE) and proton affinity (PA)) that
characterize affinity for the three primary mechanisms of
action: formal hydrogen transfer (FHT), sequential electron
transfer proton transfer (SETPT), and sequential proton loss
electron transfer (SPLET), respectively.23,27−30 The thermo-
chemical parameters of all potential X−H (X = C, O) bonds in
the gas phase have been calculated and are given in Table 1.
The BDE (X−H) values range from 77.4 to 111.9 kcal/mol,

as shown in Table 1. The 9-C7′−H bond has the lowest BDE
(C−H) bond energy with a value of 81.8 kcal/mol, while the
5-O2′−H bond has the lowest O−H bond energy, with a value

of 77.4 kcal/mol. In the gas phase, the calculated PA and IE
values ranged from 315.1 to 346.8 kcal/mol and 117.0 to 230.6
kcal/mol, respectively. Compound 4 possesses the lowest IE
value, while the O2′−H bond in compound 7 possesses the
lowest PA value. However, the BDEs are significantly lower
than those of IE and PA; therefore, the FHT reaction is the
primary radical scavenging pathway of SL in the gas phase.
To determine which antioxidant pathway the substances

follow, the free energy (ΔGo) of HOO• quenching of the
phenolic compounds after each mechanism was measured and
is recorded in Table 1. Only the FHT mechanism generates
negative ΔGo values (or ΔGo ≈ 0), while neither the SETPT
nor SPLET mechanisms are spontaneous (ΔGo = 133.5−197.5
kcal/mol). Hence, the FHT pathway is recognized as the
predominant mechanism for neutral SL radical capture in a
vacuum environment. Thus, the kinetics should be investigated
following this mechanism.

2.1.2. Kinetic Study. In this section, the hydrogen transfer of
the O−H and C−H bonds was the primary focus of the kinetic
investigation. Figures 2, 3, and Table 2, and depict the
potential energy surfaces (PES), kinetic parameters, and
optimized TS structures in the gas phase, respectively.
According to PES analysis, the kinetic analysis of reactions

typically begins with the consideration of reaction complexes
(RCs) that exhibit greater stability than the reactants. These
complexes have H-abstraction energies ranging from −12.0 to
−3.7 kcal/mol for X−H (X = O, C) bonds. In the FHT
mechanism, the reactions can proceed from the RCs to the
transition states (TS). Energy barriers for TSs are between 8.7
and 19.7 kcal/mol, which are higher than those for RCs. Before
forming products (P), these reactions produce postcomplexes
(PCs). The HOO• antiradical of the 5-O2′−H bond possesses

Figure 1. Molecular structure and atomic numbering of SL.
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the lowest measured TS energy (0.6 kcal/mol), which
corresponds to the lowest predicted BDE value for O−H
bonds (77.4 kcal/mol).
As per Table 2, the rate constants in the gas phase for SL +

HOO• reactions range from 8.19 × 101 to 2.10 × 107 M−1s−1,
and their ΔG‡ values are between 11.4 and 21.2 kcal/mol. The
tunneling corrections (κ) range between 24.1 and 523.3 for the
HOO• radical scavenging. These values, therefore, have a
significant effect on the rate constants. Compounds 5, 6, 7, and
8 exhibited good HOO• radical scavenging activity with a rate
constant of kEck = 106−107 M−1 s−1, while compound 9
exhibited the lowest HOO• antiradical trapping with kEck =
8.19 × 101 M−1 s−1. Compounds 1, 2, 3, 4, and 10 exhibited a
moderate level of hydroperoxyl antiradical activity, as
evidenced by their rate constants being within the range of
103 to 105 M−1 s−1. The antiradical activity of SL was
determined by the H-abstraction of the O−H bonds in the
majority of the studied compounds, with the exception of
compounds 3 and 4. In these compounds, the H-abstraction of
the C7′−H bond accounted for between 42.7 and 49.8% of the
overall rate constants. It should be noted that the HOO•

radical scavenging activity of compounds 5, 7, and 8 in the gas

phase is comparable to that of Trolox (kECk = 1.87 × 105 M−1

s−1)19 the reference antioxidant.
2.2. HOO• Antiradical Activity of SL in Physiological

Environments. 2.2.1. Acid−Base Equilibrium. In polar
environments such as water, the radical trapping activity of
neutral acidic forms is frequently overshadowed by their ionic
states.30,31 In order to determine the most probable radical
scavenging mechanisms, the protonation of SL water at pH
7.40 was initially investigated. Due to the fact that the structure
of SL permits protonation at the O−H bonds with the lowest
Gibbs free energy values (Table S2, SI), the pKa values of SL
were derived from the literature32 and are shown in Table 3.
The calculated values for pKa range from 8.22 to 10.92. The
range of values for f(HA) is between 0.869 and 1.000, while
the range for f(A−) is between 0.000 and 0.131. Therefore, in
7.4 pH water, SLs exist in both the ionic and neutral states.
Thus, in water at physiological pH, these two states were
examined in further investigation, whereas in nonpolar media
such as pentyl ethanoate solvent, the neutral state should be
used to compute the kinetics.

2.2.2. Kinetic Study. The kinetics of SL + HOO• reactions
in aqueous media were determined for all states by employing

Table 1. BDE, PA, and IE Values (in kcal/mol) and the ΔGo (in kcal/mol) of the SL + HOO• Reactions via the Single Electron
Transfer (SET), Proton Loss (PL), and FHT Processes

FHT XH + HOO• → X• + HOOH PL XH + HOO• → X− + HOOH•+
SET XH + HOO• →
XH•+ + HOO−

comp. positions BDE ΔGo positions PA ΔGo IE ΔGo

1 O2−H 83.7 −3.3 O2−H 338.5 188.3 176.2 144.4
O4′−H 88.9 2.3 O4′−H 342.5 193.7
C7−H 92.2 5.3 C7−H
C7′−H 85.6 −1.9 C7′−H

2 O2−H 83.5 −3.2 O2−H 337.8 187.9 177.1 145.2
C7−H 95.6 9.3 C7−H
C7′−H 86.9 0.7 C7′−H

3 O4−H 86.9 1.6 O4−H 344.8 195.7 230.6 145.9
C7−H 88.2 2.8 C7−H
C7′−H 83.1 −3.1 C7′−H

4 O4−H 111.9 26.7 O4−H 345.1 195.8 117.0 145.8
O4′−H 86.1 0.77 O4′−H 345.4 196.2
C7−H 88.2 2.8 C7−H
C7′−H 82.8 −3.2 C7′−H

5 O2−H 88.7 1.9 O2−H 341.6 192.0 172.3 135.2
O2′−H 77.4 −8.1 O2′−H
C7−H 96.0 9.9 C7−H
C7′−H 97.9 11.5 C7′−H

6 O2−H 88.2 1.3 O2−H 330.1 181.5 175.1 133.5
O2′−H 78.5 −7.1 O2′−H 315.1 167.6
C7−H 97.1 10.6 C7−H
C7′−H 91.8 6.1 C7′−H

7 O2′−H 78.3 −7.4 O2′−H 317.7 170.2 185.3 146.1
C7−H 89.0 3.4 C7−H
C7′−H 95.2 8.6 C7′−H

8 O2′−H 87.1 0.2 O2′−H 330.1 181.5 221.1 142.4
O4′−H 86.9 1.6 O4′−H 346.8 197.5
C7−H 87.7 2.1 C7−H
C7′−H 87.9 2.6 C7′−H

9 C7−H 89.5 4.1 C7−H 188.2 153.1
C7′−H 81.8 −1.0 C7′−H

10 O4′−H 87.4 2.2 O4′−H 341.4 192.5 200.1 157.1
C7−H 87.7 2.6 C7−H
C7′−H 82.3 −0.4 C7′−H
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the chosen FHT reaction mechanism for neutral states and the
SET reaction mechanism for anion states, consistent with prior
investigations on phenolic compounds.18 The thermodynamic

analysis in the studied solvents (Table S3, SI) also confirmed
that the HOO• radical scavenging activity of the neutral states
only occurred following the FHT reactions at similar positions

Figure 2. Potential energy surfaces of the SL + HOO• reactions.

Figure 3. Hydrogen transfer transition states.
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in the gas phase. Thus, in the studied media, the overall rate
constants (koverall) were determined according to eqs 1 and 2,
and the overall rate constants (koverall) were determined, while
the rate constant containing the molar fraction (kf) was derived
using eq 3. Table 4 displays the outcomes.
In pentyl ethanoate solvent

k k (FHT neutral)overall app= (1)

In the aqueous solution

k k k(SET anion) (FHT neutral)overall f f= + (2)

k k ff app= · (3)

The compounds 1, 2, 5, 6, 7, and 8 revealed significant
hydroperoxyl radical scavenging action in lipid media, with
koverall = 104−105 M−1 s−1, as shown in Table 4. These
compounds’ antioxidant activity is comparable to that of well-
known natural substances including Trolox (k = 3.40 × 103
M−1 s−1),33 resveratrol (k = 1.31 × 104 M−1 s−1),34 and
ascorbic acid (k = 5.71 × 103 M−1 s−1).17 However, in the lipid
medium, compounds 3, 4, 9, and 10 had only weak
hydroperoxyl scavenging properties. According to the calcu-
lated results, the HOO• radical trapping ability of SLs in the
lipid environment can be ranked as follows: 8 ≈ 1 ≈ 2 ≈ 5 ≈ 6
≈ 7 > 3 > 4 > 9 ≈ 10.
The SPLET mechanism defined the HOO• radical

scavenging activity of SL in the aqueous solution with the
ΔG‡ = 2.0−4.5 kcal/mol and kapp(SET) ≈ kD, except for
compounds 5 and 9, for which the anion states have not been

presented at pH 7.40. Consequently, the HOO• radical
trapping ability of compounds 5 and 9 in aqueous solution
was determined by the FHT reaction with the lowest koverall
values of 6.38 × 104 and 1.60 × 102 M−1 s−1, respectively,
whereas the other compounds displayed exceptional HOO•

trapping activity with koverall = 106−108 M−1 s−1. Compounds 6
and 7 had the greatest activity, with koverall values of 2.23 × 108
and 3.02 × 108 M−1 s−1, respectively. This is about 10 times
higher than those of 1, 2, 3, 4, 8, and 10. The radical trapping
activity of SL against HOO• in aqueous solution is ranked as
follows: 6 ≈ 7 > 1, 2, 3, 4, 8, and 10 > 5 > 9. In water at the
physiological pH, the HOO• trapping activity of SLs is about 1
× 103 faster than that in the nonpolar solvent. In water at
physiological pH, compounds 6 and 7 have a higher HOO•

radical scavenging activity than resveratrol (k = 5.62 × 107 M−1

s−1),34 ascorbic acid (k = 9.97 × 107 M−1 s−1),17 and Trolox (k
= 8.96 × 104 M−1 s−1),33 whereas compounds 1, 2, 3, 4, 8, and
10 are comparable to the references. Thus, the lignans 6, 7,
and 8 are promising natural antioxidants in the physiological
environment.

3. CONCLUSIONS
Using kinetic and thermodynamic models, 10 lignans extracted
from C. sumatranus were analyzed for their ability to scavenge
hydroperoxyl radicals in physiological environments. In
nonpolar media, the majority of SL activity is mediated by
the FHT reaction, whereas the SET mechanism is preferred in
polar media. While the activity rate constants in the aqueous
solution were around 102−108 M−1 s−1, in the lipid medium,
SL could react with HOO• via the FHT mechanism with a rate
constant of 101−105 M−1 s−1. According to the calculated data,
the antiradical activity of compounds 6 and 7 is greater than
those of resveratrol, ascorbic acid, and Trolox in both lipidic
and aqueous environments. In the physiological environment,
these substances may therefore function as potent radical
scavengers.

4. COMPUTATIONAL DETAILS
The thermochemical features of the compounds (BDE, PA,
and IE) were investigated at the M06−2X/6−311++G(d,p)
level of theory. Additionally, kinetic parameters, such as
activation energies (ΔG‡) in kcal/mol, tunneling corrections
(κ), and rate constants (k), were found. The compounds were

Table 2. Calculated ΔG≠ (kcal/mol), Tunneling Corrections (κ), kEck, and koverall (M−1 s−1) for the Reactions between SL and
HOO• Radicals

comp. positions ΔG‡ κ kEck koverall Γ
1 O2−H 14.3 71.5 3.47 × 105 3.49 × 105 99.5

C7′−H 18.1 241.3 1.90 × 103 0.5
2 O2−H 14.1 64.6 4.38 × 105 4.38 × 105 100.0
3 O4−H 16.9 180.1 1.04 × 104 1.82 × 104 57.3

C7′−H 17.5 326.1 7.75 × 103 42.7
4 O4′−H 16.6 123.7 1.23 × 104 2.45 × 104 50.2

C7′−H 17.2 308.5 1.22 × 104 49.8
5 O2′−H 11.4 28.9 2.10 × 107 2.10 × 107 100.0
6 O2′−H 11.9 24.1 6.91 × 106 6.91 × 106 100.0
7 O2′−H 12.0 41.0 1.07 × 107 1.07 × 107 100.0
8 O2′−H 12.9 273.5 1.55 × 107 1.55 × 107 100.0
9 C7′−H 20.1 301.2 8.19 × 101 8.19 × 101 100.0

10 O4′−H 18.0 155.0 1.48 × 103 1.50 × 103 98.5
C7′−H 21.2 523.3 2.28 × 101 1.5

koverall = ΣkEck

Table 3. Acid Dissociation Equilibrium and Molar Fractions
( f) Values of SL at pH = 7.4

comp. positions pKa f(HA) f(A−)

1 O2−H 9.62 0.994 0.006
2 O2−H 9.55 0.993 0.007
3 O4−H 9.87 0.997 0.003
4 O4′−H 9.84 0.996 0.004
5 O2−H 10.92 1.000 0.000
6 O2′−H 8.41 0.911 0.089
7 O2′−H 8.22 0.869 0.131
8 O4′−H 9.81 0.996 0.004

10 O4′−H 9.87 0.997 0.003
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detected in the gaseous phase within the physiological
environment, and the lipid medium was observed to contain
pentyl ethanoate. Upon comparing this method to other more
intricate procedures, such as G3(MP2)-RAD, as well as
experimental data, it has been ascertained that this method
exhibits a considerable level of accuracy in the calculation of
kinetic and thermodynamic parameters, but with modest levels
of error.11,24,31,35,36

The BDE, PA, and IE values were computed as follows19,37

H H H H HSLBDE (SL ) ( ) ( )= +• • (4)

H H H H HSLPA (SL ) ( ) ( )= + + (5)

H H H H HSL SLIE ( ) (e ) ( )= ++• (6)

The enthalpies of the hydrogen atom, proton, neutral
molecule, anion, radical, and cation radical are denoted as
H(H•), H(H+), H(SL−H), H(SL−), H(SL•), and H(SL−
H+•), respectively.
The kinetic calculations were conducted using the method-

ology for the quantum mechanics-based test for overall free
radical scavenging activity (QM-ORSA), as indicated by the
low error rates (kcalc/kexp ratio = 0.3−2.9).17,30,38,39 The
aforementioned assay has been widely employed to assess the

radical scavenging activity of antioxidants.11,17,24,38,40 The rate
constant (k) was determined through the application of the
conventional transition state theory (TST) using a 1 M
standard state.41−45 Further information and specific calcu-
lations may be found in Table S1 in the Supporting
Information (SI).

k k
k T

h
G RTe ( )/B=

(7)

In the given context, kB and h represent the Boltzmann and
Planck constants, respectively. ΔG‡ denotes the Gibbs free
energy of activation for the reaction under investigation, while
σ represents the reaction symmetry number, which quantifies
the degeneracy of the reaction pathway.46,47 The tunneling
adjustments, which were calculated based on the Eckart
barrier,48 are taken into consideration by the parameter κ.
The examination of species with numerous conformers

included the conformer that possessed the lowest electronic
energy. The distinguishing characteristic of all transition states
was the existence of a solitary imaginary frequency. To
guarantee proper linkage between each transition state and the
precomplex and postcomplex, intrinsic coordinate calculations
(IRCs) were performed. Computations were conducted

Table 4. Calculated ΔG≠ (kcal/mol), Tunneling Corrections (κ), Rate Constants (kapp, kf, koverall, M−1 s−1), and Branching
Ratios (Γ, %) at 298.15 K for the SL + HOO• Reaction in Water and Pentyl Ethanoate Solvents

pentyl ethanoate water

comp. mechanisms ΔG‡ κ kapp ΔG‡ κ kapp f kf Γ
1 SET O2 2.3 18.8a 7.80 × 109 0.006 4.68 × 107 86.8

FHT O2 14.4 77.9 1.30 × 104 12.5 1661.2 7.18 × 106 0.996 7.15 × 106 13.2
koverall 1.30 × 104 5.39 × 107

2 SET O2 2.3 18.5a 7.80 × 109 0.007 5.46 × 107 89.9
FHT O2 14.4 72.2 1.16 × 104 12.7 2109.5 6.18 × 106 0.993 6.14 × 106 10.1
koverall 1.16 × 104 6.07 × 107

3 SET O4 3.1 15.4a 6.60 × 109 0.003 1.98 × 107 99.9
FHT O4 16.3 212.6 1.42 × 103 15.7 1344.6 2.71 × 104 0.997 2.70 × 104 0.1
FHT C7′ 18.8 207.6 2.04 × 101 18.3 97.4 2.17 × 101 0.997 2.16 × 101 0.0
koverall 1.44 × 103 1.98 × 107

4 SET O4′ 2.0 16.9a 7.70 × 109 0.004 3.08 × 107 99.2
FHT O4′ 16.2 124.2 9.65 × 102 14.5 1898.3 2.59 × 105 0.996 2.58 × 105 0.8
FHT C7′ 18.8 217.0 2.24 × 101 17.5 75.9 7.03 × 101 0.996 7.00 × 101 0.0
koverall 9.87 × 102 3.11 × 107

5 SET O2 2.1 18.3a 8.00 × 109 0.000 0.0 0.0
FHT O2′ 12.9 29.6 6.24 × 104 14.2 281.0 6.38 × 104 1.000 6.38 × 104 100.0
koverall 6.24 × 104 6.38 × 104

6 SET O2′ 4.4 21.1a 2.50 × 109 0.089 2.23 × 108 99.9
FHT O2′ 13.0 29.1 5.18 × 104 13.4 281.2 2.70 × 105 0.911 2.46 × 105 0.1
koverall 5.18 × 104 2.23 × 108

7 SET O2′ 4.5 20.4a 2.30 × 109 0.131 3.01 × 108 99.9
FHT O2′ 13.6 35.1 2.44 × 104 13.7 623.8 3.56 × 105 0.869 3.09 × 105 0.1
koverall 2.44 × 104 3.02 × 108

8 SET O2′ 3.4 16.2a 5.90 × 109 0.004 2.36 × 107 96.4
FHT O2′ 13.5 165.4 1.32 × 105 13.6 1253.0 8.88 × 105 0.996 8.84 × 105 3.6
koverall 1.32 × 105 2.45 × 107

9 SET
FHT C7′ 21.5 323.2 3.48 × 10−1 18.6 1170.0 1.60 × 102 1.000 1.60 × 102 100.0
koverall 3.48 × 10−1 1.60 × 102

10 SET O4′ 3.9 16.1a 4.30 × 109 0.003 1.29 × 107 100.0
FHT O4′ 18.0 177.6 7.36 × 101 16.7 863.5 2.89 × 103 0.997 2.88 × 103 0.0
koverall 7.36 × 101 1.29 × 107

aλ (kcal/mol); kf = f.kapp; Γ = kf.100/koverall.
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utilizing the Gaussian 16 suite of programs49 and the Eyringpy
software, depending on the specific case.50,51
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