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Genome instability-related long non-coding
RNA in clear renal cell carcinoma
determined using computational biology
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Abstract

Background: There is evidence that long non-coding RNA (lncRNA) is related to genetic stability. However, the
complex biological functions of these lncRNAs are unclear.

Method: TCGA - KIRC lncRNAs expression matrix and somatic mutation information data were obtained from TCGA
database. “GSVA” package was applied to evaluate the genomic related pathway in each samples. GO and KEGG
analysis were performed to show the biological function of lncRNAs-mRNAs. “Survival” package was applied to
determine the prognostic significance of lncRNAs. Multivariate Cox proportional hazard regression analysis was
applied to conduct lncRNA prognosis model.

Results: In the present study, we applied computational biology to identify genome-related long noncoding RNA
and identified 26 novel genomic instability-associated lncRNAs in clear cell renal cell carcinoma. We identified a
genome instability-derived six lncRNA-based gene signature that significantly divided clear renal cell samples into
high- and low-risk groups. We validated it in test cohorts. To further elucidate the role of the six lncRNAs in the
model’s genome stability, we performed a gene set variation analysis (GSVA) on the matrix. We performed Pearson
correlation analysis between the GSVA scores of genomic stability-related pathways and lncRNA. It was determined
that LINC00460 and LINC01234 could be used as critical factors in this study. They may influence the genome
stability of clear cell carcinoma by participating in mediating critical targets in the base excision repair pathway, the
DNA replication pathway, homologous recombination, mismatch repair pathway, and the P53 signaling pathway.

Conclusion subsections: These data suggest that LINC00460 and LINC01234 are crucial for the stability of the clear
cell renal cell carcinoma genome.

Keywords: Genome instability, Long non-coding RNA, Computational biology, Gene set variation analysis, Risk
signature
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Introduction
Clear cell renal cell carcinoma (ccRCC) is the most com-
mon subtype of renal cell carcinoma, and ccRCC ac-
counts for 80 to 90% of all renal cell carcinomas. ccRCC
is a potentially invasive tumor with an overall
progression-free survival rate of 70% and a cancer-
specific mortality rate of 24% [1]. It is 1.5–2.0 times
more common in men than in women. Advanced RCC
has a five-year survival rate of 11.7% [2]. Risk factors in-
clude smoking, obesity, high blood pressure, chronic kid-
ney disease, and exposure to certain chemicals and
heavy metals [3]. The diagnosis of ccRCC has been in-
creasing over the past few years. Although surgery is the
most common treatment option, early diagnosis is diffi-
cult, and many patients have metastatic disease by this
time [4]. For patients with advanced ccRCC or relapse,
many molecular-targeted drugs have been used as first-
line therapies. Nevertheless, outcomes are poor due to
the side effects of these agents and individual differences
in individual drug sensitivities [5].
It is a fundamental challenge for cells to copy their

genetic material for daughter cells accurately. Once this
process goes wrong, genomic instability occurs [6]. The
level of genomic instability is reflected in nucleotide in-
stability, microsatellite instability, and chromosome in-
stability [7]. DNA damage can be caused by mistakes in
DNA replication caused by genotoxic compounds or
ultraviolet and ionizing radiation. Incorrect DNA repli-
cation can lead to mutations or blocked replication,
leading to chromosome breakage, rearrangement, and
dislocation [8]. Genomic instability is an essential source
of genetic diversity within tumors. Oncogene expression
drives proliferation by interfering with regulatory path-
ways that control cell cycle progression. Genomic in-
stability produces large-scale genetic aberrations but also
increases point mutations in protein-coding genes. The
estimated mutation rate in tumors is an order of magni-
tude higher than that of typical healthy tissue. Genomic
instability also changes as tumors develop, and this trait
could become a target for treatment [9].
Recent advances in sequencing technology have re-

vealed that only 2% of the human genome codes for pro-
teins [10]. Non-coding RNAs are classified into small
non-coding RNAs and long non-coding RNAs according
to their size. Long non-coding RNA (lncRNA) predom-
inate. LncRNAs play central roles in many cellular
mechanisms, including regulation of cell processes [11].
They also regulate pathophysiological processes through
gene imprinting, histone modification, chromatin re-
modeling, and other mechanisms [12, 13]. LncRNAs also
play essential roles in cancer. They are involved in chro-
matin remodeling and transcriptional and post-
transcriptional regulation through various chromatin-
based mechanisms and interactions with other RNA

species [14, 15]. LncRNA imbalances can alter functions
such as cell proliferation, anti-apoptosis, angiogenesis,
metastasis, and tumor suppression [16]. Depending on
their positions and distribution in the genome, lncRNAs
directly or indirectly affect the transcription of various
proteins through transcriptional and post-transcriptional
changes, some of which may mediate tumor inhibition
or promotion [17].
Because chemotherapy, radiation therapy, targeted

therapeutic agents, and immune checkpoint inhibitors
do not function well in many ccRCC patients, investiga-
tors need to develop new treatment options and further
identify prognostic biomarkers and therapeutic targets
ccRCC. LncRNA screening and model building based on
gene instability in ccRCC may represent an important
research strategy.

Materials and methods
Data collection
We downloaded clinical information, protein-coding
RNA expression data, lncRNA expression data, and som-
atic mutation information for clear renal cell carcinomas
from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) [18]. We considered 507
ccRCC samples with paired lncRNA and mRNA expres-
sion profiles, survival information, and clinical
information.
We divided all ccRCC samples into a training set and

a test set. The training set included 254 samples for the
creation of a clinical outcome lncRNA risk model. The
test set included 253 patients, used to validate the pre-
dictive ability of the prognostic risk model. We provided
detailed data on TCGA clear cell renal carcinoma (Sup-
plementary Table 1). Meanwhile, we calculated the
tumor mutation burden (TMB) in the samples and esti-
mate the average number of mutations in the tumor
genome [19].

Mining lncRNAs related to genetic instability
First, we calculated the number of somatic mutations in
each sample. The samples with the number of somatic
mutations in the top 25% were defined as the genomic
unstable (GU)-like group. The samples with the number
of somatic mutations in the bottom 25% were defined as
the genomically stable (GS)-like group. We combined
the lncRNA expression matrix of TCGA-KIRC with the
GU and GS groups and obtained each group’s lncRNA
expression matrix. We then conducted a difference ana-
lysis on these two lncRNAs matrixes; |fold change| > 1
and false discovery rate adjusted P < 0.05 were defined as
genome instability-associated lncRNAs. The result of
genome instability-associated lncRNAs difference ana-
lysis is displayed in Table 1.
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Functional enrichment analysis and GSVA
We calculated the correlations between each protein-
coding gene and the lncRNAs obtained as described
above using the Pearson correlation coefficient method
[20]. We ranked these protein coding factors in descend-
ing order according to the correlation and selected
mRNAs with the top 10 correlation coefficients as the
co-expression coding genes of lncRNA. Using functional
analysis of these co-expressed coding genes, we analyzed
the biological functions of these genetically unstable
lncRNAs. Gene Ontology (GO) enrichment was per-
formed using the clusterProfiler package in R, version
3.6.3 [21]. GSVA, which is estimated in an unsupervised
manner, has a higher ability to detect changes in path-
ways in the sample population [22]. We downloaded the
GSVA score from the molecular signatures database
(http://software.broadinstitute.org/gsea/msigdb) to con-
struct the gene set. Then, GSVA score was performed
for each gene set in each sample using GSVA R software
package.

Statistical analysis
We used Euclidean distances and Ward’s linkage
method to perform hierarchical cluster analyses [23].
We used univariate Cox proportional hazard regression
analysis to calculate the associations between expression
level of genome instability-associated lncRNAs and over-
all survival. We performed multivariate Cox proportional
hazard regression analysis to evaluate the weighting co-
efficient in the risk signature. The genome instability-
related lncRNA (GILncSig) for overall survival was as
follows: Log[h(ti)/h0(ti)] = a1X1+ a2X2 + a3X3 +⋯akXk,
where h(ti) is the function hazard, and h0(ti) is the base-
line hazard, X1, X2, X3, ⋯Xk are covariates, and a1, a2,
and a3 are the corresponding multivariate Cox propor-
tional hazard regression coefficients. A detailed intro-
duction can be found in our previous articles [24]. We
were using the same best cut-off point (the point is de-
termined by the samples, with the maximum sensitivity
and specificity in time-dependent receiver operating
characteristic (ROC) curve). Hazard ratio (HR) and 95%
confidence interval (CI) were calculated using Cox ana-
lysis. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) [25] pathway of genome instability-related
lncRNAs were identified using gene set variation analysis
[22]. All statistical analyses were performed using R-
version 3.6.3.

Results
Differences in long non-coding RNAs
The design flow chart of this study was shown in Fig. 1.
To identify non-coding genes related to genome in-

stability, we grouped them according to the number of
somatic mutations. We placed the first 25% of somatic
mutations (84 samples) into the genetically unstable
group and then placed the final 25% of somatic muta-
tions (84 samples) into the genetically stable group. We
screened and obtained differential non-coding RNAs
using the limma package. We screened a total of 26
non-coding differential RNAs, of which 17 were down-
regulated, and nine were up-regulated (Table 1). The
levels of differential non-coding RNA expression in both
groups are shown in Fig. 2a.

Genome instability-related lncRNA
We performed unsupervised clustering of all samples in
KIRC based on the expression levels of these 26
lncRNAs (Fig. 2b). We obtained two clustering results,
and the number of somatic mutations in the two groups
was significantly different (Fig. 2c, P = 5.3e-13, Mann–
Whitney U-test). Next, we compared the expression
levels of the genomic instability driver ubiquilin4
(UBQLN4) in the GS-like and the GU-like groups (Fig.
2d) [26]. We found that the expression of UBQLN4 was
significantly up-regulated in the genetically unstable

Table 1 lncRNAs related to genetic instability

lncRNA logFC pValue fdr

ZNF582-AS1 −1.067 2.78E-10 1.32E-07

LINC01558 −1.926 3.72E-10 1.32E-07

GAS6-DT −1.559 1.40E-09 3.30E-07

AL035661.1 −6.144 3.65E-07 5.17E-05

AC016405.3 1.376 6.21E-05 2.20E-03

AC005082.1 −2.200 7.72E-05 2.53E-03

LINC01187 −8.158 8.16E-05 2.53E-03

AL031123.1 −2.978 9.95E-05 2.82E-03

LINC02471 1.040 1.08E-04 2.94E-03

AC079466.1 3.017 1.30E-04 3.18E-03

LINC01606 −4.716 1.41E-04 3.33E-03

LINC01230 −7.363 1.74E-04 3.98E-03

AC148477.4 −4.784 2.06E-04 4.38E-03

LINC01896 −6.526 3.24E-04 6.20E-03

AC144831.1 −1.297 5.42E-04 8.53E-03

LINC00284 − 3.520 1.14E-03 1.32E-02

AL139351.1 1.105 1.40E-03 1.52E-02

LINC01234 2.170 1.63E-03 1.67E-02

LINC00460 1.276 1.75E-03 1.75E-02

MIR222HG −1.371 2.25E-03 1.87E-02

AP000924.1 1.031 2.15E-03 1.87E-02

LINC00645 −2.101 2.24E-03 1.87E-02

OSTM1-AS1 1.425 3.90E-03 2.71E-02

AC130371.2 −1.271 4.05E-03 2.73E-02

INSYN1-AS1 −5.803 6.46E-03 3.94E-02

AC087636.1 1.708 8.52E-03 4.93E-02

lncRNA Long non-coding RNAs; logFC log2Fold Change; fdr False discovery rate
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group. We supplemented the correlation coefficient be-
tween UBQLN4 and other lncRNAs (Supplementary
Table 2). Based on these results, we tested whether sam-
ples with different mutation levels could be distin-
guished based on expression levels of the 26 differential
lncRNAs, and indirectly demonstrate that these lncRNAs
may be related to genome stability.

LncRNA-mRNA co-expression network
Based on Pearson correlation coefficients, we deter-
mined the top 10 mRNAs that correlated with each
lncRNA. We created a co-expression network lncRNAs

and mRNAs (Fig. 3a). We then analyzed the function of
the mRNAs in the co-expression module to determine
the associated biological processes. GO enrichment
demonstrated that these protein-coding genes are related
to biological processes such as homologous recombin-
ation (Fig. 3b). This analysis suggests that the 26 geno-
mically unstable non-coding RNAs may affect genome
stability by regulating their co-expression networks. We
found that these co-expressed protein-coding genes
might regulate homologous recombination, thereby
destroying cell stability. In total, we identified 26 non-
coding RNAs related to genome instability.

537 TCGA-KIRC samples
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Fig. 1 The design flow chart of this study. Clinical follow-up information of renal clear cell carcinoma, protein-coding RNA expression data, long
non-coding RNA expression data, and somatic mutation information were downloaded from the TCGA database, and the samples were then
divided into training sets and test sets. The samples were then divided into two groups for difference analysis according to gene mutation.
According to the results of difference analysis, the overall samples were divided into gene stable group and gene unstable group by consensus
cluster analysis. Then lncRNA-mRNA co-expression network was constructed, and the pathway analysis and GSVA scores were performed for this
network. Then a COX regression prognostic model was established, and the model verification processes such as survival analysis, clinical
subgroup analysis, tumor mutation burden analysis and model comparison were carried out
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The genome instability-related lncRNA risk model
We clarified the lncRNAs and biological processes re-
lated to genetic stability. Next, we calculated the correla-
tions between these lncRNAs and clinical survival
phenotypes. We randomly divided 507 clear cell carcin-
oma samples with detailed follow-up information into
training groups and validation groups. We constructed a
multivariate Cox proportional hazard regression model
for ccRCC in the training set based on 26 genomic stable
state-related lncRNAs. The coefficients of the risk fac-
tors in the model are shown in Table 2. Risk model
(GILncSig) = 0.095 * LINC00460 + 0.165 * LINC01234 +
0.152 * AL139351.1 + 0.177 * MIR222HG + 0.123 *
AC087636.1–0.027 * LINC02471. We found that
LINC00460, LINC01234, AL139351.1, MIR222HG,
AC087636.1 were transparent risk factors. The higher
their expression, the worse the overall survival of pa-
tients with renal cancer. LINC02471 is a protective fac-
tor for ccRCC. The higher its expression, the better the
overall survival. We supplemented the univariate cox re-
gression analysis coefficients of clinical features and risk
scores, risk scores acted as independent prognosis fac-
tors(Supplementary Table 3). Meanwhile, we added the
pearson-correlation coefficients of LINC01234 and
tumor mutation burden in other types of cancers(Sup-
plementary Figure 1). LncRNA expression patterns and

the distribution of somatic mutation count distribution
and UBQLN4 expression for patients in high- and low-
risk groups are shown in Supplementary Figure 2.

The verification and evaluation of lncRNA model
performance
Risk scores for each sample in the training and test
sets were calculated using the GILncSig method. Pa-
tients were divided into groups according to the me-
dian risk score (0.853); patients in the higher risk
group had a risk score > 0.853. We then calculated
the survival difference between the high- and low-risk
groups using survival analysis. In TCGA-KIRC cohort,
we found that patients in the low-risk group had bet-
ter clinical outcomes (Fig. 4a, P < 0.001). Patients in
the low-risk group in the training set (Fig. 4b, P <
0.001) and validation set (Fig. 4c, P < 0.001) also had
better survival outcomes. The area under the time-
dependent ROC curve of TCGA-KIRC cohort was
0.681 (Fig. 4d). The area under the time-dependent
ROC curve of the training set cohort was 0.726 (Fig.
4e). The area under the time-dependent ROC curve
of the verification set cohort was 0.642 (Fig. 4f). MutS
homolog 2 (MSH2) and replication factor C subunit 1
(RFC1) are involved in the process of mismatch rec-
ognition [27]. Comparison analysis showed significant
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differences in MSH2 and RFC1 expression patterns be-
tween the samples in the high- and low-risk groups
(Fig. 5). Expression levels of MSH2 in the low-risk group
were significantly higher than those of the high-risk group
(P < 0.001, Mann–Whitney U-test; Fig. 3d). RFC1 also
showed higher expression levels in low-risk patients than
in high-risk patients (P < 0.001, Mann–Whitney U-test).

Subgroups of the lncRNA model
We then obtained a stable genomic stability-related
lncRNA prognosis model. To further analyze their per-
formance levels in various subgroups, we conducted sur-
vival analysis. We found that subgroups of patients in
the low-risk group achieve better outcomes (Fig. 6)(Sup-
plementary Figure 3).

Fig. 3 (A) The co-expression network of lncRNA-mRNA. Green stands for LncRNA and red for mRNA. The closer the relationship, the closer the
connection. (B) Go analysis of the lncRNA-mRNA network. In the biological process, the network is mainly enriched in the monovalent inorganic
homeostasis. In the cellular component, the network is mainly enriched in apical part of cell and apical plasma membrane. In the molecular
function, the network is mainly enriched in monovalent inorganic cation transmembrane transporter activity and receptor ligand activity
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Tumor mutation landscapes in high- and low-risk groups
To compare mutations in the high- and low-risk groups,
we drew a panorama of mutations in the two groups
(Fig. 7). A total of 88.24% of the samples had mutations
in the low-risk group. The top 10 mutated genes in-
cluded VHL, PBRM1, TTN, SETD2, BAP1, and MUC16.
The high-risk group’s mutation frequency (84.62%) was
lower than that of the low-risk group (88.24%). The top
10 factors associated with mutations were the same as
those of the low-risk group.

Performance comparison in terms of AUC
To determine the accuracy of clinical predictive models
related to genome stability, we performed diagnostic test
comparisons. Three recently published lncRNA signa-
tures were involved in comparisons: the three-lncRNA
signature derived from Zhang et al. (Zhang Dan) [28],
the four-lncRNA signature derived from Liu et al.
(LiulncSig) [29] and an immune signature derived from
Sun et al. (SunlncSig) [30] using the same TCGA patient
cohort. As shown in Fig. 8, the AUC of overall survival
for the GILncSig was 0.681, which was significantly
higher than those of SunlncSig (AUC = 0.657) and
LiulncSig (AUC = 0.656) (Fig. 8). Although our model’s
AUC was lower than Zhang Dan’s model, our training
set score was 0.726.

GSVA pathway correlation analysis
We obtained genome stability-related lncRNA in various
somatic mutation groups; however, we believe that the
lncRNA obtained based on differential analysis alone is
insufficient to conclude that they are related to genome
stability. Therefore, in this section, we obtained genomic
stability-related pathway scores of each sample using the

Table 2 Multivariate Cox proportional hazard regression analysis
results

ID coef HR HR.95 L HR.95H P-value

LINC00460 0.095 1.099 1.010 1.196 0.028

LINC01234 0.165 1.180 0.984 1.414 0.044

AL139351.1 0.152 1.164 0.966 1.402 0.010

MIR222HG 0.177 1.194 1.002 1.422 0.047

AC087636.1 0.123 1.131 1.013 1.263 0.029

LINC02471 −0.027 0.973 0.934 1.014 0.048

Coef coefficient; HR hazard rate

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++

+++++ ++
++++ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++ ++ +

p<0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

S
ur

vi
va

l p
ro

ba
bi

lit
y

Risk + +High risk Low risk

247 194 142 114 76 48 18 7 1 1 0
260 220 180 149 114 68 44 23 12 3 1Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10

Time(years)

R
is

k

++++++++
+++++++++++++++++

++++++++++++
++++++++++

+ +++++
+++ +

+++ ++ + +

++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++ +++++++ +++++++++
++ ++ + + +

p<0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

S
ur

vi
va

l p
ro

ba
bi

lit
y

Risk + +High risk Low risk

120 92 65 52 32 21 10 4 1 1 0
133 113 88 73 59 37 25 14 5 2 1Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10

Time(years)

R
is

k

++++ +++++++++++++++
++++++++++ ++++++++++++++++

++++++++++++++++ +
+ ++

+

++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ + ++++++ +

p<0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

S
ur

vi
va

l p
ro

ba
bi

lit
y

Risk + +High risk Low risk

127 102 77 62 44 27 8 3 0 0 0
127 107 92 76 55 31 19 9 7 1 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10

Time(years)

R
is

k

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

AUC=0.681

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

AUC=0.726

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

AUC=0.642

A B C

D E F

All set Train set Test set

All set Train set Test set

Fig. 4 Survival analysis and ROC curve. (A-C) A COX prognostic regression model was established to calculate the scoring threshold, and a
survival analysis was performed to assess the difference between the high-risk and low-risk groups. In the all set, train set and test set, patients in
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Fig. 5 (A-C) The previously reported genetic instability related factor MSH2 showed significant differences in expression patterns between high-
risk group and low-risk group in the all set (P = 9.1e-05), train set (P = 0.0059) and test set (P = 0.0057). (D-F) The previously reported genetic
instability related factor RFC1 showed significant differences in expression patterns between high-risk group and low-risk group in the all set (P =
6.8e-07), train set (P = 0.0066) and test set (P = 1.8E-05)
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GSVA method. We calculated the Pearson correlation
coefficients of these genomic stability pathway scores
and the differences in lncRNA. We directly explained
the pathways in which these factors regulate genomic
stability. Figure 8 shows that the base excision repair
pathway, the DNA replication pathway, homologous

recombination, the mismatch repair pathway, the p53
signaling pathway, and ubiquitin-mediated proteolysis
were related to LINC00460 and LINC01234. The inter-
action of these pathways appears to ensure the stability
of the genome (Fig. 9). For these reasons, we believe
LINC00460 and LINC01234 affect the stability of the

0

100

RYR3
RYR1

ZFHX4
TP53

ROS1
RALGAPA1

PRKDC
KMT2C

GRIN2A
FBN2

DNAH2
CSMD3

COL6A3
COL5A3

STAG2
SPEN
PTEN

MYCBP2
MUC16
HMCN1

FLG
ATM

KDM5C
DNAH9
MTOR
BAP1

TTN
SETD2
PBRM1

VHL

3%
3%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
5%
5%
5%
5%
5%
5%
6%
6%
6%
6%
8%
10%
15%
15%
34%
45%

0 65

Missense_Mutation
Frame_Shift_Ins
Frame_Shift_Del
Splice_Site
Nonsense_Mutation

In_Frame_Del
Nonstop_Mutation
Translation_Start_Site
In_Frame_Ins
Multi_Hit

Altered in 121 (84.62%) of 143 samples.
      Variants per sample Median: 54

0

118

ABCB1
ZNF800

SPEN
ROCK1

NOS1
MUC4
MLLT4
LRP1

KMT2C
DST

DNAH9
CSMD3
BRCA2

ATM
ADGRV1

ADAMTS12
MACF1

LRP2
KDM5C
HMCN1
ARID1A

THSD7B
MTOR
ANK3

MUC16
SETD2

BAP1
TTN

PBRM1
VHL

3%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
5%
5%
5%
5%
9%
9%

14%
46%
48%

0 82

Frame_Shift_Ins
Splice_Site
Missense_Mutation
Frame_Shift_Del

Nonsense_Mutation
Translation_Start_Site
In_Frame_Del
Multi_Hit

Altered in 150 (88.24%) of 170 samples.
           Variants per sample Median: 39

ANK3

MTOR

THSD7B

KDM5C

MUC16

BAP1

SETD2

TTN

PBRM1

VHL

0 29 59 89

Top 10
mutated genes

5%

5%

5%

4%

5%

9%

9%

14%

46%

48%

5%

5%

5%

4%

%5

%9

9%9

4%1

6%4

48%

%%

4

6

FLG

KDM5C

ATM

DNAH9

MTOR

BAP1

SETD2

TTN

PBRM1

VHL

0 23 46 69

Top 10
mutated genes

6%

6%

6%

6%

8%

10%

15%

15%

34%

45%

%6

%6

6%

6%

%8

10%

5%1

15%

4%3

45%4

%%%

4

Low risk group High risk group
A B

536

Fig. 7 Waterfall map of gene mutation burden. (A) In the low-risk group, the mutation rate was 88.24%. The top three mutated genes were VHL,
PBRM1 and TTN. (B) In the high-risk group, the mutation rate was 84.62%. The top five mutated genes were VHL, PBRM1, SETD2, TTN and BAP1

Fig. 8 Model comparison. The model proposed in this paper is compared with the model of Liu et al., Sun et al., and Zhang et al., and the model
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genome by regulating these pathways. The correlation
coefficient among genomic stability-related and lncRNAs
were performed in Supplementary Table 4.

Discussion
The genome structure’s relative stability is a prerequisite
for the maintenance and continuation of the biological
germline. It is crucial to ensure that a set of effective
mechanisms is formed in the cell. There is a stable and
accurate transmission of genetic information from gen-
eration to generation. Chromosome instability refers to
the increased probability of acquiring chromosomal ab-
errations due to defects in processes such as DNA re-
pair, replication, or chromosome segregation. Genome
stability is closely related to the occurrence and progres-
sion of cancer [31–33]. Common DNA damage types in-
clude DNA base modification, DNA inter-strand, and
intra-strand cross-links, and DNA single-strand and
double-strand breaks [34]. Such DNA damage often
leads to genome instability. Proteins related to DNA
damage repair, DNA replication, and cell cycle check-
points work together to ensure the integrity of the gen-
ome and the DNA structure’s integrity. However,
mutations in these proteins can lead to the accumulation
of mutations in chromosomes; as these mutations accu-
mulate, they cause cancer and premature aging [32, 33,
35]. There is no accurate quantitative way to describe

genome instability. Various efforts are underway to iden-
tify protein-coding genes and microRNAs related to gen-
omic instability that predict outcomes [36–38].
Although we have made substantial efforts to identify

lncRNAs related to genomic instability, whole-genome
identification of lncRNA and its clinical research are still
in their early stages.
Based on TCGA clear cell cancer cohort and the cor-

responding number of somatic mutations, we identified
26 differences related to the number of somatic muta-
tions at the computational level. However, the analysis
in computational biology is insufficient. Therefore, we
combined clinical prognostic phenotype. A clinical pre-
dictive lncRNA model was constructed. We found that
six lncRNAs in the model could be used as independent
prognostic markers for renal cancer. According to our
understanding, genome stability is closely related to
levels of p53 mutations, DNA repair, and base mismatch
repair. On account of the cumulative effect of these fac-
tors, normal cells gradually become cancer cells. Accord-
ing to our previous description, the six lncRNAs in the
model should be closely related to these processes.
Therefore, to verify this point of view, we performed
GSVA gene set analysis and obtained the KEGG path-
way scores corresponding to each sample. Then, the
Pearson correlation coefficient test was performed using
these pathways. LINC00460 and LINC01234 are the
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most relevant to these genomic stability pathways. We
demonstrated that this method could screen candidate
genome stability-related lncRNAs and identify the rele-
vant pathways involved in these lncRNAs through GSVA
analysis.
After a careful literature search, we found that the bio-

logical process of LINC00460 and LINC01234 in the
GILncSig has not been reported to date. We found that
the lncRNA LINC00460 was located on chromosome
13q33.2 and is a prognostic biomarker for esophageal
squamous cell carcinoma [39] and renal carcinoma [28].
Another lncRNA, LINC01234, is located on chromo-
some 12q24.13. LINC01234 was found to regulate prolif-
eration, migration, and invasion of ccRCC cells via the
HIF-2α pathway [40]. Although studies have demon-
strated the relationship between these two factors and
outcomes of RCC, they do not explain the specifically re-
lated mechanisms. Finally, by analyzing the GSVA path-
way, we found that they have the strongest correlation
with the p53 pathway and affect the stability of the
genome.
The transcription of lncRNA can affect the expression

of neighboring genes [41]. Ephrin B2 (EFNB2), the
neighboring gene of LINC00460, encoded the Ephrin
family. Overexpression of EFNB2 is associated with ma-
lignant progression of tumors. It is expressed at high
levels in head and neck squamous cell carcinoma and
colorectal cancer [42], also promotes the growth of pan-
creatic ductal adenocarcinoma [43]. Knocking down
EFNB2 can block tumorigenesis and establish tumor
therapy [44].
RNA binding motif protein 19 (RBM19), the neigh-

boring gene of LINC01234, Its function may be to
participate in the regulation of ribosome biogenesis
[45, 46]. Although there have been no specific stud-
ies linking RBM19 to cancer, other scientists have
found that RBM19 is a gene expressed in the intes-
tinal epithelium and is critical for intestinal morpho-
genesis [47].
There are some limitations to our study. First, we did

not conduct cell or animal experiments. Second, we only
identified 26 genomic stability-related lncRNAs; never-
theless, computational biology techniques demonstrated
the connection between LINC00460 and LINC01234
and the genome stability pathway. Underlying regulatory
mechanisms require further exploration.
In conclusion, we constructed a screening system

for genome stability-related lncRNAs, and we identi-
fied 26 genomic stability-related lncRNAs, the detailed
introduction of the 26 lnc RNAs was uploaded as
Supplementary Table 5. We used these lncRNAs to
predict outcomes in patients with ccRCC and found
that these lncRNAs can be used as independent pre-
dictors. Finally, using GSVA pathway correlation

analysis, we found that LNC00460 and LINC01234
are related to genome stability, and we indirectly
demonstrated the appropriateness of this strategy.
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