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Abstract

COVID-19 vaccination raised serious concerns among the public and people are mind

stuck by various rumors regarding the resulting illness, adverse reactions, and death. Such

rumors are dangerous to the campaign against the COVID-19 and should be dealt with

accordingly and timely. One prospective solution is to use machine learning-based models

to predict the death risk for vaccinated people and clarify people’s perceptions regarding

death risk. This study focuses on the prediction of the death risks associated with vaccinated

people followed by a second dose for two reasons; first to build consensus among people to

get the vaccines; second, to reduce the fear regarding vaccines. Given that, this study uti-

lizes the COVID-19 VAERS dataset that records adverse events after COVID-19 vaccina-

tion as ‘recovered’, ‘not recovered’, and ‘survived’. To obtain better prediction results, a

novel voting classifier extreme regression-voting classifier (ER-VC) is introduced. ER-VC

ensembles extra tree classifier and logistic regression using soft voting criterion. To avoid

model overfitting and get better results, two data balancing techniques synthetic minority

oversampling (SMOTE) and adaptive synthetic sampling (ADASYN) have been applied.

Moreover, three feature extraction techniques term frequency-inverse document frequency

(TF-IDF), bag of words (BoW), and global vectors (GloVe) have been used for comparison.

Both machine learning and deep learning models are deployed for experiments. Results

obtained from extensive experiments reveal that the proposed model in combination with

TF-TDF has shown robust results with a 0.85 accuracy when trained on the SMOTE-bal-

anced dataset. In line with this, validation of the proposed voting classifier on binary classifi-

cation shows state-of-the-art results with a 0.98 accuracy. Results show that machine

learning models can predict the death risk with high accuracy and can assist the authors in

taking timely measures.
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Introduction

Several pandemics appeared during the last two decades like severe acute respiratory syn-

drome (SARS), Middle East respiratory syndrome (MERS), and corona virus disease 2019

(COVID-19), etc. COVID-19 led to infect approximately 308 million people in 223 countries

leading and caused 5.492 million deaths as of 12 January 2020 [1]. The ongoing COVID-19

pandemic impacted the individual, as well as, public life of human beings on a global scale,

and containing it seems to be very difficult. Although, it possibly can be confined like other

viruses such as HKU1, NL63, 229E, and OC43, however, the substantial human and financial

loss remains the main concern [2]. Precautionary measures against COVID-19 such as sanita-

tion procedures, physical distancing, personal hygiene, mask usage, disinfection of the sur-

faces, and frequent hand washing are essential to reduce its spread. However, the case fatality

ratio (CFR), a measure of mortality among infected cases, continues to increase [3]. Immunity

against COVID-19 can facilitate a safe return to normal life [4] which is aimed by several

developed vaccines like Moderna, Pfizer (BioNTech), Johnson & Johnson, etc. [5]. As of

December 2020, several vaccines have been administered with different efficiency and immu-

nity against COVID-19, as shown in Fig 1.

Vaccines do cause side effects, both minor and major, and COVID-19 vaccines have no

exception. Reports of adverse side effects following the first and second doses of COVID-19

vaccination are submitted to the vaccine adverse event reporting system (VAERS). From Janu-

ary 1 2021 to March 19, 2021, a total of 5351 adverse events have been reported to VAERS.

The adverse side effects range from mild to severe such as fever, pain, diarrhea, fatigue,

blood pressure, chills, muscle pain, headache, and pain at the injection site. Similarly, several

COVID-19 positive cases are reported in several countries even after full vaccination. Blood

clotting, severe allergic reactions, cardiac problems, and resulting deaths are also reported fol-

lowing adverse events such as cardiac arrest, abdominal pain, etc. There is also a theoretical

risk that vaccination could make infection severe by enhancing the respiratory disease [6].

Such adverse reactions and death reports make it significantly important to analyze the data

regarding the adverse effects of COVID-19 vaccines and report reactions with a higher proba-

bility of fatality to assist healthcare professionals in prioritizing the cases with adverse effects

and provide timely medical treatment.

Fig 1. Vaccines and reported efficacy for COVID-19.

https://doi.org/10.1371/journal.pone.0270327.g001
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Machine learning (ML) is the automated discovery of potentially valid or useful knowledge

and novel hidden patterns from data [7]. ML models operate by identifying relationships and

patterns among the data instances in single or multiple datasets. ML has been widely applied

in healthcare sectors for its applications in simulating health outcomes, forecasting patient out-

comes, and evaluating medicines [8]. Recently, ML has also been extensively used in the diag-

nosis and prognosis of many diseases like COVID-19, as immense data is being generated

regarding COVID-19 [9]. Such data can be analyzed to predict the COVID-19 case and devise

corresponding policies to contain the pandemic. Similarly, data associated with adverse events

reports post-COVID-19, gathered by VAERS was made public on the 27th of January, 2021

which motivated current research.

This study demonstrates an enhanced ML-based prediction system to analyze the adverse

events associated with the COVID-19 vaccine and predict individuals with symptoms that

might cause fatality so that healthcare professionals can treat the individuals beforehand. It

helps medical experts critically monitor vaccinated individuals with death risks. This study

makes the following major contributions

• A systematic approach is presented for studying the adverse events reported after COVID-

19 vaccination for possible death leading symptoms. Three significant events hold special

importance in this regard including ‘not survived’, ‘recovered’, and ‘not recovered’.

• To obtain a higher prediction accuracy, a novel voting classifier ER-VC is devised that com-

bines extra tree (ET) classifier and logistic regression (LR) under soft voting criterion. Multi-

ple experiments are performed to investigate the problem using models like random forest

(RF), LR, ET, multilayer perceptron (MLP), gradient boosting machine (GBM), AdaBoost

(AB), k nearest neighbors (kNN), and stochastic gradient descent (SGDC). Moreover, long

short term memory (LSTM), convolutional neural network (CNN), and bidirectional LSTM

(BiLSTM) are also implemented for appraising the performance of the proposed approach.

• For reducing the effect of model overfitting and analyzing the influence of data balancing,

synthetic minority oversampling technique (SMOTE) and adaptive synthetic (ADASYN)

resampling approaches are also integrated.

• Performance of the proposed approach is compared in terms of accuracy, recall, etc., as well

as, with the existing state-of-the-art studies.

The rest of this study is organized into five sections. Starting with the discussion of previous

works related to this study, the study follows the proposed approach, ML models, and dataset

description. After that, the analysis and discussion of the results are provided. In the end, the

study is concluded.

Related work

Substantial economic and human losses are inflicted by the COVID-19 pandemic around the

globe. The disease is difficult to treat based on previous methods used for treatment. However,

with the modern electronic health records and advanced technologies, conducting research

has become fast and easy. Medical and government institutions maintain repositories of

COVID-19 patients and the associated symptoms are used to explore health risks. Laboratory

tests, radiological reports, and patients’ symptoms have been analyzed using ML models by

many researchers. Early studies mostly focused on disease diagnoses and predicting the death

rate of COVID-19 patients based on statistical models [10]. After some time, hospital records

of patients are mostly used to identify potential risks [11].
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The rapid outbreak and wide expansion of the COVID-19 pandemic and its potential risk

to human lives compelled different medical research laboratories and pharma industries to

start developing the COVID-19 vaccine at a fast pace. For providing herd immunity to people,

there was a need for a safe and effective vaccine in a short time [12]. At the end of 2020, 48 vac-

cines were available at the clinical trial phase, and three vaccines including Pfizer, Moderna,

and AstraZeneca completed this phase in the US [13]. During the first phase, millions of health

professionals were vaccinated, then populations at higher risk such as people older than 65

years are covered [14].

Severe outcomes leading to the death risk of COVID-19 patients are associated with differ-

ent pre-existing medical conditions and comorbidities [9, 15]. Approximately more than 40%

of patients hospitalized with COVID-19 had at least one comorbidity [16]. In a similar study,

authors analyzed comorbidities between survivor and non-survivor patients [17]. Common

diseases included diabetes mellitus, cardiovascular disease, chronic obstructive pulmonary dis-

ease, hypertension, and kidney-related diseases. Various other biomarkers such as C-reactive

protein, high level of ferritin, white lymphocyte count, blood cell count, procalcitonin, and d-

dimer are related to health risks and are increasing the mortality rate of COVID-19 patients

[18]. These biomarkers and other symptoms could offer advantages in predicting death risks.

Authors have explored many ML-based techniques using patients’ symptoms and labora-

tory reports during hospitalization [19]. Researchers are diligent in defeating COVID-19 by

exploring ways of COVID-19 detection [20] and devising frameworks to control the spread of

disease [21]. Researchers applied an ML model to electronic health records to predict the mor-

tality rate of COVID-19 patients [22]. However, the non-infected population is getting benefits

from vaccination. Because of heterogeneity among the population due to demographic catego-

ries, risk patterns regarding COVID-19 disease and vaccine are difficult to predict. Different

factors are involved in predicting death risks such as unique health history, obesity, cancer his-

tory, hereditary diseases, and different immunity levels. Medical professionals are striving to

allocate resources and provide help in maximizing the survival probability. This study makes a

significant contribution toward maximizing the survival rate of vaccinated people by predict-

ing the probability of fatal outcomes by analyzing the post-vaccination symptoms. We lever-

aged growing electronic records and advanced predictive analytical methods to predict the

risk associated with the side effects of COVID-19 vaccines to assist healthcare professionals.

Material and methods

The prime objective of this study is to provide a highly accurate prognosis for death-risk

patients. In addition, recovered and not recovered cases are also considered concerning the

adverse events reported after the second dose of the COVID-19 vaccine. This study considers a

two-stage strategy where Stage I investigates the multiclass classification into ‘not survived’,

‘recovered’, and ‘not recovered’. Stage II, on the other hand, deals with the binary classification

of the adverse reactions into ‘survived’ and ‘not survived’. A brief description of the dataset uti-

lized in this study and the proposed methodology are discussed in this section.

Dataset description

COVID-19 VAERS dataset acquired from Kaggle is used for experiments. VAERS is an open

repository for benchmark datasets and has been used by several previous studies [23]. It con-

tains reports of adverse reactions after the COVID-19 vaccine and records several other attri-

butes related to the reporting individuals [24]. The dataset includes 5351 records and 35

variables; attributes and their description are provided in Table 1.
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Since the goal is to investigate the death risk of vaccinated individuals, only three variables

‘RECOVD’, ‘DIED’, and ‘SYMPTOM_TEXT’ are utilized for multiclass classification and two

variables ‘DIED’ and ‘SYMPTOM_TEXT’ for the binary classification problem. ‘DIED’ is fur-

ther classified into ‘survived’ and ‘not survived’ which have 4541 and 810 records, respectively.

‘RECOVD’ has three target classes ‘recovered’, ‘not recovered’, and ‘recovery status unknown’

that have 1143, 2398, and 1810 records, respectively. A few of the ‘DIED’ cases are labeled as

‘not recovered’ while others as ‘recovery status unknown’ category, as shown in Fig 2a. Analy-

sis of ‘DIED’ and ‘RECOVD’ features shows that a portion of the cases which did not recover

from COVID-19 did not survive after the vaccination. Fig 2b shows that approximately 15% of

the cases reporting adverse events died. The number of samples for different classes is not the

Table 1. Description of data attributes of COVID-19 world vaccine adverse reactions dataset.

Variable Description

VAERS_ID Identification number for each vaccinated case

RECVDATE Receiving date of adverse reactions report

STATE Region of the country from which report was received

AGE_YRS Age of vaccinated individual

CAGE_YR Age calculation of individual in years

CAGE_MO Age calculation of vaccinated individual in months

SEX Gender of vaccinated individual

RPT_DATE Date on which report form was completed

SYMPTOM_TEXT Reported symptoms

DIED Survival status

DATEDIED Date of death of vaccinated individual

L_THREAT Severe illness

ER_VISIT Visited doctor or emergency room

HOSPITAL Is hospitalized or not

HOSPDAYS Number of days individual was hospitalized

X_STAY Elongation of hospitalized days

DISABLE Disability status of vaccinated individual

RECOVD Recovery status of vaccinated individual

VAX_DATE Date on which individual was vaccinated

ONSET_DATE Onset date of adverse event

NUMDAYS ONSET_DATE-VAX_DATE

LAB_DATA Laboratory reports

V_ADMINBY Vaccine administration facility

V_FUNDBY Funds used by administration to buy vaccine

OTHER_MEDS Other medicines in use by vaccinated individual

CUR_ILL Information regarding illness of individual at the time of getting vaccinated

HISTORY Long-standing or chronic health-related conditions

PRIOR_VAX Information regarding prior vaccination

SPLTTYPE Manufacturer Report Number

FORM_VERS Version 1 or 2 of VAERS form

TODAYS_DATE Form completion date

BIRTH_DEFECT Birth defect

OFC_VISIT Clinic visit

ER_ED_VISIT Emergency room visit

ALLERGIES Allergies to any product

https://doi.org/10.1371/journal.pone.0270327.t001
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same which makes the data imbalanced. For an unbiased and effective analysis, the records

that correspond to ‘recovery status unknown’ are not considered except for the ones which

belong to the ‘not survived’ category.

Problem statement

The study considers the problem of individuals that receive the second dose of COVID-19

vaccination which can be Pfizer, Johnson & Johnson, etc. Despite minor side effects of the

COVID-19, they are seldom reported for death. However, adverse reactions have a higher

probability of serious illness leading to death. For notifying health care professionals before-

hand and maximizing the survival rate of individuals facing adverse reactions, this study

mines the adverse reactions of the COVID-19 vaccine reported to VAERS, for the prognosis of

death risks.

Proposed methodology

This study follows an ML-based approach for investigating the adverse events after the second

dose of the COVID-19 vaccine. The architecture of the methodology used in this regard is

given in Fig 3.

Fig 2. Dataset visualization, (a) correspondence between the categories related to ‘DIED’ and ‘RECOVD’ features,

and (b) class distribution.

https://doi.org/10.1371/journal.pone.0270327.g002
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Fig 3. Architecture of the methodology devised for prognosis of death risks.

https://doi.org/10.1371/journal.pone.0270327.g003
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This study mainly follows multiclass classification which involves classifying adverse reac-

tions as ‘not-survived’, ‘recovered’, and ‘not recovered’. In line with this, we integrated two

data attributes including ‘RECOVD’, and ‘DIED’ as the target class, and one attribute ‘SYMP-

TOM_TEXT’ as a feature set in our experiments. The ‘RECOVD’ data attribute has three val-

ues including Y (recovered), N (not recovered), and U (recovery status unknown). We only

utilized Y and N values from ‘RECOVD’ and Y values from ‘DIED’ for stage I experiments.

This resulted in a total of 4351 instances out of which 810 instances correspond to the ‘not sur-

vived’ target variable, 2398 as ‘not recovered’, and 1143 instances are labeled as ‘recovered’.

This shows the uneven distribution of target variables that can substantially dissipate the per-

formance of classifiers. To overcome this problem, we oversampled the minority target vari-

able using SMOTE and ADASYN.

To reduce the training and generalize the learning patterns for the classifiers, we integrated

two feature extraction techniques including BoW (Bag of Words), TF-IDF (Term Frequency-

Inverse Document Frequency), and GloVe (Global Vectors). Afterward, data is split into train

and test sets with a ratio of 0.8 to 0.2. Furthermore, ML classifiers such as LR, ET, RF, GBM,

AB, KNN, MLP, SGDC, and proposed voting classifiers learn the patterns regarding the target

variable from the train set. Trained models are then tested on the unseen test data and evalu-

ated under the criteria of accuracy, precision, recall, and F1 score.

Data preprocessing

Data preprocessing aims at enhancing the quality of the raw input data to extract meaningful

information from the input data. It is followed by the preparation of input data which includes

cleaning and organization of the raw data to effectively build and train the ML-based classifi-

ers. In the current study, various steps are taken to clean, normalize and transform the ‘SYMP-

TOM_TEXT’. We removed irrelevant data including punctuation, numeric, and null values

from the input data. ML classifiers are prone to case sensitivity, for their efficient training we

normalized the case of text by converting the text into lowercase. Afterward, we performed

stemming using PorterStemmer(), and NLTK (Natural Language Tool Kit) function, for con-

version of verbs into their root forms. As the last step of preprocessing, we removed stop

words that are the most frequent in the text and are not significant for the classification.

Feature extraction

Feature extraction is a technique that involves the extraction of significant and effective fea-

tures from the preprocessed data for improved performance of predictive models on the

unseen data. It follows the procedure of transformation of arbitrary data and finding features

that are correlated with the target variable. ML classifiers guided by feature extraction tech-

nique tend to produce more accurate results [25]. Two feature extraction techniques including

BoW, TF-IDF, and GloVe are utilized in this study.

BOW is the vectorization of text data into numeric features. It represents the word fre-

quency within the text regardless of the information concerning its structure or position in the

text. This technique considers each word as a feature [26]. It does not regard the number of

times different terms appear in a document. A term’s presence in a corpus is the only factor

that affects its weight.

TF-IDF quantifies a word in a document by computing the weight of each word which in

turn shows the significance of a word in that text [27]. The weight is determined by combining

two metrics, TF (Term Frequency) which is a measure of the frequency of a word in a docu-

ment, and IDF (Inverse Document Frequency) which refers to the measure of the frequency of

a word in the entire set of documents. Here document can be considered as
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‘SYMPTOM_TEXT’ in the dataset. TF-IDF for frequency of a word x in document y can be

computed as follows [28]:

TF � IDF ¼
fðx;yÞ
ny
� log

N
df ðxÞ þ 1

� �

ð1Þ

where f(x,y) is the frequency of word x in ‘SYMPTOM_TEXT’ records (y), ny is the total num-

ber of words occurring in the y, N is the total number of ‘SYMPTOM_TEXT’ records, and

df(x) is the number of ‘SYMPTOM_TEXT’ records in which word x is present.

GloVe generates word embeddings of the given ‘SYMPTOM_TEXT’ by mapping the rela-

tionship between the words. This is mainly done by aggregating the global co-occurrence

matrices which provide information regarding the frequency of word pairs occurring together.

Similar words are clustered together and different words are discarded based on the co-occur-

rence matrix of a corpus. Rather than training on the entire sparse matrix or individual context

windows in a large corpus, the Glove model takes advantage of statistical information as exclu-

sively nonzero elements in a word-word co-occurrence matrix [29].

Data sampling

When a target variable is distributed unevenly in a dataset, it leads to a misleading perfor-

mance by the ML models. The reason for this is that ML models learn the decision boundary

for the majority class with more efficacy than the minority class. Therefore, showing poor per-

formance in the prediction of minority class results in ambiguous and misleading results.

Hence, changing the composition of an imbalanced dataset is one of the most well-known

solutions to the problem of classifying an imbalanced dataset [30]. It can be done in two ways:

undersampling or oversampling. Undersampling randomly reduces the majority class size and

is mostly utilized when there is an ample amount of data instances whereas, oversampling arbi-

trarily duplicates the minority class and is effective when implemented on a small dataset.

Since we have a limited number of records in our dataset, therefore, oversampling is the best

fit for the proposed framework. One of the oversampling techniques is SMOTE [31] which is

utilized in the current study.

SMOTE selects the data samples which are relatively close in the feature vector space and

draws a line between those data samples [32]. It then generates synthetic data samples by find-

ing k nearest neighbors for that particular data sample with k = 5. This results in simulated

data samples that are comparatively at a close distance in the feature space from the data sam-

ples from the minority class.

ADASYN sampling is used to generate synthetic alternatives for each observation from the

minority class. An observation from the minority class is ‘hard to learn’ if there are many

instances from the majority class with features that are comparable to that observation. The

concept of ‘appropriate number’ in this case is determined by how difficult it is to remember

the initial observation. When drawn in the features space, a hard observation appears sur-

rounded by features from the majority class. ADASYN is similar to SMOTE with one key

difference, it biases the sample space towards locations that are not in homogeneous neighbor-

hoods thus reducing the likelihood of any given point being chosen for duping.

Machine learning classifiers

Supervised ML classifiers are utilized in this study for the prediction of target variables from

the data. Implementation of ML classifiers is done in Python language using the ‘scikit learn’

module. ML classifiers are trained on data samples from the training set and tested using a

test set that is unknown to the classifiers. ML classifiers integrated into this study are briefly
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discussed here and their corresponding hyperparameter settings are given in Table 2. Grid-

SearchCV method is used to find the optimal parameters. For different parameters, the range

has been determined using existing studies that report different parameters.

Random forest. Random Forest is a tree-based ML classifier that integrates aggregated

results obtained by fitting many decision trees on randomly selected training samples. The

algorithm starts by using a split function to separate the initial set of training data into two dis-

joint sets; this process is recursive until a certain termination criterion is met, which leads to

the generation of a leaf node. There is a probability distribution associated with each leaf node

based on the number of voted labels as it reaches each leaf node. The random tree formation

process generates a forest of random trees [33]. Each decision tree in RF is generated based on

selection indicators such as Gini index, gain ratio, and information gain to select an attribute.

It is a meta-estimator that can be used both for regression and classification tasks [34].

In random forests, when constructing an individual tree, not all features are taken into

account, each tree is unique. Based on a different set of attributes and data, each tree is created

independently. As a result, the CPU can be fully utilized to build random forests. The feature

space is reduced since each tree does not take into account all the features. The feature space is

significantly reduced since each tree does not take into account all the features. The voting/

averaging method used by the algorithm results in stability [35].

In this study, different hyperparameters are used for the random forest algorithm to either

make it faster or to boost the predictive power and its performance. Hyperparameter values

for n_estimator, random_state, and max_depth are tuned according to the requirement. before

averaging, the predictions parameter n_estimator states the number of trees the algorithm

assembles. The value of the n_estimator parameter is set to 100 to get highly improved results,

which are also said to be the number of weak learners implemented in the algorithm. Another

parameter max_depth with the value of 300 is used to set the maximum depth level for each

decision tree. These two parameters are used to enhance the prediction power of the algorithm

by reducing the probability of overfitting and complexity in the decision tree. Lastly, the ran-

dom_state parameter was used to control the randomness of the samples with the value of 50.

If the model has a definite number of random_states it will produce the same outcomes and

enhances the computational speed of the algorithm [36].

AdaBoost. AdaBoost also referred to as adaptive boosting is an iterative ensemble tech-

nique. Combining numerous weak learners into strong learners generates robust results. It is

trained on weighted examples and provides optimized output by minimizing the error rate at

each iteration [37]. An AdaBoost classifier starts by fitting a classifier on the original dataset as

a meta-estimator and continues to fit additional copies of the classifier on the same dataset but

adjusts the weights of poorly classified instances so that imminent classifiers focus more on

complex scenarios [38].

Table 2. Hyperparamter settings of supervised machine learning classifiers.

Model Hyperparameter settings

RF n_estimators = 100, random_state = 50, max_depth = 300

AB n_estimators = 100, random_state = 50

LR random_state = 50, solver = ‘saga’, multi_class = ‘ovr’, C = 3.0

MLP random_state = 50, max_iter = 200

GBM n_estimators = 100, learning_rate = 1, random_state = 50

ET n_estimators = 100, random_state = 50, max_depth = 300

KNN n_neighbors = 5

SGDC max_iter = 2000, tol = 1e-3

https://doi.org/10.1371/journal.pone.0270327.t002
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Concerning the high accuracy rate, the AdaBoost algorithm is implemented with differently

tuned hyperparameters including random_state, and n_estimator. In this study, the AdaBoost

algorithm combines 100 weak learners to produce its final prediction so that the value of

n_estimators is set to 100. The boosting process is stopped when it reaches the maximum

number of estimators. The learning process is terminated early in the scenario of a perfect fit

[39]. Regarding the random_state parameter, the value is set to 50. It states the randomness of

samples during algorithm training which means that the random_state parameter limits the

random selection of samples delivered at each boosting iteration of the model.

Extra Tree Classifier. Extra Tree Classifier is a collection of several de-correlated decision

trees built from random sets of features extracted from training data. Each tree selects the best

feature by computing its Gini Importance. ET incorporates averaging to control overfitting

and enhance predictive accuracy [40].

The Extra Tree Classifier uses random subsets of features to build multiple trees and split

nodes, but with two important differences: it does not bootstrap observations; implying that it

samples without replacement, and nodes are split randomly rather than using the best split.

Therefore, ET builds multiple trees by default with bootstrap = False, which means it samples

without replacing. Nodes are split based on random partitions among a random subset of the

features selected at each node. In Extra Trees, randomness arises from splits of each observa-

tion, rather than bootstrapping of the data.

This study used ET with different hyperparameter settings, where the n_estimator parame-

ter with the value of 100 indicated the number of trees in the forest. The second parameter ran-

dom_state used for the sampling of features to maintain or enhance the optimum split at each

node with the value of 50. The splits for each of the max_features are drawn. Another parame-

ter max_depth is implemented with the value of 300 which indicated the maximum depth of

each tree in the forest [41].

Logistic regression. Logistic Regression is a statistical ML classifier that processes the

mapping between a given set of input features and a discrete set of target variables by approxi-

mating the probability using a sigmoid function. The sigmoid function is an ‘S’-shaped curve

that restricts the probabilistic value between the discrete target variables. It works efficiently

for classification tasks [42]. The logistic regression technique is an advanced method of linear

regression used for both classification and prediction in complex linear and non-linear data-

sets. A common application of this method is to model binary data. The logistic regression

technique involves taking a given input value and multiplying it by a weight value [43].

Because of its defaulter detection ability, it has gained an incredible reputation in machine

learning classifiers and is one of the simplest algorithms that can be applied to a wide range of

classification problems. This is perhaps because it relies upon fewer assumptions [44].

This study used the LR algorithm with solver = ‘saga’ for computation as it works faster for

large datasets and results were enhanced. The following parameter is multi_class which is used

with the value ‘ovr’ because of its proficiency with binary classification. Then the inverse regu-

larization parameter ‘C’ with the value of 3.0 is inversely positioned to the Lambda regulator

and holds the strength of the regularization, reducing the chance of overfitting the model

though smaller values reflect stronger regularization [45].

Multilayer perceptron. Multilayer Perceptron is an extensive feed-forward neural net-

work that consists of three layers-input, output, and hidden layer. MLP works by receiving

input signals which need to be processed at the input layer and performing predictions at the

output layer. The hidden layer is the significant computational mechanism of MLP which is

situated in the middle of the input layer and output layer. MLP is designed to map a nonlinear

relationship between input and its corresponding output vector [46]. The back propagation

learning algorithm is used to train the neurons in the MLP. MLPs can address problems that
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are not linearly separable and are designed to simulate any continuous function. Pattern classi-

fication, recognition, approximation, and prediction are some of MLPs most common applica-

tions [47].

In this study, MLP is implemented with different hyperparameters that include random_-

state and max_iter. The parameter random_state is used with its value set to 50 to determine a

random number of generations for bias initialization and weights. The parameter max_iter is

also implemented with the value of 200 to indicate the maximum number of iterations or to

regulate the use of each data point [48].

Gradient Boosting Machine. Gradient Boosting Machine is a boosting classifier that

builds an ensemble of weak learners in an additive manner which proves to be useful in

enhancing the accuracy and efficiency of the learning model. Each weak learner in GBM

attempts to minimize the error rate of the previous weak learner. It does so by integrating loss

function with the gradients. It efficiently handles the missing values in the data [49]. GBM is a

gradient-descent-based formulation of boosting approaches that are used to form a connection

with the statistical framework. The learning mechanism in GBMs sequentially fits new models

to offer a more precise estimation of the sample data. The basic idea behind this technique is

to build new base learners that are maximally correlated with the loss function’s negative gradi-

ent, which is associated with the entire ensemble. Boosting algorithms, are reasonably easy to

execute, allowing for experimentation with various model designs. GBM Computes the initial

forecast by multiplying the new prediction by the learning rate [49].

In this study, the GBM is applied with hyperparameter elementary tuning to acquire high

accuracy from the algorithm. The learning_rate is implemented with the value of 1.0 to reduce

the contribution of each tree in the forest. The second parameter n_estimator is used to num-

ber the boosting stages to be completed that is set to the value of 100. Gradient boosting is rela-

tively impervious to overfitting; therefore, a high number usually yields better results. Thirdly,

at each boosting iteration, the random_state parameter is used to control the random seed

assigned to each Tree estimator. It also regulates the random sequence of features at each split

and manages the training data’s random splitting into a validation set [50].

K Nearest Neighbor. K-Nearest Neighbors is a straightforward ML classifier that maps

the distance between a dependent variable and a target variable by adopting a particular num-

ber of k samples adjacent to the target variable. For classification, kNN predicts by considering

the majority votes of the neighboring data points for the prevalent target variable [51]. The k-

nearest neighbor algorithm is a non-parametric, supervised learning classifier that classifies or

predicts the grouping of a single data point based on proximity. It can be used for both regres-

sion and classification tasks, however, it is most commonly employed as a classification tech-

nique, based on the idea that comparable points can be discovered nearby [52]. The kNN

algorithm belongs to a group of “lazy-learning” classifiers, which means it just stores a training

dataset rather than going through a training stage. This also implies that when a classification

or prediction is being made, the entire computation takes place. It is also known as an

instance-based or memory-based learning approach because it significantly relies on memory

to retain all of its training data [53].

This study used the kNN algorithm with the ‘n_neighbors’ parameter that indicates the

numbers of neighbors to use during the classification of each data point.

Stochastic Gradient Descent Classifier. The Stochastic Gradient Descent Classifier

(SGDC) is an iterative method for locating the ideal smoothness qualities for an objective func-

tion e.g. differentiable or sub-differentiable. Because it replaces the actual gradient derived

from the complete dataset with an estimate, it can be considered a stochastic approximation of

gradient descent optimization that can be calculated from a randomly selected subset of the

data [54]. SGDC is a modest and effective optimization approach for determining the values of
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parameters and function coefficients that maximize a cost function. In other terms, it is

employed for discriminative learning of linear classifiers with convex loss functions. The

update to the coefficients is conducted for each training instance rather than at the end of

instances, which makes it effective for large-scale datasets. It minimizes the extremely high

computational cost, especially in high-dimensional optimization problems, allowing for faster

iterations in exchange for a reduced convergence rate [55].

SGD Classifier is employed with tuned hyperparameters including the ‘tol’ parameter with

the value of 1e-3 it refers to be stopping criterion for the algorithm. Training will terminate

after consecutive epochs if it is not None. Depending on the early stopping parameter, conver-

gence is measured against the training or validation loss. Another parameter ‘max_iter’ is used

to define the number of epochs that is 2000, the number of times the training data can be sent

through.

Proposed extreme regression-voting classifier

ER-VC is a voting classifier that aggregates the output predictions of ET and LR to generate a

final output. LR determines the significance of each feature of trained samples along with pro-

viding the direction of its association with less time consumption. This makes LR a good fit for

our proposed voting classifier. Consequently, ET has been selected due to its randomizing

property which restrains the model from overfitting. The foundation of the proposed classifier

is building an individual strong model instead of discrete models with low accuracy results. It

incorporates similar hyperparameter tuning of respected classifiers as described in Table 2.

ER-VC is supported with soft voting criteria such that, it generates the final prediction by aver-

aging the probability p given to the target class. The framework of the proposed ER-VC model

is illustrated in Fig 4.

The working of the proposed ER-VC classifier is illustrated in Algorithm 1 [56]. We can

compute the target class for the weights assigned to predictions l1, l2, l3, . . ., ln made by

Fig 4. Framework of extreme regression-voting classifier.

https://doi.org/10.1371/journal.pone.0270327.g004
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classifier LR and e1, e2, e3, . . ., en by classifier ET respectively as

PðLÞ ¼ l1; l2; l3; . . . ; ln ð2Þ

PðEÞ ¼ e1; e2; e3; . . . ; en ð3Þ

Pf ¼ argmax
Xn

i¼0

ðPðLÞ þ PðEÞÞ ð4Þ

where P(L) and P(E) are the predictions made by LR and ET, respectively.

Algorithm 1 Algorithm for proposed Extreme Regression-Voting Classifier (ER-VC)
Input: SYMPTOM_TEXT
Output: Vaccinated individual  not survived or recovered or not

recovered
Procedure: Data Splitting
Trns = (SYMPTOM_TEXT, Labels)
Tsts = (SYMPTOM_TEXT)
Trns, Tsts

Procedure: Voting Classifier
Vc = “soft”
L = LR(Trns)
E = ET(Trns)

Procedure: Predictions made by L
P(L) Tsts
P(L) = l1, l2, l3, . . ., ln

Procedure: Predictions made by E
P(E) Tsts
P(E) = e1, e2, e3, . . ., en

Pf  argmax
Pn

i¼0
ðPðLÞ þ PðEÞÞ

Performance evaluation metrics

For measuring the performance of a model, the selection of appropriate evaluation metrics is

very important.

ML models are evaluated in terms of four basis outcomes true positive (TP), true negative

(TN), false positive (FP), and false negative (FN). TP represents the correctly predicted positive

instances, TN shows correctly predicted negative instances, FP is wrongly predicted positive

instances, and FN is wrongly predicted negative instances. These metrics are further utilized to

calculate accuracy, precision, recall, and F1 score. Following equations are used for this purpose

Accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
ð5Þ

Precision ¼
TP

TP þ FP
ð6Þ

Recall ¼
TP

TP þ FN
ð7Þ

F1 � score ¼
2� recall � precision
recallþ precision

ð8Þ
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Results and discussion

For an in-depth evaluation of ML models and the proposed models, experiments should be

exhaustive involving multiple scenarios and classes. This study follows two scenarios in this

regard. First, ML models are trained to utilize three feature representation methods on an

imbalanced, SMOTE-balanced, and ADASYN-balanced dataset. Accordingly, we selected the

most relevant ML models to classify symptoms. Machine learning models include RF, LR,

MLP, GBM, AB, kNN, ET, and, ER-VC. Experiments are performed to identify the most effec-

tive combination of feature extraction methods with ML models to classify symptoms into

‘recovered’, ‘not recovered’, or ‘not survived’.

Experiments using imbalanced dataset

Initial experiments involve an imbalanced dataset using TF-IDF, BoW, and GloVe. Results of

the proposed voting classifier are compared with the other baseline classifiers in terms of mul-

ticlass classification. Results presented in Table 3 show that LR achieves the highest results

with a 0.73 accuracy score using TF-IDF on the imbalanced dataset. However, ER-VC and

SGDC achieved a 0.72 accuracy score, which is the second-highest among all classifiers. It can

be noticed that RF, ET, and MLP achieved a 0.71 accuracy value. Moreover, AB shows the

worst result with a 0.64 accuracy value using TF-IDF on the imbalanced dataset. AB often can-

not generalize well in the case of an imbalanced dataset.

Results presented in Table 4 indicate that using BoW as a feature representation method

improves the results of most of the classifiers on the imbalanced dataset. From Table 4, it can

be observed that BoW does not improve the performance of MLP and kNN. The proposed

Table 3. Classification results of machine learning models using TF-IDF on imbalanced dataset.

Models Accuracy Precision Recall F1 score

RF 0.71 0.70 0.71 0.70

AB 0.64 0.65 0.64 0.64

ET 0.71 0.70 0.71 0.70

LR 0.73 0.73 0.73 0.72

MLP 0.71 0.71 0.71 0.71

GBM 0.70 0.70 0.70 0.70

kNN 0.66 0.65 0.66 0.65

SGDC 0.72 0.72 0.72 0.72

ER-VC 0.72 0.72 0.72 0.71

https://doi.org/10.1371/journal.pone.0270327.t003

Table 4. Classification results of machine learning models using BoW on imbalanced dataset.

Models Accuracy Precision Recall F1 score

RF 0.71 0.71 0.71 0.70

AB 0.68 0.69 0.68 0.68

ET 0.73 0.73 0.73 0.72

LR 0.72 0.72 0.72 0.71

MLP 0.71 0.71 0.71 0.71

GBM 0.73 0.73 0.73 0.72

kNN 0.52 0.55 0.52 0.50

SGDC 0.71 0.72 0.71 0.72

ER-VC 0.74 0.74 0.74 0.74

https://doi.org/10.1371/journal.pone.0270327.t004
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voting classifier, ER-VC achieves a 0.74 accuracy score using BoW which is 2% higher than

what is achieved by TF-IDF using an imbalanced dataset.

Table 5 shows the results of ML models when combined with GloVe features for the classifi-

cation of an imbalanced dataset. A significant drop in the performance of ML classifiers can

be observed. However, MLP yields the highest accuracy score of 0.65 whereas, the proposed

ER-VC model does not perform well and acquired a 0.60 accuracy with GloVe features.

Experiments using resampled dataset

The second scenario deals with the problem of imbalanced class distribution by the implemen-

tation of SMOTE and ADASYN. Data instances of the minority class are increased by over-

sampling to make a balanced dataset. Afterward, ML models have been trained using TF-IDF,

BoW, and GloVe on SMOTE-balanced and ADASYN-balanced datasets.

Results of ML models on SMOTE-balanced dataset. The results of ML models using

TF-IDF on the SMOTE-balanced dataset are presented in Table 6. It can be seen that SMOTE

significantly improves the performance of ML models. As revealed by the results, SMOTE con-

tributes to improving the models’ classification results, and 7 out of 9 models achieved higher

than 80% results. SMOTE increases data instances of minority class by considering their dis-

tance to the k nearest neighbors of the minority class. In this way, the size of the minority class

is increased by adding new data samples and making them appropriate for the training of the

models. Hence the proposed voting classifier, ER-VC, which combines LR and ET outper-

forms other models and carries out prediction tasks with 0.85 accuracy, 0.85 precision, 0.85

recall, and 0.84 F1 score.

Table 5. Classification results of machine learning models using GloVe on imbalanced dataset.

Models Accuracy Precision Recall F1 score

RF 0.60 0.59 0.59 0.59

AB 0.57 0.55 0.55 0.54

LR 0.59 0.58 0.59 0.55

MLP 0.65 0.63 0.65 0.63

ET 0.61 0.59 0.59 0.58

GBM 0.57 0.57 0.57 0.57

kNN 0.55 0.54 0.55 0.54

SGDC 0.57 0.56 0.57 0.56

ER-VC 0.60 0.59 0.60 0.57

https://doi.org/10.1371/journal.pone.0270327.t005

Table 6. Classification results of machine learning models using TF-IDF with SMOTE.

Models Accuracy Precision Recall F1 score

RF 0.81 0.82 0.81 0.81

AB 0.71 0.72 0.71 0.71

ET 0.82 0.83 0.82 0.82

LR 0.82 0.82 0.82 0.82

MLP 0.81 0.81 0.81 0.81

GBM 0.80 0.81 0.80 0.80

kNN 0.64 0.73 0.64 0.55

SGDC 0.82 0.82 0.82 0.81

ER-VC 0.85 0.85 0.85 0.84

https://doi.org/10.1371/journal.pone.0270327.t006
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Furthermore, the ML models are trained on the BoW feature representation technique. The

performance of the models is compared in terms of classification results. Results shown in

Table 7 prove that ML models using BoW do not achieve as robust results as achieved using

TF-IDF on the SMOTE-balanced dataset.

Finally, ML models are combined with GloVe features for the classification of adverse reac-

tions. The results reveal an overall decrease in the performance of ML models as shown in

Table 8. However, a significant improvement in the results can be observed on the SMOTE-

balanced dataset as compared to the performance of ML models when integrated with GloVe

features on imbalanced data. Consequently, it proves that the BoW and GloVe feature repre-

sentation techniques are not very effective in improving the performance of the models on the

SMOTE-balanced dataset. However, SMOTE significantly improves the performance of ML

models in classifying adverse events as ‘not-survived’, ‘recovered’, and ‘not recovered’.

Results of ML models on ADASYN-balanced dataset. Rresults of ML models using

TF-IDF with an ADASYN-balanced dataset are presented in Table 9. Results reveal that ADA-

SYN also shows improvement in the results of ML models when compared with the results of

an imbalanced dataset. It can be observed that RF, ET, MLP, and SGDC show even better

results with ADASYN than the results obtained with SMOTE. ADASYN uses density distribu-

tion for generating synthetic data. It increases data samples by generating more data for

minority classes and helps models in providing better training. For the proposed model

ER-VC, ADASYN has shown slightly better results in terms of precision and F1-score than

SMOTE. ER-VC achieves 0.85 accuracy, 0.86 precision, 0.85 recall and 0.85 F1 score.

ML models are also trained on BoW features with an ADASYN-balanced dataset and the

results are presented in Table 10. Results indicate that ML models show comparatively poor

Table 7. Classification results of machine learning models using BoW with SMOTE.

Models Accuracy Precision Recall F1 score

RF 0.78 0.79 0.78 0.78

AB 0.73 0.75 0.73 0.74

ET 0.78 0.78 0.78 0.78

LR 0.79 0.79 0.79 0.79

MLP 0.75 0.75 0.75 0.75

GBM 0.77 0.78 0.77 0.77

kNN 0.60 0.70 0.60 0.55

SGDC 0.76 0.76 0.76 0.76

ER-VC 0.81 0.81 0.81 0.81

https://doi.org/10.1371/journal.pone.0270327.t007

Table 8. Classification results of machine learning models using GloVe with SMOTE.

Models Accuracy Precision Recall F1 score

RF 0.73 0.73 0.73 0.73

AB 0.58 0.58 0.58 0.58

ET 0.75 0.75 0.75 0.75

LR 0.60 0.59 0.60 0.59

MLP 0.65 0.67 0.65 0.69

GBM 0.63 0.63 0.63 0.63

kNN 0.64 0.64 0.64 0.63

SGDC 0.57 0.60 0.57 0.53

ER-VC 0.73 0.73 0.73 0.73

https://doi.org/10.1371/journal.pone.0270327.t008
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results with ADASYN-balanced dataset than SMOTE-based dataset when trained on BoW fea-

tures. The performance of the ML models including the proposed ER-VC is degraded with

ADASYN on BoW features.

Lastly, ML models are trained on GloVe features using ADASYN to predict adverse reac-

tions. Results in Table 11 present that ML models show lower performance with ADASYN

than SMOTE. Results reveal that using BoW and GloVe with ADASYN does not provide bet-

ter accuracy as compared to BoW and GLoVe with SMOTE. ADASYN shows the best results

using the TF-IDF technique.

Table 9. Classification results of machine learning models using TF-IDF with ADASYN.

Models Accuracy Precision Recall F1 score

RF 0.82 0.82 0.82 0.82

AB 0.71 0.72 0.71 0.71

ET 0.83 0.83 0.83 0.83

LR 0.82 0.83 0.82 0.82

MLP 0.83 0.83 0.83 0.83

GBM 0.80 0.81 0.80 0.80

kNN 0.63 0.75 0.63 0.54

SGDC 0.83 0.84 0.83 0.83

ER-VC 0.85 0.86 0.85 0.85

https://doi.org/10.1371/journal.pone.0270327.t009

Table 10. Classification results of machine learning models using BoW with ADASYN.

Models Accuracy Precision Recall F1 score

RF 0.74 0.73 0.74 0.73

AB 0.71 0.70 0.71 0.70

ET 0.75 0.74 0.75 0.74

LR 0.73 0.73 0.73 0.73

MLP 0.73 0.72 0.73 0.73

GBM 0.74 0.74 0.74 0.74

kNN 0.53 0.59 0.53 0.47

SGDC 0.75 0.75 0.75 0.75

ER-VC 0.78 0.77 0.78 0.77

https://doi.org/10.1371/journal.pone.0270327.t010

Table 11. Classification results of machine learning models using GloVe with ADASYN.

Models Accuracy Precision Recall F1 score

RF 0.70 0.69 0.70 0.69

AB 0.52 0.52 0.52 0.52

ET 0.73 0.73 0.73 0.72

LR 0.54 0.53 0.54 0.52

MLP 0.62 0.61 0.62 0.61

GBM 0.62 0.61 0.62 0.61

kNN 0.62 0.62 0.62 0.61

SGDC 0.54 0.55 0.54 0.54

ER-VC 0.69 0.69 0.69 0.69

https://doi.org/10.1371/journal.pone.0270327.t011
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Impact of feature extraction approaches on performance ML models

Fig 5a presents the accuracy comparison of ML models using BoW, TF-IDF, and GloVe on

imbalanced dataset while Fig 5b shows the performance comparison of ML models using

BoW, TF-IDF, and GloVe using the SMOTE-balanced and ADASYN-balanced data. It can be

observed that a substantial improvement in the accuracy of ML models occurred when they

are trained using the over-sampled data with the TF-IDF feature set.

Fig 6a presents the accuracy comparison of ML models using TF-IDF with and without

oversampling techniques, Fig 6b presents the accuracy comparison of ML models using BoW

with imbalanced and balanced data using SMOTE and ADASYN while Fig 6c shows the accu-

racy comparison of ML models using GloVe in the same scenario. It shows that the results

obtained by using BoW on the balanced dataset are better than the results achieved by using

BoW on the imbalanced dataset. On the other side, the results of the proposed model using

BoW on the SMOTE-balanced dataset are 4% lower than the results obtained by using TF-IDF

on the SMOTE-balanced dataset. While the accuracy result of the proposed model using BoW

is 7% lower than the results achieved by using TF-IDF with the ADASYN-balanced dataset.

Computational complexity of ML models

Table 12 shows the execution time taken by machine learning models for risk analysis. It indi-

cates that the execution time varies with feature sets and learning models. All machine learning

models take low execution time except for MLP and GBM. In terms of feature sets, machine

learning models take less execution time than GloVe features whereas, TF-IDF features are

second in line with BoW features taking the longest time. However, in terms of other evalua-

tion parameters, TF-IDF features enable the models to make highly accurate predictions. The

proposed ER-VC model performs slightly better with the ADASYN-balanced dataset however,

the execution time is somewhat greater than the SMOTE-balanced dataset. This makes the

proposed approach suitable to be used with SMOTE-balanced datasets with TF-IDF features.

Performance comparison with deep neural networks

To substantiate the performance of the proposed voting classifier, it is also compared with

deep learning models. We have used three deep learning models for experiments including

LSTM [57], CNN [58] and BiLSTM [59] for comparison purposes. Layered architecture and

hyperparameter values are presented in Fig 7. The architecture of these models is based on the

best results and optimized hyperparameters.

The same training and test split ratios are used for deep learning models. The deep learning

models are used for experiments considering both the original, SMOTE-balanced, and ADA-

SYN-balanced datasets. The training and testing accuracy curve of the used deep learning

models including CNN, LSTM, and BiLSTM with balanced and imbalanced data are shown in

Figs 8–10 respectively.

Classification results of deep learning models on balanced and imbalanced datasets are pre-

sented in Table 13. It can be observed that LSTM achieves the highest result with a 0.70 value

of accuracy, precision, recall, and F1 score on imbalanced data while CNN has shown the low-

est results. Given the small size of training data available for the deep neural networks, the per-

formance is not good. However, using the ADASYN-balanced dataset, LSTM scores 0.83, and

CNN yields 0.81 accuracy, precision, recall, and F1 scores. In terms of the SMOTE-balanced

dataset, LSTM and CNN score 0.81 while BiLSTM scores the lowest with 0.69 accuracy. The

performance of BiLSTM is not impacted by the oversampling techniques as the accuracy score

remains the same in both cases. It can be observed that ADASYN balanced the dataset with

highly correlated synthetic instances which makes the ADASYN-balanced data more effective
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Fig 5. Performance analysis of ML models, (a) accuracy using TF-IDF, BoW and GloVe without SMOTE, (b)

accuracy using TF-IDF, BoW and GloVe using SMOTE, and (c) accuracy using TF-IDF, BoW and GloVe using

ADASYN.

https://doi.org/10.1371/journal.pone.0270327.g005
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Fig 6. Performance analysis of ML models, (a) accuracy using TF-IDF with and without SMOTE, (b) accuracy

using BoW with and without SMOTE, and (c) accuracy using GloVe with and without SMOTE.

https://doi.org/10.1371/journal.pone.0270327.g006
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Table 12. Execution time (seconds) of machine learning models.

Models Imbalanced Data SMOTE-balanced Data ADASYN-balanced Data

TF-IDF BoW GloVe TF-IDF BoW GloVe TF-IDF BoW GloVe

RF 2.832 2.923 1.574 7.181 7.868 2.047 7.720 11.366 3.049

AB 3.135 2.635 1.805 5.935 3.809 2.174 14.161 6.512 3.693

ET 3.591 3.398 0.591 7.347 8.997 0.746 8.031 9.318 0.693

LR 0.329 2.001 0.353 0.482 1.297 0.398 0.705 2.507 0.619

MLP 50.243 76.554 9.629 63.849 144.615 5.300 97.751 150.671 6.951

GBM 15.773 8.580 7.658 27.473 19.028 15.259 40.384 14.226 11.475

kNN 0.180 0.212 0.148 0.345 0.307 0.192 0.485 0.301 0.338

SGDC 0.2997 0.132 0.292 0.387 0.297 0.115 0.147 0.151 0.129

ER-VC 8.145 4.308 0.642 7.712 10.223 1.863 9.447 10.624 1.023

https://doi.org/10.1371/journal.pone.0270327.t012

Fig 7. Layered architecture of the deep neural networks.

https://doi.org/10.1371/journal.pone.0270327.g007

Fig 8. Accuracy measure of CNN with respect to each epoch.

https://doi.org/10.1371/journal.pone.0270327.g008
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for deep learning models. However, these values are lower than the proposed model ER-VC.

Despite that, results for deep learning models confirm that oversampling has significantly

improved the performance of LSTM and CNN models while BiLSTM has achieved similar

results.

Validation of proposed approach

The current study validates the proposed ER-VC model by predicting the survival status of the

vaccinated individuals. Following this, we integrated ‘SYMPTOM_TEXT’ as features and

‘DIED’ as the target class. It involves a total of 5351 data instances among which 810 are

labeled as Y (not survived) and the remainder of the records are labeled as N (survived). The

proposed ER-VC model is trained on 80% train data which is preprocessed and balanced

using SMOTE. Experimental results after testing ER-VC on binary classification are shown in

Table 14. Empirical results showed that the proposed ER-VC model manifested state-of-the-

Fig 10. Accuracy measure of BiLSTM with respect to each epoch.

https://doi.org/10.1371/journal.pone.0270327.g010

Fig 9. Accuracy measure of LSTM with respect to each epoch.

https://doi.org/10.1371/journal.pone.0270327.g009

Table 13. Classification results of deep neural networks without SMOTE.

Dataset Models Acc. Prec. Rec. F1

Original Data LSTM 0.70 0.70 0.70 0.70

CNN 0.64 0.65 0.65 0.64

BiLSTM 0.69 0.69 0.69 0.69

SMOTE-balanced Data LSTM 0.81 0.81 0.81 0.81

CNN 0.81 0.81 0.81 0.81

BiLSTM 0.69 0.69 0.69 0.69

ADASYN-balanced Data LSTM 0.83 0.83 0.83 0.83

CNN 0.81 0.81 0.81 0.81

BiLSTM 0.69 0.69 0.69 0.69

https://doi.org/10.1371/journal.pone.0270327.t013
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art performance in the prognosis of death risks by analyzing the adverse events reported to

VAERS. Concerning the feature set, TF-IDF leads with a 0.98 accuracy score with its ability to

extract features with more predictive information regarding target variables as compared to

BoW which only provides a feature set of terms irrespective of their importance in the docu-

ment, and GloVe which is inefficient when it comes to unknown words.

Fig 11 demonstrates the number of instances predicted correctly following the given target

variable. It can be observed that ER-VC wrongly predicted only 30 instances from a total of

1817 instances when integrated with TF-IDF features as shown in Fig 11a. Contrarily, Fig 11b

shows that ER-VC in combination with BoW features made 64 wrong predictions out of 1817

instances. Whereas, in the case of GloVe features, the wrong predictions totals 162 which

shows its poor performance in binary classification as presented in Fig 11c.

Table 15 shows the results of proposed ER-VC model on ADASYN-balanced data. The

results confirm the superior performance of ER-VC in combination with TF-IDF features. An

accuracy score of 0.99 is obtained by the proposed model on ADASYN-balanced data that

shows the effectiveness of the proposed model. It can be observed that TF-IDF features pro-

duced robust results in terms of SMOTE as well as ADASYN-balanced dataset. Fig 12 shows

the number of correct and incorrect predicted instances by ER-VC on the ADASYN-balanced

dataset. The efficacy of the proposed ER-VC in terms of TF-IDF features can be observed with

only 23 wrongly predicted instances. This shows that in terms of binary classification in terms

of TF-IDF features of the ADASYN-balanced dataset produced robust results. In a nutshell,

Table 14. Classification results of proposed ER-VC model for binary classification on SMOTE-balanced data.

Feature Acc. Class Prec. Rec. F1

BoW 0.96 survived 0.97 0.96 0.97

not-survived 0.96 0.97 0.96

weighted avg 0.96 0.96 0.96

TF-IDF 0.98 survived 0.98 0.98 0.98

not-survived 0.98 0.98 0.98

weighted avg 0.98 0.98 0.98

GloVe 0.91 survived 0.93 0.89 0.91

not-survived 0.89 0.93 0.91

weighted avg 0.91 0.91 0.91

https://doi.org/10.1371/journal.pone.0270327.t014

Fig 11. Confusion matrix of ER-VC concerning binary classification on SMOTE-balanced data, (a) ER-VC with TF-IDF, (b) ER-VC with BoW,

and (c) RT-VC with GloVe.

https://doi.org/10.1371/journal.pone.0270327.g011
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BoW generates features irrespective of their importance concerning the target class whereas

TF-IDF with its ability to extract features that are significant relative to the analysis excels in

its performance. This resulted in an effective and robust prognosis of death risks following the

COVID-19 vaccine using the proposed ER-VC model combined with TF-IDF features.

Conclusion

The COVID-19 vaccines have been rolled out globally and allergic reactions after that are rare

but post-vaccine side effects are being reported. Importantly, there is no doubt about the sig-

nificance of vaccines in controlling the disease and preventing mortality during pandemics.

This study promotes the vaccine and investigates the post-vaccine symptoms that lead to death

and proposes an efficient soft voting classifier. This study will contribute in a way to assist

health professionals in making effective strategies regarding COVID-19. The adverse events

followed by the second dosage of the COVID-19 vaccine people are analyzed to predict three

events that are ‘not survived’, ‘recovered’, and ‘not recovered’. Extensive experiments have

been carried out using TF-IDF, BoW, and GLoVE with various machine learning models. In

addition, the models are compared after balancing the dataset by applying SMOTE and ADA-

SYN. The results of the models are compared with and without applying data balancing tech-

niques. A significant improvement in the model’s performance can be observed with the

balanced dataset. The proposed ER-VC model outperformed the remaining models with a

Table 15. Classification results of proposed ER-VC model for binary classification on ADASYN-balanced data.

Feature Acc. Class Prec. Rec. F1

BoW 0.96 survived 0.97 0.94 0.96

not-survived 0.94 0.97 0.96

weighted avg 0.96 0.96 0.96

TF-IDF 0.99 survived 1.00 0.98 0.99

not-survived 0.97 1.00 0.99

weighted avg 0.99 0.99 0.99

GloVe 0.91 survived 0.94 0.88 0.91

not-survived 0.88 0.94 0.91

weighted avg 0.91 0.91 0.91

https://doi.org/10.1371/journal.pone.0270327.t015

Fig 12. Confusion matrix of ER-VC concerning binary classification on ADASYN-balanced data, (a) ER-VC with TF-IDF, (b) ER-VC with BoW,

and (c) RT-VC with GloVe.

https://doi.org/10.1371/journal.pone.0270327.g012
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0.85 accuracy score when combined with TF-IDF feature set on the balanced dataset. An over-

all increase in performance of models is observed with SMOTE-balanced data as compared to

the ADASYN-balanced dataset. Moreover, the comparison concerning the benchmark state-

of-art deep neural networks confirms the performance of ER-VC is significantly better than

deep learning models. We also noted that ADASYN performs better with TF-IDF features as

compared to BoW and GloVe feature sets. Moreover, the effectiveness of the proposed model

has been proved by experiments for binary classification where the model shows robust results

with a 0.99 accuracy score for ADASYN-balanced data. In the future, we plan to direct our

work to a union of feature extraction techniques to achieve improved results. Another possible

future direction can be experimenting with a variety of vaccine adverse event datasets to

broaden the scope of death risk analysis. We believe that the findingsare advocating the use of

ML approaches for vaccine-related risks which can be used by health care professionals and

health-providing services.
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