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Asthma is the most common chronic respiratory disease and its

prevalence is on the increase. Respiratory viral infections in early

life have been suggested to increase the risk of development of

asthma in later life and virus infection remains the single greatest

precipitant of asthma exacerbations. The development of

effective anti-viral treatments remains a key target for

therapeutic intervention. Here we discuss the role of respiratory

viral infection in asthma exacerbation and highlight current and

potential anti-viral agents and their mechanisms of action.
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Introduction
Asthma is a heterogeneous airway disease characterised by

airway inflammation, airway hyperreactivity, reversible

bronchoconstriction and airway remodelling. Patients

experience shortness of breath, fluctuations in normal

breathing patterns, and also periodic episodes of wheeze

and cough. Asthma is treated with inhaled corticosteroids,

with and without other therapies including short or long

acting bronchodilators. Asthma exacerbations (AEs) are the

major cause of morbidity, mortality and healthcare costs

associated with asthma [1,2�], and are generally defined as

worsening of the above symptoms accompanied by a drop

in lung function prompting a GP consultation or visit to the

emergency room. In extreme cases, AE can require oral
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corticosteroid therapy, supplemental oxygen and may

result in death. Respiratory virus infections account for

at least 80% of exacerbations in adults and children [3–6]

and among respiratory viruses human rhinoviruses (RVs)

are by far the most common viruses associated [3,6,7].

The importance of respiratory viruses as triggers of AE

has therefore made them a target for therapeutic inter-

vention. In this review we discuss the potential of two

therapeutic approaches, one targeting host factors that

may induce natural anti-viral immunity, such as the

addition of an anti-viral cytokine, manipulation of the

host’s immune response such as administration of a

vaccine, and secondly targeting the virus itself; in-

cluding small molecule inhibitors of virus replication,

and virus specific immunotherapy. These approaches

are summarised  in Figure 1. Because of the overwhel-

mingly important role viruses play in AE, we argue that

now is the time to carefully re-consider anti-viral inter-

ventions for AE.

Respiratory viruses are potent exacerbators
of asthma
Respiratory virus infections are triggers of AE. Viruses

such as RVs, respiratory syncytial virus (RSV), seasonal

influenza A viruses, metapneumoviruses, coronaviruses

and bocaviruses may all trigger AE in adults and children.

Atypical bacteria Mycoplasma pneumoniae (M. pneumoniae)
and Chlamydophila pneumoniae (C. pneumoniae) are also

common respiratory pathogens associated with AEs in

both adults and children [8–10]. The major viruses associ-

ated with AEs are RVs, accounting for approximately 60%

of all AE in all ages [6,7]. RVs are members of the

Picornaviridae, and are positive sense ssRNA viruses with

genomes of 7.1–7.5 kb and can be divided into major and

minor groups based on receptor utilisation. Major group

RVs bind ICAM-1 while minor group RVs bind the LDL

receptor. RVs may also be classified based on nucleotide

sequence identity (RV-A, RV-B, RV-C). The RV-C group

[11��,12] have unique sequences at the ICAM-1 and LDL

receptor binding sites, suggesting they use a unique,

currently unknown receptor [13��]. RVs represent a

diverse group of viruses with 100 serotypes known and

an estimated further �60 or so group C viruses. RV-C may

cause more severe AEs, although how this occurs is

currently unknown [12]. In the northern hemisphere,

RV infection precipitates an increase in emergency room

admissions due to AEs [14], known as the ‘asthma epi-

demic.’ This occurs in the third week of September, after

children return to school, highlighting that school age
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Anti-viral approaches may (1) prevent viruses acting in a synergistic or additive manner with allergens, and cause immune deviation to a Th1 rather

than Th2 immune response. Anti-viral approaches may be (2) agents that prevent virus infection or replication at mucosal surfaces and prevent

epithelial damage, inflammation, mucous production, activation of macrophages and attraction of neutrophils into the lung, which promote further

inflammation and damage.
children are vectors for RV infection and their crucial role

in AEs [7]. Major and minor group RV mouse models of

RV infection [15��,16] and RV induced exacerbations of

airway allergen challenge [15��,17] have also recently

been developed. These animal studies mirror the human

data gathered to date and support the idea that RV

infection augments airways inflammation caused by aller-

gen sensitisation and challenge, providing further evi-

dence that respiratory viruses such as RV exacerbate

asthma.

Targeting host factors
Type I IFN therapy

Recent studies have reported that impaired innate

immunity to virus infections is important in the patho-

genesis of AEs. Reduced capacity to induce type I

interferons (IFNs) IFN-a, IFN-b or type III IFNs,

the IFN-ls upon challenge with respiratory viruses or

the dsRNA mimetic polyIC in bronchial epithelial cells
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(BECs), bronchoalveolar lavage (BAL) macrophages,

dendritic cells (DCs) and peripheral blood mononuclear

cells (PBMCs) from persons with asthma have recently

been described [18�,19,20��,21,22�,23,24��,25��,26��].
Importantly, deficient IFN-l was also strongly related

to virus load, and AE pathogenesis and severity in vivo
[22�]. The mechanism responsible for impaired IFN-a,

IFN-b and IFN-l remains poorly understood. However,

the above studies advocate a role for IFN therapy in AE.

Recently, a phase II placebo controlled trial of inhaled

IFN-b in poorly controlled adult atopic asthmatics was

performed [27]. Inhaled IFN-b, started at the reporting

of a clinical cold, showed promise, reducing rates of AE in

this group and increasing lung function. Virus load was

studied in only a few patients, and showed trends for

lower virus loads in treated patients. Therefore, inhaled

IFN-b improves AE rates and associated symptoms, most

likely due to a direct anti-viral activity. It is also possible

that IFN-b could modulate additional processes, such as
www.sciencedirect.com
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acting as an antagonist of Th2 immunity. Recent studies

have shown that IFN-b and type III IFN-l have potent

Th2 antagonistic activity [28,29�], suggesting that

inhaled IFN-b may deliver a benefit on two levels in

atopic asthma, firstly reducing virus replication and

hence virus driven inflammation, and secondly dampen-

ing the Th2 responses to allergens. Further studies with

inhaled IFN-b in AE are eagerly anticipated.

Macrolide antibiotics

Macrolides have been shown to have anti-inflammatory

[30], bactericidal [31] and recently anti-viral activity [32�].
The keto-macrolide telithromycin had previously shown

efficacy in AE in adult asthmatics in a phase IV clinical

trial [10]. The mechanism responsible for this beneficial

effect is unknown, and telithromycin could have been

merely acting as an anti-inflammatory agent. In cell based

assays, azithromycin, but not the closely related erythro-

mycin or telithromycin, was shown to have anti-viral

activity to RV by inducing IFN and interferon stimulated

genes (ISGs) [32�]. This was a previously unknown

property of azithromycin, and has since promoted the

further investigation of azithromycin in phase IV clinical

trials in AE which are currently ongoing.

Toll like receptor (TLR) 7/8 agonists

TLR7/8 recognise synthetic and virus encoded ssRNA

and small analogues of nucleic acids including imiqui-

mod, R848 and their derivatives. TLR7/8 are expressed

on cells of myeloid or lymphoid origin including macro-

phages and DCs. While viruses certainly induce inflam-

mation via recognition of ssRNA, the addition of TLR7/8

agonists in mouse models of allergen sensitisation and

challenge [33,34�] show a suppression of allergic airway

inflammation. Why TLR7/8 agonists are protective in

these models is not completely understood; however, it

is generally accepted that TLR7/8 ligation may be useful

in treating allergic diseases such as asthma. For example,

recent studies of allergic airways inflammation following

sensitisation and challenge to ovalbumin showed that the

TLR7 agonist R848 was protective [33,34], reducing

eosinophilic inflammation, lung function impairment

and ovalbumin-specific Th2 T cell responses. Impor-

tantly, the effects of R848 were not observed in TLR7

deficient mice, showing that R848 acts as a TLR7 agonist

and the protective effect is via TLR7 signalling [33].

Vaccines

The number of viruses implicated in the aetiology of

asthma and their associated antigenic diversity has thus

far limited development of effective vaccines.

There are a number of potential RSV vaccine candidates

although none are currently licensed for use [35–38]. The

creation of an effective RSV vaccine was significantly

affected following the use of formalin inactivated RSV

(FI-RSV) vaccine in the 1960s which led to increased
www.sciencedirect.com 
morbidity and enhanced respiratory disease following

infection with live virus and the subsequent deaths of

2 children [39,40]. This phenomenon was felt to be as a

result of induction of Th2 immune responses by the

vaccine [41,42].

A new development in the creation of vaccines has been

the use of TLR ligands as adjuvant agents. One recent

study using monophosphoryl lipid A (MPLA), a deriva-

tive of bacterial LPS, incorporated with RSV virosomes

demonstrated an enhanced Th1 response with increased

production of IFN-g and decreased IL-5 in animals

immunised with vaccine and then challenged with virus

[36��]. The MPLA adjuvanted vaccine conferred similar

protection from live RSV virus as FI-RSV vaccine but

with no evidence of enhanced respiratory disease. In

addition the use of MPLA led to enhanced immunogeni-

city of the RSV vaccine with production of higher affinity

antibodies.

The only vaccines commercially available and recom-

mended for use are against influenza where the annual

vaccine has been shown to play a key role in the preven-

tion of virus infection and its associated morbidity [43�].
This preventive approach may well have advantages over

treatment of acute viral infections where current treat-

ment options are limited.

As RV infections are implicated in the vast majority of

virus induced AEs they are perhaps the most attractive

target for a respiratory vaccine. However, there are >100

serotypes of RV and unlike influenza there is limited

epidemiological information regarding the most import-

ant circulating serotypes [11��]. Humans are infected with

RV in early life and recurrently through life and most

adults have antibodies to multiple RV strains, complicat-

ing human study of antibody responses. Improved diag-

nostic and molecular techniques have recently allowed

the identification of the RV-C group further highlighting

the difficulty in selecting specific serotypes for vaccine

generation [11��].

A major hurdle to the understanding of antibody pro-

duction following virus infection has been a scarcity of

animal models that have allowed us to study both

asthma exacerbations and the subsequent effects of

immunisation in greater detail [15]. A recent paper

describing a novel mouse model of RV infection and

immunisation has allowed study of RV mediated induc-

tion of antibody responses [44��]. This paper demon-

strated the generation of strong cross-serotype IgG

responses to the RV capsid protein VP1 and that

multiple infections were necessary to induce neutralis-

ing antibodies [44��]. Another group have also recently

shown that use of a recombinant VP1 protein was able to

generate neutralising antibodies displaying cross-reac-

tivity to distantly related RV strains [45]. These studies
Current Opinion in Pharmacology 2013, 13:331–336
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suggest that efforts to develop RV vaccines may be

worth re-visiting.

Targeting the virus
Small molecule inhibitors of virus infection and

replication

Using small molecule inhibitors of RV infection, replica-

tion or release was a popular theme in the 1980s and 1990s

for the treatment of the common cold. Despite approaches

showing some promise in common cold studies, the use of

these anti-virals has yet to be examined in virus induced

AE. Small molecule anti-virals offer the advantages of

being cost effective (small molecule production and vali-

dation), and their selectivity and safety is relatively

straightforward to establish. They have disadvantages in

that they may be limited to specific virus types, may select

for escape mutants over time and may suffer from toxicity

or have side effects with continual use.

The anti-RV agent Pleconaril was used in randomised,

placebo-controlled, phase II clinical trials as a treatment

of the common cold [46]. Pleconaril prevents uncoating of

most serotypes of RVs. Pleconaril was tested as a thera-

peutic agent, with infected individuals beginning therapy

1–1.5 days after experiencing clinical colds. Pleconaril

showed significant improvement in mean symptoms

scores and decreases in mean duration of illness. Despite

promising initial results, Pleconaril was abandoned as a

treatment due to side effects.

The RV 3C protease inhibitor Ruprintrivir was tested in a

double blind, placebo-controlled phase II trial of exper-

imental RV39 challenge [47]. Ruprintrivir was designed

to bind irreversibly to the RV 3C active site. As a pro-

phylaxis, Ruprintrivir reduced mean total symptom score,

viral titre and nasal secretions but not the incidence or

frequency of clinical colds. As a therapeutic treatment,

Ruprintrivir also reduced symptom scores, nasal

secretions and viral titre.

The soluble ICAM derivative Tremacamra was tested in

randomised double-blind placebo-controlled studies both

as a therapeutic and prophylactic intervention to RV39

challenge [48]. Tremacamra showed promise as a therapy,

reducing the frequency of colds, total symptom score,

nasal mucus weight, and virus induced inflammation.

Quercetin is a polyphenol which has a range of properties

some of which are anti-viral. Quercetin is thought to

inhibit phospho-inositol-3-kinase inhibition and inhi-

bition of viral endocytosis, RV and poliovirus protease

activity, and RNA polymerase activity of some RNA

viruses. In a mouse model of RV infection, Quercetin

if given during infection reduced virus titre and improved

lung function. However, if given daily for 10 days finish-

ing 40 hours before RV infection, Quercetin had little

effect on virus replication and lung function [49�].
Current Opinion in Pharmacology 2013, 13:331–336 
Development of all these drugs was abandoned for var-

ious reasons. However, considering the role of viruses in

AE, and the available human and mouse models of virus

induced AE, there has never been a better time to trial

small molecule anti-virals as therapies for AE. The future

is likely to witness further studies of anti-virals as a

potential treatment for virus-induced AE.

Virus specific antibodies

The recombinant monoclonal antibody (MAb) Palivizu-

mab has been licenced for use in human RSV immuno-

prophylaxis since 1998 [50]. It acts against an epitope in

the A region of the RSV fusion protein and has been

shown to reduce the rate of hospitalisations in high risk-

infants when used prophylactically [50]. There is a scar-

city of evidence regarding the role of Palivizumab in the

treatment of acute RSV disease with evidence predomi-

nantly limited to case reports and small retrospective

studies. A single dose of 15 mg/kg in children intubated

with respiratory failure due to RSV was shown to reduce

RSV concentration in tracheal aspirates [50] and Palivi-

zumab has been shown to be well tolerated in adult stem

cell transplant recipients [51]. However, there is a need

for further large scale studies to assess the role of Pali-

vizumab as therapy in RSV infection.

Motavizumab (MEDI-524, MedImmune) is a second

generation MAb developed from Palivizumab by affinity

maturation [52]. In comparison to Palivizumab, it has

been shown to bind to RSV F protein 70-fold better and

have an approximately 20-fold improvement in neutral-

isation of RSV in vitro [52] as well as being able to reduce

pulmonary RSV titres up to 100-fold lower than equiv-

alent doses of Palivizumab [52]. Motavizumab is able to

inhibit viral replication in the upper respiratory tract

making it a potentially attractive therapy for treatment

of RSV infection [52]. A study comparing Motavizumab

with Palivizumab for RSV prophylaxis showed that

Motavizumab treatment resulted in 50% fewer RSV

related lower respiratory tract infections needing medical

attention [53]. However, this study also documented an

increase in cutaneous hypersensitivity reactions and

Motavizumab is not currently licenced for use in humans.

There has been a growing body of work directed towards

the generation of MAbs against influenza. Two recently

described MAbs, Fi6v3 and PN-SIA28, have been shown

to be broadly neutralising against both group 1 and 2

influenza A subtypes [54��,55��]. Fi6v3 antibody was

generated from single cell culture of plasma cells from

individuals following natural influenza A infection or

vaccination and passive transfer of this MAb was protec-

tive in both mice and ferrets against H1, H3 and H5

subtypes [54��]. PN-SIA28 was identified from a single

healthy donor who had a negative history for influenza in

the preceding decade and it too demonstrated neutralis-

ing activity against group 1 and 2 subtypes [55��]. Both
www.sciencedirect.com
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Fi6v3 and PN-SIA28 act on regions near the HA stem and

have identified new mechanisms underlying virus–host

interaction and new areas of interest in development of

anti-viral therapies [54��,55��]. There are currently no

MAbs available for use against RV.

Concluding remarks
Current treatment options for AE are limited and have

developed little in recent years. Furthermore, these

treatments do not address the cause of the exacer-

bations, nor specific mechanisms involved in their

pathogenesis.  New clinical studies are needed to further

our understanding of the mechanisms of virus induced

AE so that targets for development of novel approaches

to prevention and therapy can be identified. Anti-viral

therapies may be a source of these new therapies; this

review has highlighted potential therapies that target

the virus or boost host response to the virus. The latter

approach is based on recent studies that show an impair-

ment in the ability of the asthmatic host to raise an

effective anti-viral immune response, and there are

several potential ways to restore this. Alternatively,

the virus itself may be targeted, using specific anti-virals

or immunotherapy. We believe the future will likely

see greatly increased study of anti-viral therapies in

one form or another for treatment/prevention of virus

induced AE.
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