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Abstract: Gestational diabetes mellitus (GDM) is a common complication of pregnancy that adversely
affects maternal and offspring health. A variety of risk factors, such as BMI and age, have been
associated with increased risks of gestational diabetes. However, in many cases, gestational diabetes
occurs in healthy nulliparous women with no obvious risk factors. Emerging data suggest that
the tendency to develop gestational diabetes has genetic and environmental components. Here we
develop a polygenic risk score for GDM and investigate relationships between its genetic architecture
and genetically constructed risk factors and biomarkers. Our results demonstrate that the polygenic
risk score can be used as an early screening tool that identifies women at higher risk of GDM before
its onset allowing comprehensive monitoring and preventative programs to mitigate the risks.
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1. Introduction

Gestational diabetes mellitus (GDM) is a common complication of pregnancy that
adversely affects maternal and offspring health. It is characterized by the onset of abnormal
blood sugar (hyperglycemia) during pregnancy, typically in the second trimester, and is
the most prevalent metabolic complication in pregnancy globally [1].

Diagnostic criteria for GDM differ by region and are largely influenced by conventional
care and the preferences of the clinicians. The lack of uniformity in diagnosing GDM makes
it difficult to accurately estimate its global prevalence. However, recent reviews concluded
that GDM is most prevalent in the Middle East and North Africa (15.2%, 8.8–20.0% [median,
interquartile range]) and South-East Asia (15.0%, 9.6–18.3%). The prevalence is lowest in
North America and the Caribbean (7.0%, 6.5–11.9%) and Europe (6.1%, 1.8–31.0%), though
the rates among European countries vary widely [2]. According to other sources, GDM is
affecting up to 12–18% of all pregnancies [3].

GDM is usually discovered late in the second or early in the third trimester and refers
to high blood sugar (glucose) during pregnancy. Women with a history of GDM have a
7-fold higher risk of developing type 2 diabetes (T2D) during midlife and an elevated risk
of developing hypertension and cardiovascular disease [4]. It is therefore important to
develop an early screening tool for identifying at-risk women to offer them comprehensive
monitoring and preventative programs to mitigate the risks.

While high pre-pregnancy body mass index (BMI) accounts for about 41% of GDM
cases for all ethnic groups, the remaining fraction of cases occur in healthy nulliparous
women with no obvious risk factors. The reduced level of physical activity during preg-
nancy is partly responsible for the pregnancy-associated decline in metabolic health [5,6].
Hence, GDM is believed to be a result of interactions between genetic, epigenetic factors,
advancing maternal age, and modifiable lifestyle factors [3,7] such as pre-pregnancy BMI,
as well as physical activity and dietary intakes before and after conception [8–10].
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Previous large-scale genome-wide association studies (GWAS) of GDM conducted
across diverse populations have demonstrated association of genetic susceptibility to GDM
with type 2 diabetes, insulin secretion and insulin resistance [11,12] suggesting a partial
similarity of the genetic architecture behind the two forms of diabetes. Other GWAS,
focusing on maternal metabolism during pregnancy, have demonstrated an overlap in the
genes associated with metabolic traits in gravid and non-gravid populations, as well as in
genes apparently unique to pregnancy [3,13].

Several genetics-based risk scores (polygenic risk scores, PGS) for GDM have already
been published. The procedure to building these PGS generally starts with a preselected
list of SNPs that have been found to be associated with either GDM, T2D, elevated fasting
glucose and insulin, or reduced insulin secretion and sensitivity [14]. These SNPs are
combined in a linear risk score model that generally shows significant associations with
incidences of GDM but have limited predictive power for identifying GDM cases without
clinical parameters. For example, PGS constructed from risk variants across 34 loci associ-
ated with T2D and fasting glucose was significantly associated with GDM in a study of
Caucasian women that included 458 cases of GDM and 1538 pregnant controls with normal
glucose tolerance. This PGS showed limited utility in the identification of GDM cases, only
slightly improving predictive power over a model that includes only clinical variables [15].

Another case-control study that included 2636 women with GDM and 6086 controls,
pre-selected a total of 112 SNPs related to T2D susceptibility, further identified 11 SNPs
significantly associated with GDM, and used them to build a PGS which was signifi-
cantly associated with a higher risk of GDM. Specifically, compared with participants in
the lowest quartile of the PGS, the odds ratio for GDM in the highest quartile was 1.53
(95% CI = [1.34, 1.74]) [16]. A recent small study of Chinese women (475 cases and 487 con-
trols) [17] built a PGS using 4 loci significantly correlated with the incidence of GDM.
Authors report that genetic risk score was independently associated with GDM and was the
most effective predictor with the exception of family history of diabetes. Combined with
6 clinical characteristics (maternal age, gravidity, parity, BMI, family history of diabetes
and assisted reproduction) the new risk score has a good predictive power with the AUC
of the prediction model was 0.727.

To untangle the genetic basis of GDM, we turned to the UK Biobank (UKBB), with the
goal to develop a PGS for GDM using machine learning. We further set out to systematically
investigate relationships between genetically constructed risk factors and GDM using
Mendelian Randomization (MR).

2. Materials and Methods
2.1. Participants

This study utilizes the data of UKBB www.ukbiobank.ac.uk (accessed on 5 March 2022)
which is a prospective cohort of 502,637 people aged between 37 and 73 and recruited from
2006 to 2010 from across the UK. The participants’ medical, socio-demographic, lifestyle,
environmental, and genetic information was collected via detailed questionnaires and
clinical assessment and linked with hospital admission and mortality data. The analysis
reported in this paper included 273,309 UKBB participants self-identifying as females, for
which no mismatch between self-reported and genetic gender was detected.

All procedures and data collection in UKBB were approved by the UKBB Research
Ethics Committee (reference number 11/NW/0274), with participants providing full writ-
ten informed consent for participation in UKBB and subsequent use of their data for
approved applications.

To identify gestational diabetes cases, we retrieved information from touchscreen
questionnaire “Did you only have diabetes during pregnancy?”. Field 4041 was col-
lected from women who indicated that a doctor had told them they had diabetes during
pregnancy (1061 cases). We additionally used data from self-reported illnesses category
on gestational diabetes (data-field 20002, code 1221) (249 cases), and hospital in-patient
episode data with diagnosis code O24.4 “Diabetes mellitus arising in pregnancy” (213 cases)
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(“Diagnoses—main ICD10”) (data-field 41270). Altogether, we have 1270 cases of gesta-
tional diabetes.

The control group contains women who were pregnant and gave live births but did
not report gestational diabetes, gestational hypertension/preeclampsia, or recurrent preg-
nancy losses. Furthermore, women with preexisting conditions were excluded from the
control group. Specifically, for the control pool, we used data for women who had at
least one live birth without complications for gestational diabetes, gestational hyperten-
sion/preeclampsia, eclampsia, or pre-existing diabetes. We included women with the UKBB
diagnosis codes related to live birth and pregnancy O2–O9 or Z34.8, Z37.0, Z37.2, Z37.3,
Z37.5, Z37.6, Z38.1, Z38.3, Z38.6, Z39 (data-field 41270); but excluding those related to codes
relevant for gestational diabetes, gestational hypertension, eclampsia (codes O10–O16), and
preexisting diabetes (O24.0, O24.1, O24.2, O24.3, O24.9). Overall, the procedure resulted in
the control set comprising 13,400 women.

2.2. Genotype and Phenotype Data

To identify variants for building the PGS we utilized the results from Neale lab
GWAS of UKBB phenotypes www.nealelab.is/uk-biobank/ (accessed on 9 June 2022). We
combined the results from traits related to GDM self-report diagnoses (data-field 4041
and data-field 20002, code 1221) and selected SNPs below the significance cutoff 1 × 105.
Overall, this analysis yielded 120 distinct SNPs. The list of relevant SNPs was further
extended based on published GDM studies [15–17] resulting in a final set of 174 SNPs
considered in the analysis.

In addition to the genotype data, we utilized the data on participants’ body mass
index (BMI) to investigate the relationship between the genetic risk of GDM and BMI. In
cases where participants’ BMI (data-field 21001) was repeatedly assessed over the years,
the most recently reported BMI was taken as a BMI estimate. Individuals whose BMI was
not reported or was very low (below 18.5) were excluded from the BMI analysis.

2.3. Procedure for Learning the Polygenic Risk Scores

A PGS is derived from a list of relevant SNPs. PGS is a risk-weighted sum of the
genetic variants, where the number of effect alleles is represented by either 0, 1, or 2, and
the weights are identified by a machine-learning model. The SNPs were first clumped using
PLINK’s LD-based clumping procedure with the physical distance threshold for clumping
set to 10,000, r2 threshold set to 0.02, and the EUR population from the “1000 genomes”
project used as a reference population. The SNPs absent from the reference dataset were
manually checked for LD. The described clumping procedure resulted in 94 unique SNPs
used in further modeling. To further account for potential collinearity among the predictor
variables, the variance inflation factor (VIF) score was calculated for each SNP retained
after clumping. SNPs whose VIF was higher than 10 [18] were iteratively removed from
the set until all VIF values were below the said threshold. To balance the number of cases
and controls in our machine learning, controls were randomly sampled (10 times) so that
the number of controls is 4-times bigger than the number of cases. Thus, this procedure
yielded ten different datasets for learning the models.

Next, two modeling methods were utilized to determine the weights for each variant.
The first procedure relies on the generalized linear model in R statistical language that
fits a logistic regression model to cases and controls. More specifically, the trainControl
and train functions from R’s caret package were used to fit the models to the data. The
models’ performance was estimated by repeating the 10-fold cross-validation process ten
times. Finally, once the ten models were trained (i.e., each of the ten datasets was used to
train a model), the best model was selected based on the area under the receiver operating
characteristic curve (AUC). The second procedure also aimed at fitting a logistic regression
model to the data but using a forward-selection method that minimizes the amount of
information loss due to the model’s simplification, i.e., the Akaike Information Criterion.
For this, we used the stepAIC function in MASS and car R packages. When learning the
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models on each of the ten datasets, the data was separated into training and test sets to
enable performance estimation. Again, the best-performing model was selected based on
the estimated AUC.

95% confidence intervals (CI)s for odds ratios (OR) were calculated as Wald intervals
(or Normal approximation intervals) using the oddsratio function from the epitools
package in R.

2.4. Mendelian Randomization

To run Mendelian Randomization analyses we used the TwoSampleMR package in R and
utilized summary-level data for the genetic associations with exposure and outcomes pro-
vided as part of the package. For the outcome, gestational diabetes from Finnish Gestational
Diabetes [19] study was used. For exposure, BMI, waist circumference , hip circumfer-
ence, glycaemic traits (glucose, glycated hemoglobin) were obtained from the MR-Base
GWAS catalog [20]. Females-specific waist-to-hip ratio (WHR) and four top body principal
components (anthropometric measures) are downloaded from Zenodo [21]. Genetic instru-
ments associated with exposures were obtained with the significance threshold 1 × 10−8.
Pleiotropy was evaluated based on the intercept calculated by MR-Egger regression us-
ing mr_pleiotropy_test with p-value threshold p = 0.05. We report exposure-outcome
relationships that change by at least 10% in the odds ratio (OR >= 1.1 or OR <= 0.9).

2.5. SNP Annotation

SNPs are annotated with genes and genome-wide association studies (GWAS) using
SNPnexus, a web-based variant annotation tool [22,23]. Functional analysis on gene level
is performed using Functional Mapping and Annotation of Genome-Wide Association
Studies, FUMA [24].

3. Results
3.1. Polygenic Risk Score

We here construct a dataset of cases (1270) for GDM and controls (13,400) from the
UKBB, and perform a case-control retrospective study using data. As our goal is to develop
a screening tool to identify at-risk group for GDM, we combined those women who had
only diabetes during pregnancy, and those who have later developed other types of diabetes
(see Section 2: “Materials and Methods”) for detailed explanation of selection of cases and
control groups).

PGS was calculated as a weighted sum of 174 genetic variants selected as described
in the Methods. Weights for each variant were learned by utilizing a generalized linear
model with added collinearity analysis for the predictor variables. The best-performing
model was selected based on the estimated AUC (for details, see Section 2: “Materials and
Methods”). Resulting PGS model has 84 SNPs (Tables 1 and S1) with AUC = 0.64. We also
used the stepwise (forward-selection) procedure that resulted in 51 SNPs (Supplementary
Table S1) and slightly lower AUC = 0.63. We further discuss results from the first model in
the paper, and provide results for the step-wise model in the Supplementary Tables.

To identify women at high risk of GDM, we computed odds ratios (ORs) for GDM by
contrasting the individuals ranked in the top 1%, 2%, 5%, 10%, and 25% PGS values to the
individuals whose PGS values are in the lower 50%. Compared to women in the lowest
half of the PGS, women in the top quantile have OR = 3.60 (CI = [3.13–4.14]), for the top
10% OR = 5.27 (CI = [4.47–6.22]), for the top 5% OR = 6.15 (CI = [5.03–7.52]), for the top
2% OR = 8.75 (CI = [6.68–11.47]), and for the top 1% OR = 10.55 (CI = [7.38–15.06]) (Figure 1
and Supplementary Table S2) . Here CI stands for 95% confidence interval. Similar results
are obtained for a step-wise model (Supplementary Table S2).

Thus, the developed PGS can be utilized as an early screening tool as it can predict
women at high risk of GDM before they become pregnant, and hence allows for early
lifestyle changes and close monitoring.



J. Pers. Med. 2022, 12, 1381 5 of 10

Table 1. SNPs and Weights in the Polygenic Risk Score Model Table 1.

Term Estimate Std. Error Statistic p Value Overlapped
Gene

Nearest
Upstream Gene

Nearest
Downstream

Gene

rs10830963 0.267 0.046 5.834 5.40 × 10−9 MTNR1B
rs6959526 0.378 0.081 4.671 2.99 × 10−6 MGAM
rs34075917 0.205 0.045 4.54 5.63 × 10−6 CTC-419K13.1 ENC1
rs7903146 0.204 0.046 4.45 8.60 × 10−6 TCF7L2
rs11257655 0.209 0.050 4.186 2.84 × 10−5 RN7SL232P RN7SL198P

rs4746822 0.190 0.046 4.123 3.74 × 10−5 RP11-227H15.4;
HKDC1

rs79953201 0.583 0.144 4.037 5.42 × 10−5 HAPLN1
rs34882181 −0.149 0.042 −3.512 4.00 × 10−4 PTPRD

rs535447438 −0.155 0.046 −3.355 8.00 × 10−4 LPHN2
rs141240229 0.318 0.096 3.296 0.001 EEF1A1P9 AC004066.2
rs116847631 0.202 0.062 3.279 0.001 PGR

rs7957197 −0.180 0.058 −3.127 0.0018 OASL
rs116966095 0.258 0.085 3.04 0.0024 CFDP1
rs62603092 −0.248 0.082 −3.014 0.0026 RP11-274K13.5 snoU13
rs2866307 −0.145 0.049 −2.939 0.0033 RP11-168E17.1 RNU6-578P
rs7743373 −0.152 0.052 −2.902 0.0037 RP3-435K13.1 RP3-455E7.1

rs340874 0.123 0.043 2.846 0.0044 PROX1-AS1;
PROX1

rs62052363 0.251 0.092 2.735 0.0062 PKD1L2
rs568927434 0.134 0.049 2.734 0.0063 SPP1

rs4376068 0.121 0.045 2.712 0.0067 IGF2BP2
rs62170385 0.270 0.102 2.64 0.0083 ARHGAP15

rs174550 −0.120 0.046 −2.588 0.0096 FADS2; FADS1
1 Table with top most significant SNPs from the polygenic risk score as the result of machine-learning procedure.
SNPs are annotated using SNPnexus. Full Table with all 84 SNPs and their weights is available in Supplementary
Tables S1 and S3.

Figure 1. Odds Ratios and the corresponding 95% confidence intervals for the GDM. The odds of be-
ing diagnosed with GDM for individuals ranked in the top 1%, 2%, 5%, 10%, and 25% of the PGS com-
pared to the odds of developing GDM in the lower 50% of the PGS. See also Supplementary Table S2.
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3.2. GDM Risk and BMI

Many observational studies have already reported that being overweight is the
strongest predictor of GDM [10], while obesity has been concretely established as a me-
diator of chronic, low-grade, systemic inflammation [25,26]. Genes implicated in BMI in
earlier GWAS are significantly over-represented (p = 1.37 × 10−7 in genes that annotate
SNPs from our PGS model) (Supplementary Table S3).

To further investigate the association of BMI within genetic risk groups with GDM,
we divided samples into three groups according to BMI: low (18.5–25), medium (25–30),
and high >= 30 [27]. Furthermore, the PGS was divided into seven levels (i.e., septiles).
In this manner, the participants were separated into 21 groups based on their similar BMI
and PGS. Computed ORs for each group were then compared to those with the medium
BMI group and median PGS (Figure 2 and Supplementary Table S2). Similar results are
obtained for a step-wise model (Supplementary Table S2).

Across all three BMI groups, higher PGSs were associated with higher incidences of
GDM. The effect of genetics in the low BMI group was very modest while in medium and
high BMI groups the risk of GDM was increasing at least linearly with percentile of PGS.
High BMI was associated with much higher risks even compared to high PGS with medium
and low BMI. Thus, our studies confirm that the contribution of BMI to the risk of GDM is
substantial, and it outweighs the contribution of genetics for low, and even medium BMIs.

It is worth noting that for most of the cases and controls in our dataset, reported BMI is
measured years after pregnancy and the occurrence of GDM. The age of UKBB participants
is 37–73 with the mean age 56.53. Hence, it is not possible to dissect the cause and effect
here. This data does not explain whether GDM may have triggered diabetes that resulted
in higher BMI later in life, or pre-pregnancy high BMI is a risk factor for GDM.

Figure 2. The odds ratios of the groups defined based on BMI and PGS levels. The group of
participants with medium-level PGS (43–57%) and medium level BMI (25–30) are taken as a reference
group (Supplementary Table S2).

To resolve this, we turn to Mendelian Randomization (MR), an increasingly popular
computational technique often referred to as “nature’s randomized trial”. MR uses genetic
instrumental variables to make causal inferences between exposures and outcomes [28].
Earlier MR analyses investigated causal effects on GDM of 282 metabolic measures and risk
factors available in the MR-Base GWAS catalog [20], including metabolites, anthropometric
measures, hormones, immune system phenotypes, kidney traits and metals [12]. They
reported that only BMI demonstrated significant evidence for a causal effect on GDM risk.
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3.3. GDM Risk and Female-Specific Anthropometric Measures

We performed two-sample MR analyzes to investigate causal effects of BMI, waist
circumference, other anthropometric measures, and glycemic traits on GDM from Finnish
Gestational Diabetes (FinnGeDi) [19]. Our MR analyses confirm that genetically proxied
BMI (ukb-b-19953) significantly and causatively increases the risk of GDM (OR = 1.73;
CI = [1.51–1.98]; p = 3.63 × 10−15) (Supplementary Table S4). Similarly, genetically proxied
waist circumference (ieu-a-62) increases the odds of GDM by more than 2-fold (OR = 2.38,
CI = [1.57–3.61]; p = 4.31 × 10−5). Similar increase in the risk of GDM is caused by hip
circumference (ieu-a-51). The estimated causal effect of BMI, waist circumference, hip
circumference on GDM risk was consistent for different exposure variables, p-value cut-offs
and across multiple MR models.

We further utilized female specific measures, such as waist-to-hip ratio (WHR) and
four specific anthropometric measures (axes) computed from fourteen anthropometric
traits from the UK Biobank through principal component analysis [21]. The top four
principal components were defined as new anthropometric measures representing body
size, adiposity, predisposition to abdominal fat deposition, and lean mass.

Female specific waist-to-hip ratio (WHR) is the top anthropometric risk factor for
GDM (OR = 1.76, CI = [1.51–2.06]; p = 2.77 × 10−12). Further, female specific adiposity
(OR = 1.71, CI = [1.46–2.01]; p = 5.44 × 10−11) and predisposition to abdominal fat deposi-
tion (OR = 1.44, CI = [1.28–1.63]; p = 2.43 × 10−9) are also significantly associated with the
odds of GDM. It was reported that adiposity had much stronger effects on many obesity-
related diseases, including diabetes, hypertension, hypercholesterolemia and ischemic
heart disease [21]. Similarly, predisposition to abdominal fat deposition, despite being
weight- and BMI-neutral, was a risk factor for many of the same obesity-related diseases as
adiposity (Supplementary Table S4).

MR analyses further confirm that genetically proxied levels of glycemic traits such as
glucose (ieu-b-114; OR = 5.98, CI = [2.80–12.73]; p = 3.61 × 10−6), and glycated hemoglobin
levels (ebi-a-GCST90002244; OR = 4.74, CI = [1.82–12.32]; p = 0.0014) causatively and
substantially increase the odds of GDM (Supplementary Table S4). This is expected as
glycemic traits are used to define GDM, and earlier studies reported that genetic risk
scores for elevated fasting glucose and insulin, reduced insulin secretion and sensitivity
have been used to predict GDM risk, with and without adjustment for body mass index
(BMI) and maternal age [14]. We further identify genetically proxied insulin-like growth
factor 1 (IGF1), implicated in glucose homeostasis, as a causative factor for GDM (OR = 1.15;
CI = [1.04–1.29]; p = 0.009). A longitudinal study [29] observed a significantly increased
risk of GDM associated with higher concentrations of IGF-I (as well as molar ratio of IGF-I
to IGFBP-3, and lower concentrations of IGFBP-2), weeks earlier before GDM is typically
screened for.

4. Discussion

Women who are at average risk of GDM are currently recommended an oral glucose
tolerance test between 24 and 28 gestational weeks as the method of GDM diagnosis.
According to the Mayo clinic, women at high risk of GDM are generally determined by
being overweight before pregnancy, and having diabetes in the family. Women at high risk
may be offered a test for GDM early in pregnancy, likely at the first prenatal visit.

There is an obvious problem with this approach. GDM carries significant short-term
and long-term adverse health outcomes for both mother and offspring, which reinforces
the significance of understanding risk factors, in particular modifiable factors, for GDM
and of preventing the condition. Treating the short- and long-term complications of GDM
are costly, amounting to tens of thousands of USD per person. Therapeutic options for
women with GDM are limited to insulin injections or a small selection of second-line
oral antihyperglycemic agents. Clearly, current approaches do not address preconception
care and lifestyle interventions that might prevent, control or mitigate risks associated
with GDM.
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In this study we develop and cross-validate a genetics-based screening tool for identi-
fying women at risk for GDM even before they become pregnant. From a saliva or a cheek
swab test, a PGS, based on 84 genetic variants, predicts that women in the top 5% of PGS
have a more than 6-fold (OR = 6.15; CI = [5.03–7.51]) increased risk of gestational diabetes
compared to lower 50% of the PGS.

4.1. Functional Analysis

Out of 84 SNPs utilized in the PGS, 37 have been implicated in various GWAS with
the most prevalent traits being associated with diabetes, glucose, and glycemic traits
(Supplementary Table S3). Most of the annotated SNPs have been implicated in multiple
phenotypic traits, with the top pleiotropic SNP, rs1260326 in the GCKR gene being associ-
ated with 113 traits, from diabetes, glucose and glycemic pregnancy traits to anthropometric
traits and various biomarkers.

Just over a third of SNPs (31) from the PGS are annotated to genes (Supplementary
Table S3), most of which are highly pleiotropic. Functional enrichment analysis of these
genes results in numerous phenotypic traits and biological processes that are significantly
over-represented (Supplementary Table S3). Top highly enriched categories include fasting
blood glucose (p = 2.46 × 10−33), type 2 diabetes (p = 2.04 × 10−27), glycated hemoglobin
levels (p = 2.88 × 10−19), glycemic traits in pregnancy (p = 2.83 × 10−11), and other glu-
cose and insulin related traits and biological processes such as cell signaling, hormone
secretion and transport. Other over-represented traits include biomarkers, such as triglyc-
erides (p = 1.07 × 10−12), HDL cholesterol (p = 1.45 × 10−10), C-reactive protein levels
(p = 4.28 × 10−7).

Over half of SNPs (47) from the PGS do not have GWAS annotations, and 24 of these
SNPs are located in the intergenic regions, not mapped to any coding genes or non-coding
RNAs. Four SNPs that contribute to the PGS are mapped to the X chromosome, and only
one of these SNPs (rs5945326) has been implicated in type 2 diabetes in Europeans and East
Asians. The molecular events underlying the effect of 3 other SNPs on the development of
GDM are not known.

4.2. Risk Factors for GDM

We further identified anthropometric measures that causally increase the risk of GDM
which is in line with earlier observations from observational studies. Specifically, BMI,
WHR, adiposity, and abdominal fat deposition are significantly associated with an increased
risk of GDM. Interestingly, the abdominal fat deposition, despite being weight and body-
mass neutral, is a significant risk factor for GDM with a slightly weaker effect (OR = 1.4)
compared to the contribution of WHR (OR = 1.75) or adiposity (OR = 1.7). Predisposition
to abdominal fat deposition, likely reflecting a shift from subcutaneous to visceral fat, has
already been identified as a risk factor for ischemic heart disease, hypercholesterolemia,
and diabetes. We here confirm that predisposition to abdominal fat deposition is a risk
factor for GDM that needs to be taken into consideration while assessing women’s risk.

4.3. Limitations

Our model has several limitations. Firstly, the PGS screening tool developed in this
study has a moderate AUC of 0.64. However, we demonstrate that the PGS potentially
captures sufficient information to identify a high-risk subgroup of women who could be
offered lifestyle modifications and closer monitoring during or even before their pregnancy.
In fact, there have been lots of discussions on utilizing PGSs as predictive biomarkers
for high-risk subgroups for a wide range of diseases, including cancers [30]. Hence, PGS
developed in this paper can be used as an early predictive compound biomarker for GDM.

Another limitation of this study is the fact that it was built on data from the UKBB
which largely contains a white European population. Hence, its applicability to other ethnic
groups may be compromised. Future studies should include women from other ethnic
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groups, and in particular Black and Hispanic women who are disproportionally affected
by GDM.

Further, while our study quantifies the odds ratios for several risk factors, our screen-
ing tool does not combine them into one model to provide step-by-step guidance for
clinicians. The model should also include the mother’s age as several observations report
advancing pregnancy age as a risk factor for GDM. This is a subject of further studies that
require large cohorts from different ethnicities.

5. Conclusions

In this study, we develop a genetics-based predictive screening tool for GDM. This
inexpensive test can be seamlessly utilized at home or in clinical practice to identify high-
risk women even before they become pregnant providing an opportunity to offer them
GDM preventative preconception lifestyle strategies, and close monitoring by healthcare
providers during the early stages of pregnancy. This early screening tool for GDM can
potentially be integrated with other risk factors, including anthropometric measurements,
and biomarkers.
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