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Abstract

An obstacle to validating and benchmarking methods for genome analysis is that there are

few reference datasets available for which the “ground truth” about the mutational landscape

of the sample genome is known and fully validated. Additionally, the free and public avail-

ability of real human genome datasets is incompatible with the preservation of donor pri-

vacy. In order to better analyze and understand genomic data, we need test datasets that

model all variants, reflecting known biology as well as sequencing artifacts. Read simulators

can fulfill this requirement, but are often criticized for limited resemblance to true data and

overall inflexibility. We present NEAT (NExt-generation sequencing Analysis Toolkit), a set

of tools that not only includes an easy-to-use read simulator, but also scripts to facilitate vari-

ant comparison and tool evaluation. NEAT has a wide variety of tunable parameters which

can be set manually on the default model or parameterized using real datasets. The soft-

ware is freely available at github.com/zstephens/neat-genreads.

Introduction

The use of high-throughput sequencing technologies for analyzing genomes has led to an

unprecedented increase in the computational complexity of genomic data analysis. In medi-

cine, for example, routine analysis of genomes for individualized clinical treatments is widely

anticipated. The analysis complexity is increased in cancer analysis by somatic changes and

clonal sub-populations within tumors. Research and medical treatment decisions can be

greatly facilitated by use of accurate and rapid variant detection and interpretation software.

However, the development of such software is hindered by limited access to real, high quality,

high-depth sequencing data for a range of patient and disease phenotypes, and by the lack of

“ground truth” information about the variants present in the tissue of origin. Sequencing data

from model organisms can be used in some cases, but ultimately they are not fully predictive
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for humans [1]. In contrast, simulated datasets can be constructed to mimic many properties

of human data while also being freely shareable among software developers without exposing

personal health information. Thus, simulations can provide a gold standard available to all

software engineers for the design and evaluation of variant calling workflows. Synthetic data

are functionally similar to the output of a sequencer, but all of the underlying mutational

events are known.

There are a number of existing software packages available for generating synthetic NGS

read data, each tending to specialize on a particular attribute of a dataset. For example, ART

[2], CuReSim [3], GemSim [4], and pIRS [5] focus on realistically emulating the biases inher-

ent in the base calling of various next-generation sequencing (NGS) platforms. Other simula-

tors seek to incorporate more sophisticated models for GC-content biases and copy number

variation [6]. None of these simulators, however, offer the ability to easily sweep over the

parameters that adequately describe an NGS dataset. For this reason we developed our own

software package, the NExt-generation sequencing Analysis Toolkit (NEAT). NEAT is

designed to be more flexible and user-friendly than many others in the field (Table 1). The list

of existing simulators compared against are those most often used, according to number of

paper citations: ART, CureSim, dwgsim [7], GemSim (including the the targeted sequencing

functionality of Wessim [8]), Mason [9], pIRS, and SInC [6]. VarSim [10] is not explicitly

listed as it is a wrapper around DWGSIM and ART.

NEAT Read Simulator

The goal of NEAT is to give users complete control over as many parameters of sequencing

data as possible. The objective is not to model or simulate biological or sequencing processes,

but rather to faithfully reproduce the properties of sequencing data themselves. In other

Table 1. Comparison of read simulator features.

ART CuReSim dwgsim Gemsim Mason pIRS SInC NEAT

Mutation models SNPs / indels × × × × × ×
Structural variation * × *

Any ploidy * ×
Learnable from data * ×

Accepts input variants * * ×
Sequencing models Learn Q-score profile × * × * × × ×

Learn error statistics × * × * × × ×
GC% coverage bias × × × ×

Learn fragment lengths * ×
Usability Any read length × × × × * × ×

Single & paired ended reads × × × × ×
Any error rate × × × × ×

Any mutation rate × × × × × ×
Targeted sequencing × × *

Ground truth Mapping positions × × × × ×
CIGAR alignment × × ×
Variant positions × × * ×

Comparison of the main features of several existing read simulator packages.

×: feature is present in the simulator.

*: feature is either partially implemented or requires significant effort to fully use.

doi:10.1371/journal.pone.0167047.t001
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words, given a particular set of FASTQs or BAMs from any individual or sequencing platform,

the user should be able to reproduce the statistical properties of that original dataset in simula-

tion, without directly copying the original variants.

NEAT is a toolkit, providing not only the simulator software to generate reads, but also a

set of scripts to extract many of the simulation parameters from real data. It also produces

“golden” BAM and VCF files containing the ground truth read alignments and variant loca-

tions, which can be used to assess the accuracy of bioinformatics workflows. The software is

flexible enough to simulate, in a controlled fashion, the typical sets of mutations, genome

ploidy, and clonality of the sampled cell population, and the characteristics of the sequencing

platform (read length, error rates, biases in the error types) used to generate the data. We

believe this to be the minimum required functionality for a good, generic simulator. In addi-

tion, NEAT has been designed to be extensible for any future mutation models, sequencing

technologies and sampling procedures. NEAT’s ease of use surpasses existing tools because

simulation of an arbitrary NGS dataset can be accomplished in a single command. NEAT is

written in Python 2.7 and requires NumPy [11].

Methods

NEAT is more flexible than existing tools due to its ability to use custom mutation models and

sequencing models. The sequencing models are derived from real sequencing data to mimic the

errors and artifacts of DNA sequencing processes. The mutation models are also derived from

real data to emulate the distribution of variants in the sample, with a particular emphasis on

cancer. The user can select among default models, or derive their own with the included

scripts. Contributing to the flexibility of NEAT, the user is able to control several key attributes

of an NGS dataset: choice of single-ended or paired-ended reads, read length, average error

rate and average mutation rate, regardless of the mutation and sequencing models selected.

The quality score profiles can be scaled to arbitrary simulated read length, regardless of the

length of reads used to derive the model. Similarly, the frequencies of inserted mutations and

sequencing errors can be re-scaled to user-defined values.

NEAT takes three mandatory inputs: (1) a reference genome sequence from which to sam-

ple reads, (2) read length, and (3) output file name prefix (Figs 1 and 2). The user may also sup-

ply a list of specific regions from which to sample predominantly (e.g., to simulate part of a

chromosome or restrict to the exome). NEAT can accept an input VCF file containing

Fig 1. Overview of mutation and sequencing model generation.

doi:10.1371/journal.pone.0167047.g001
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mutations to insert, in addition to randomly generated mutations. The program outputs simu-

lated FASTQ files as well as “golden” SAM/BAM and VCF files containing the ground truth

mapping and variant information, including genotypes.

Mutation Model Description

From variant call data (e.g. VCF or TSV files) we derive a mutation model: probabilities that

NEAT uses to insert mutations into the simulated dataset. This mutation model captures single

nucleotide substitution (SNP) and indel mutation rates, indel length distributions, as well as

substitution base transition probabilities as a function of the nucleotide at that position, its tri-

nucleotide context, and the reference positional context, such as intron, exon, CDS or inter-

genic region.

Probabilities are captured by region in the mutation model and include the following:

1. P(any mutation occurs j genomic position)

2. P(substitution jmutation occurs), P(insertion jmutation occurs), P(deletion jmutation

occurs)

3. P(substituted base = Y j trinucleotide context = X_Z)

4. P(length = L j insertion occurs), P(length = L j deletion occurs)

By default, NEAT introduces all mutations with equal probability. This option can be useful

when testing variant calling software in order to have a simple, baseline simulated dataset.

However, when mutation models are specified, NEAT will produce more realistic data by sam-

pling from those distributions.

NEAT inserts mutations by working through the reference in sliding windows. If the user

has provided an optional BED file of positional mutation rates (a), then the BED regions affect-

ing the current window will be used to construct a distribution P(n = variant position), where

the probability of selecting position n to insert a mutation is proportional to the user-specified

mutation rate at that position. If no such BED file is provided, the mutations will be inserted

across the window such that the total number of mutations is determined by multiplying the

length of the window by the desired overall mutation rate. Next, we sample from the mutation

models (b) to determine if the mutation should be a SNP, insertion, or deletion. If the muta-

tion should be a substitution, we examine its surrounding nucleotides: they determine our

selection of the base transition matrix (c). Then we sample the new nucleotide that will replace

that position. Because trinucleotides are not distributed evenly across the genome, care is

taken to encode their distribution probabilities correctly by indexing the reference with respect

Fig 2. Overview of NEAT Read Simulator.

doi:10.1371/journal.pone.0167047.g002
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to the trinucleotide distribution. If the mutation should be an insertion or deletion, we sample

its length from the learned distribution (d) and alter the affected reference nucleotides. In the

current version of NEAT, large-scale structural variation is not introduced by default, but only

if the user specifies the variants via an input VCF file.

Mutations with arbitrary variant allele frequency are simulated by generating multiple cop-

ies of the reference genome and inserting mutations into a specified fraction of the copies. For

example, when simulating a tetraploid, a variant with genotype “0 j 1 j 0 j 0” results in 4 copies

of the reference sequence, the second of which is altered to include the inserted mutation. The

default simulated ploidy is 2.

Example Mutation Models

To help users get started with the simulator, we applied our mutation model generating scripts

to the VCF files from the Genome In A Bottle consortium (GIAB) [12] for the sample

NA12878, VCFs from the 1000 genomes project [13] and pooled variants from the Interna-

tional Cancer Genome Consortium (ICGC) simple somatic mutation files (SSM). From these

data we compute frequency matrices for SNPs, indels, and structural variants. All variants are

considered in the context of their surrounding sequence. Specifically, the script creates an

index of the reference to capture the distribution of all trinucleotides in it. Then it locates each

input variant on the reference, and reports the nucleotides one base before and one base after

the variant, which comprises a trinucleotide context for each mutation (Figs 3–5). The fre-

quency is calculated by finding the total number of instances of each trinucleotide transition,

and dividing by the abundance of the original trinucleotide on the reference (for 1000

genomes data) or the germline trinucleotide (for ICGC). When heterozygous alleles are

encountered, we randomly pick one, for simplicity. Small indel length distributions are also

recorded (Fig 6).

We have generated default models for the NEAT toolkit for breast cancer, melanoma and

leukemia using SSMs from the ICGC Release 20 TCGA projects BRCA-US and SKCM-US,

and Release 20 of CLLE-ES [14]. Variant data from ICGC were pooled for all individuals with

the same type of cancer.

We also provide a sample BED file for mutation rates in exons, introns and intergenic

regions. The data were drawn from a GENCODE GRCh37 release 24 [15], dbSNP GRCh37.

p13 build 146 [16] and several cancers as described in the previous section.

Using the the set of high confidence calls made on NA12878 by GIAB, we confirmed that

mutation statistics significantly differ in coding (CDS) and noncoding (nonCDS) regions of

the genome (Fig 7). As expected we examine a much higher mutation rate in nonCDS regions.

The trinucleotide mutation bias between CDS and nonCDS regions exhibit similar peaks, with

nonCDS regions again having higher mutation rates (Fig 8). In contrast, both the SNP/indel

fraction and the distributions of indel lengths in CDS and nonCDS appear identical (Fig 7). If

these differences are important for the user, the list of CDS/nonCDS regions can be supplied

via an input BED file in order to distinguish the overall mutation rates between them. The abil-

ity to supply two different mutation models, for CDS and nonCDS, into a single invocation of

NEAT is part of our future code development effort. At present this can be worked around by

generating multiple datasets with NEAT using separate mutation models and then merging

the results with provided scripts.

Sequencing Model Description

To emulate multiple sequencing platforms, NEAT derives a sequencing model from real

FASTQ and BAM data. Similar to the mutation model, the sequencing model contains discrete

Simulating NGS Datasets from Empirical Models
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distributions that are sampled by NEAT during read generation. The sequencing model con-

tains three sub-models: Quality score sub-model, sequencing error sub-model, and read sampling
sub-model.

Quality Score Sub-model: The quality score model contains distributions used to generate

quality score strings for each synthetic read. The frequency of observed quality score transi-

tions for each position along a read is obtained from an example FASTQ file. These frequen-

cies are embedded in the transition matrices of a time-inhomogeneous Markov model,

similarly to the methods utilized in existing simulators, such as MAQ [18] and pIRS. This

yields many distributions of the form:

Pðnext quality score ¼ Q j previous quality score ¼ Q0; position ¼ PÞ;

for P ¼ 1; . . . ; L and Q;Q0 ¼ 1; . . . ; qmax

Where L is the read length, and qmax is the highest quality score (e.g qmax = 41 for Phred+33

encoding). NEAT supports the use of separate models for forward and reverse reads when sim-

ulating paired-end datasets. These models allows us to estimate the dependence of quality

scores on both the position within the read, and the previous base-call quality. By sampling

Fig 3. SNP substitution frequency matrices for breast cancer model. The label for each 4 × 4 matrix specifies the nucleotide

immediately preceding and following the SNP position. For example, row 3 column 2 of the “A_A” matrix specifies the frequency of AGA

mutating into ACA, as observed in the breast cancer SSM dataset.

doi:10.1371/journal.pone.0167047.g003
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quality score strings from this model, we can emulate the profiles of an input FASTQ file from

arbitrary sequencing platforms.

Sequencing Error Sub-model: To mimic an observed distribution of sequencing errors, we

process BAM files to compute sequencing substitution error base transition frequencies and

sequencing indel error frequencies. The occurrence of sequencing errors is determined by

selecting mismatched positions that are below a threshold quality score, as well as below a

threshold variant allele frequency, and are not detected to be part of a larger event. These

observed errors are used to estimate the following distributions that comprise the model:

1. P(error occurs j quality score = Q)

2. P(substitution j error occurs), P(insertion j error occurs), P(deletion j error occurs)

3. P(substituted base = X j current base = Y, substitution error occurs)

4. P(indel length j indel error occurs)

5. P(inserted base = X j insertion error occurs)

Errors are inserted into the read data as follows. For each position in the read we insert an

error with probability proportional to the quality score at that position. By sampling from the

Fig 4. SNP substitution frequency matrices for Leukemia model.

doi:10.1371/journal.pone.0167047.g004
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distributions (b) as given above, we determine whether the error should be a substitution,

insertion, or deletion. If the error is determined to be a substitution, we sample from the distri-

bution (c) to determine what new base should replace the nucleotide at the error position. If

the error is determined to be an insertion or deletion, we sample from distribution (d) to

determine its length. Finally, if the error is an insertion, we successively sample from (e) to cre-

ate the new erroneous sequence of nucleotides that will be inserted into the read.

To help users create their own sequencing error sub-models, we provide a script that pro-

cesses alignments to derive the statistics described in the previous section. A position within a

read is determined to be a sequencing error if it meets all of the following conditions:

• The position contains a spurious mismatch or indel (up to a specified length) that has low

variant allele frequency (i.e. is not supported by other reads)

• The position in the supporting read is below a specified quality threshold

• The mapping quality of the supporting read is above a specified threshold

Read Sampling Sub-model: In addition to sequencing error statistics, the input BAM file is

used to compute GC% coverage bias and paired-end fragment length distributions. Using the

BEDTools genomecov tool [19], GC% coverage bias is computed by sliding non-overlapping

Fig 5. SNP substitution frequency matrices for Melanoma model. Note the strong preference for G! A and C! T transitions, as

observed in existing work [17].

doi:10.1371/journal.pone.0167047.g005
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windows of a fixed size along the generated track and binning the coverage value by local GC

content. The counts are normalized by the average coverage of the entire alignment to yield

multipliers to scale coverage during simulation (Fig 9). Paired-end fragment length distribu-

tion is computed using the template-length field in the alignment data (Fig 10).

Workflow Evaluation Tools

The simulator includes a set of scripts to process BAM and VCF workflow output to determine

alignment and variant detection accuracies. The performance of an aligner can be assessed by

manually comparing the golden alignment to the BAM produced by the aligner. Or more sim-

ply, by comparing the mapped position and CIGAR string to the values embedded in the read

names of the synthetic data using an included script. Similar analyses can be performed with

other tools, such as LAVEnder [20] (In development at the time of this writing), which can

identify and plot multiple types of alignment errors.

NEAT includes a VCF comparison script to compare workflow output to the golden VCF

containing inserted variants. The comparison is similar to vcf-compare (part of the vcftools

suite [21]), with the added advantage of using coverage and mappability information to facili-

tate manual investigation of false positive (FP) and false negative (FN) variant calls. When com-

paring a VCF produced by a workflow to the golden VCF produced by NEAT, our comparison

Fig 6. Insertion and deletion length distributions for Breast, Leukemia, and Melanoma models.

doi:10.1371/journal.pone.0167047.g006
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script will count FP and FN variants and split them into separate output files for manual

inspection. Because the VCF representation of a mutation (position, reference allele! alter-

nate allele) is not unique, our script has an optional feature to detect variants (or groups of

variants) that are equivalent but not represented identically between the input VCF files. Addi-

tionally, our comparison script offers the ability to diagnose FN variant calls by counting how

many of them originated from positions that were either not well covered in the golden align-

ment or were from unmappable regions of the reference sequence (Fig 11).

Discussion

As described in previous sections, the NEAT read simulator is an amalgam of features present

across a variety of software packages (Table 1) with additional consideration paid to deriving

models from real data. By using this approach, we can generate NGS datasets useful for a

wider variety of applications, where sequencing and mutation characteristics could vary

considerably.

Fig 7. Comparison of mutation statistics between CDS (blue) and nonCDS (cyan) regions.

doi:10.1371/journal.pone.0167047.g007
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Fig 8. Trinucleotide mutation frequencies for NA12878 high confidence variants in CDS (blue) and nonCDS (cyan) regions.

doi:10.1371/journal.pone.0167047.g008

Fig 9. Empirical GC% coverage bias from an example BAM file.

doi:10.1371/journal.pone.0167047.g009

Simulating NGS Datasets from Empirical Models

PLOS ONE | DOI:10.1371/journal.pone.0167047 November 28, 2016 11 / 18



NEAT use cases

Many of NEAT’s features were motivated by the variety of needs to satisfy many use cases.

The classic use of synthetic read simulators is for evaluating alignment and variant calling

software, especially in tough cases, such as variants present in genomic regions that are difficult

to map due to their repetitiveness. Simulation permits insertion of variants that would not

have been present in a regular VCF.

Simulated data can be used to determine optimal sequencing properties to compensate for

the current shortcomings in variant calling. For example, a number of datasets can be built on

the same mutation model by varying read lengths, coverage, fragment length, etc., in an effort

to study the effect of these parameters on the ease of variant calling and downstream analyses.

Allowing for empirical coverage bias and fragment lengths was motivated specifically by our

observation that in real data these distributions are not well characterized by a simple Gaussian

(Figs 9 and 10).

NEAT can be used to simulate sequencing experiments from any organism, including

human, other mammals, plants, even heterogeneous populations. The scripts for extracting

mutation and sequencing models are agnostic of species, while the simulator itself allows arbi-

trary ploidy setting. Polyploid genome simulation can be useful for crop plants, such as sugar-

cane [22], wheat [23] and soybean [24] It is unfortunately difficult to construct a good quality

genome assembly in a highly polyploid species, and one might therefore argue against trying

to simulate sequencing experiments based on a faulty reference. We suggest a different view-

point: one could experiment with various hypothetical references in simulation, and thus

reconstruct the correct genome assembly by comparing the simulated reads with real sequenc-

ing data. Ploidy can also be used as a proxy to simulate a distribution of haplotypes in a mixed

population, such as a heterogeneous tumor sample.

We purposely designed the simulator to allow for arbitrary mutation models in order to

address the heterogeneity of mutation characteristics across different groups of cancers

Fig 10. Empirical insert size distribution from two example BAM files. (Left) ICGC donor DO35138: dcc.icgc.org/donors/DO35138,

(Right) ICGC donor DO221544: dcc.icgc.org/donors/DO221544, both from project PACA-CA.

doi:10.1371/journal.pone.0167047.g010
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(Figs 3–5). This ability to faithfully reproduce a mutational profile is useful for training physi-

cians, genetic counselors and analysts in interpretation of the results of variant calling

procedures.

NEAT limitations, in comparison to other simulators

Several features of NEAT were inspired by existing tools, but have not been as comprehen-

sively implemented. Wessim’s “probe hybridization” approach is useful for simulating whole

exome sequencing, without a current NEAT equivalent. NEAT simply samples reads that

cover targeted regions with an increased frequency proportional to the on-target/off-target

coverage ratio adjustable by user (defaulted to 98%/2% of the average coverage). This is akin to

the “ideal target” functionality of Wessim, and is likewise unrealistic.

Our approach to quality score profiles is similar to Markov model approaches and pIRS

(and earlier, MAQ), however we assume the quality score accurately represents the probability

of erroneous base calls.

Fig 11. Example false negative variant call diagnosis for a toy dataset: Several hundred variants were introduced

into a 10M subset of human chromosome 21. The false negative variants were those that were inserted into the

data by NEAT, but were not recovered by a particular variant calling workflow (Novoalign! Haplotype Caller,

following GATK best practices). In this example we see that a majority of the false negatives were due to variants having

been inserted into regions that were not uniquely mappable with the simulated read lengths. A lower number of false

negatives were due to inadequate coverage (DP).

doi:10.1371/journal.pone.0167047.g011
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Additionally, pIRS adjusts the likelihood of substitution vs. indel sequencing errors as a

function of position along a read, learned from data. NEAT considers this likelihood to be uni-

form throughout. While the goal of NEAT is not to exhaustively emulate all peculiarities of all

sequencing technologies, comprehensive models in existing tools serve to guide the develop-

ment of new features in future versions of the software, outlined below in the section Future

Directions.

Finally, NEAT is a toolkit that contains software for deriving mutation and sequencing

models, simulating sequencing data, and evaluating alignment and variant calling algorithms.

In this regard NEAT could be easily confused with VarSim [10], itself a powerful computa-

tional framework with similar functions. However, VarSim is a wrapper around other simula-

tors, and thus inherits all their features and limitations. Indeed, VarSim could use NEAT gen-

reads function much like it uses DWGSIM and ART. VarSim is human-centric, hypothesizes

diploid genomes and uses human variant databases to perturb the reference prior to simula-

tion. It has excellent advanced features specifically for human cancer, such as automatic gener-

ation of structural variants, simulation of germline and somatic genomes, and mixtures of

reads from both. In contrast, NEAT is species-agnostic and features arbitrary, user-defined

ploidy. NEAT also allows more control over the mutation models in terms of relative abun-

dance of different variant kinds, their qualities and spatial distributions. NEAT is easier to

install and use, because it is self-contained and requires only one command for execution.

Realism of inserted variants

Our simulator can introduce mutations in two ways: deterministically from an input VCF sup-

plied by the user, and stochastically according to the supplied mutation models. Both mecha-

nisms can be used to improve the realism of inserted variants, but also carry over the

drawbacks of the variant calling procedure used to identify the variants in the original dataset.

Some variants are difficult to call, either because of their location in a repetitive region that is

difficult to map [25], or due to the complex nature of the variant itself. Those hard-to-call vari-

ants will be under-represented in the datasets from which the mutation models are con-

structed, and also in the simulated reads. NEAT has several user options to remedy this

situation. First, an input BED file enables users to explicitly set the mutation rate per-region,

allowing users to take extra care in handling those hard-to-map regions, if it is important for

their simulation experiment. Second, in the absence of such a BED file, the properly set back-

ground mutation probability ensures that all regions are subject to that average mutation rate

uniformly across the genome. This option can be of value when using the simulated data to

test aligners and variant callers. On the other hand, when training physicians and analysts

using known variants of any given cancer, it is useful to faithfully reproduce mutations as we
know them today, as opposed to guessing what may have been missed. The stochastic mutation

models based on previously called variants in different cancers should be sufficient in that use

case.

The ability to set mutation rates per region via an input BED file is particularly useful when

the experiment is sensitive to the differences between exons, introns, coding sequences, and

other regions. It is critical for the user to have control over these values, as one setting does not

apply to all situations [26–28]. Because NEAT samples reads from reference regions in a slid-

ing-window fashion (as to not require storing the entire reference sequence in memory), posi-

tion-specific mutation rates affect the windows overlapping the provided coordinates. This has

the effect of slightly smoothing out any abrupt differences in the mutation rates between adja-

cent regions. Mutation probabilities tend not to change abruptly along the genome at that

scale [29]. The smoothing effect can be controlled, to some extent, by adjusting the length of
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the BED regions, but the window size used internally by NEAT sets the lower limit on the BED

region length within which the mutation rate can be distinguishable.

If smaller-scale effects, such as around CpG islands [26, 30], are important to the user, they

should be included in the input VCF file: NEAT inserts those variants verbatim. In addition,

despite using pooled genotype data, NEAT does not purposefully simulate events such as link-

age disequilibrium or other population-level genetics information. To simulate this type of

data, known variants can be introduced using the VCF file, or tools such as HAPGEN2 [31]

can be used to simulate disease SNPs that can be subsequently introduced into NEAT reads.

NEAT Validation

To validate the output of NEAT, we performed several simulation workflows to confirm that

the mutation distributions and sequencing characteristics of simulated data match the derived

mutation and sequencing models of real data, respectively (S1 File).

We validated NEAT’s ability to generate synthetic mutations using a mutation model

derived from simple somatic mutations in the breast cancer data from ICGC described in the

previous sections. We found no appreciable difference between the mutation models con-

structed on the raw variants and those produced by NEAT, indicating that the stochastic prop-

erties of mutations present in that dataset were preserved in simulation.

Similarly, we computed sequence and alignment statistics on data generated by NEAT

using FastQC [32] and BAMQC (an in-house script that measures basic alignment statistics

such as insert size distributions and sequencing error positions). We found that a majority of

the figures produced by these tools were nearly identical, in particular the per-base sequence

quality, per-sequence GC content and the insert size distributions. A few metrics computed

from the synthetic data do appear to have idealized shapes due to a number of sequencing

nuances that we do not emulate, such as the presence of adapter sequences and heavily dupli-

cated sequences.

Future directions

Augmented mutation models: In ongoing work we are adding more scripts and user options

for greater control over the parameters of the simulated datasets. These options include more

detailed mutation models, such as insertion motifs, heterozygous/homozygous ratios, and

distinct mutation probabilities for synonymous vs. nonsynonymous mutations [33] and muta-

tions occurring in coding vs noncoding regions of the genome. We will also allow the insertion

of randomly generated large structural variants. Users will be able to specify ploidy as a func-

tion of coordinate on the reference, via BED file, which will be useful for simulating copy num-

ber variation.

Improved sequencing models: Additionally, we are augmenting the sequencing models to

accommodate generating FASTQ data with varying read lengths, appropriate for long read

sequencing technologies, such as the PacBio RS II and Illumina Moleculo.

Other targeted sequencing experiments, such as ChIP-seq or RNA-seq, can theoretically be

simulated via the same methods as for exome sequencing simulation, i.e. by supplying a BED

file with sequencing targets (such as potential protein binding sites for ChIP-seq). However,

these data show highly variable coverage among the targeted regions, and this cannot currently

be simulated by NEAT. Our next step is introducing into NEAT a capability to retrieve cover-

age information from the input BED file individually on a per region basis, which will dramati-

cally improve the realism of ChIP-seq and RNA-seq simulation.

Simulating genomic lineages: We are also developing wrappers around NEAT to generate

combinations of reads representative of populations of individuals. The reference will be
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progressively mutated by applying the supplied mutation models in series, while keeping track

of the exact mutations introduced. This feature will be particularly useful for modeling cancer

cell populations. The tumor sample clonality will be simulated by selecting the appropriate

members of the modeled lineage, simulating their sequencing data from respective mutated

references, and mixing those in proportions that correspond to the clonality levels.

Conclusions

We have developed NEAT, a highly flexible simulator for generating synthetic FASTQ, BAM,

and VCF files. It is capable of emulating the characteristics of various sequencing platforms by

learning sequencing models directly from real-world FASTQ and BAM data. It can simulate

whole-genome data of different populations by learning mutation models directly from variant

call data. Additionally, NEAT supports targeted sequencing (e.g. whole exome) via an input

BED file. We have used NEAT to estimate mutation statistics of a population of individuals

with breast cancer, and have showcased the ability to create datasets with a wide range of

mutation and sequencing error characteristics.

Improving the quality of simulated data has many benefits. Simulated data with fully

known true positives can be used for developing new algorithms, testing the bounds of existing

software and fairly comparing different software to each other. It can be used for teaching,

allowing educators to generate real-looking datasets for students to learn on, and for research,

by testing hypotheses about reference genome organization.

NEAT provides the means to generate standard data against which diagnostic software

packages can be assessed, and thus estimates of false positive and false negative rates can be

quantified. The rapid creation of realistic simulated datasets in this way can be used as an

internal control by which software pipelines can self-test, optimize parameters, and uncover

the capabilities and limitations of computational analyses and sequencing technologies. Ulti-

mately, the availability of datasets such as these are needed to provide statistical confidence in

genomic diagnostics, in order for applications of genomic analysis software gain widespread

approval and adoption.

Supporting Information

S1 File. NEAT Validation. This document contains the results of workflows designed to assess

the validity of the synthetic data produced by NEAT.

(PDF)
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