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We investigate game-theory based decisions on vaccination uptake and its effects on the spread of an epidemic with nonlinear
incidence rate. It is assumed that each individual’s decision approximates his/her best response (called smoothed best response)
in that this person chooses to take the vaccine based on its cost-benefit analysis. The basic reproduction number of the resultant
epidemic model is calculated and used to characterize the existence and stability of the disease-free and endemic equilibria of the
model. The effects on the spread and control of the epidemic are revealed in terms of the sensitivity of the response to changes in
costs and benefits, in the “cost” of the vaccination, and in the proportion of susceptible individuals who are faced with the decision
of whether or not to be vaccinated per unit time. The effects of the best response decision rule are also analyzed and compared
to those of the smoothed best response. Our study shows that, when there is a perceived cost to take the vaccine, the smoothed
best response is more effective in controlling the epidemic. However, when this cost is 0, the best response is the more efficient
control.

1. Introduction

In modern society, infectious diseases threaten millions of
people’s lives each year and, as such, controlling the spread
of these diseases is essential. As one of the effective control
strategies, vaccination against infectious diseases has been
widely used to slow down or eliminate their spread [1–4].
Recent investigations of theoreticalmodels based on different
vaccination policies [2, 3] indicate that there are many ways
an effective vaccine can be used to control an epidemic.

These theoretical models often consider the “cost” to get
vaccinated. Besides the actual monetary cost of the vaccine,
there are potential risks to being vaccinated. Thus people
making rational decisions may avoid vaccinations when the
perceived cost of taking the vaccine is higher than its benefits.
That is, individual decisions about the vaccination uptake
might follow a cost-benefit analysis. Thus, the analysis of
the effect of voluntary vaccination decisions is becoming
increasingly important as people are now able to obtain up-
to-date information about the spread of an epidemic as well
as about the cost of vaccination.

The aim of this paper is to model how individuals
implement their rational decisions on vaccine uptake and
investigate the effects of these decisions on the spread and
control of the epidemic. On one hand, susceptibles have the
risk of being infected. On the other hand, due to the perceived
risk of vaccine side effects, susceptible individuals might
choose not to receive the vaccination. During an epidemic, a
susceptible individual has to make a choice based on the risk
of being vaccinated and the risk of getting infected. We use
game theory to model this situation since this theory studies
how individuals optimize their behavior given their net
benefits and the behavior of others (i.e., how individualsmake
rational decisions). Since the probability that a susceptible
individual gets infected decreases as the vaccination level
of the population increases, rational decisions may lead to
a reduced number of vaccination intakes whereby rational
individuals rely on others to maintain the vaccination level of
the population. This situation is also known as “free riding”
[5]. However, this free riding strategy is not optimal to
control the disease spread in the long run. That is, these
rational decisions will lead to an increase in the number of
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susceptibles, followed by an eventual increase in the number
of infected. In this work, we are particularly interested in the
“degree of rationality” of the susceptible individuals and the
corresponding effects on the long-term infection rates as well
as the control and spread of the disease.

To model such decisions, we use methods from evolu-
tionary game theory whereby strategies that have higher net
benefits increase in the population. One such method, called
the best response [6], assumes that all individuals who are
faced with a decision choose the strategy with the highest
payoff. In our model, this means a susceptible will choose
to be vaccinated if the risk of infection outweighs the cost of
vaccination.The best response requires the decisionmaker to
have a precise knowledge of these costs and benefits. Instead,
we concentrate on a second method, called the smoothed
best response [7], as the basis for individual decisions. Here,
individuals with lower payoff switch to the best strategy with
a certain probability. If payoff differences are large, they are
almost certain to switch but this probability decreases as
the payoffs become closer to each other. This may reflect
that information on net payoffs are not precise. Alternatively,
in our interpretation, how quickly switching probabilities
change (as a function of payoff differences) measures the
degree of rationality for the model (cf. Figure 1).

In this paper, we construct and analyze an evolutionary
game-theoretic epidemic model to study the effects of a
game-theory based vaccination decision on the spread and
control of an epidemic. As we will see, evolutionary dynamics
based on the smoothed best response are more effective at
controlling the disease than those based on the best response.

Similar methods based on other evolutionary dynamics
(such as the replicator equation or imitative dynamics) are
commonly used to show that observed behavior of animal
species can be predicted by assuming individuals act so as
to maximize their per capita growth rates in ecology systems
(e.g., [8, 9]). Although such dynamics can also be interpreted
as resulting from rational decision making, these decisions
are typically assumed to come from observing the behavior
of a randomly chosen individual in the population and then
deciding whether to imitate this behavior.This contrasts with
ourmodel whereby decisions aremade through knowledge of
the overall costs and benefits of the system. In the extensive
literature on the effects of individual rational behavior on the
spread of an epidemic summarized in the following para-
graph, either the models do not take an evolutionary game
theory approach or the evolutionary dynamics is based on
imitative behavior. Our model then extends the evolutionary
approach to what we feel are more realistic assumptions on
how individuals implement their rational decisions.

The effects of individual rational behavior on epidemic
models that include (voluntary) vaccination have been inves-
tigated in the literature. For example, Fine and Clarkson
studied the rational decisions of well-informed individuals
on the vaccine uptake and their corresponding effects on
infection control [10]. By developing a game-theory based
epidemic model, Bauch and Earn investigated the conse-
quences of voluntary vaccination strategies for childhood
diseases with the assumption that self-interested parents may
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Figure 1: Graphs of best response function 𝑏(𝑊) and smoothed best
response function 𝑠(𝑊) for degree of rationality (or sensitivity) 𝑘 = 1
and 𝑘 = 5.

choose to avoid vaccination due to possible side effects [11].
Bauch investigated individual vaccinating decisions with the
assumption that the susceptibles behave strategically in accor-
dance with imitation dynamics and studied the dependence
of epidemic prevalence and coverage of vaccination on these
strategic decisions [12]. Reluga et al. studied population-level
demand for vaccines and the decisions of individuals to avoid
infection by constructing and analyzing a game-theoretical
model [13]. Perisic and Bauch studied the influences of
individual behavior on the epidemic transmission in contact
networks and obtained three possible outcomes associated
with the long run number of vaccinated individuals and
epidemic size [14]. By designing and analyzing a game-
theoretic model, Perisic and Bauch investigated the behavior-
infection dynamics on social contact networks [15]. Com-
bining Markov decision process theory and game theory,
Reluga and Galvani investigated the payoffs of individuals
and communities in vaccination games and studied their
effects on epidemic control [16]. Using a model based on
evolutionary game theory, Schimit and Monteiro considered
the interplay between public health actions and personal
decisions during an epidemic [17]. Mbah et al. considered the
epidemic spread through an epidemiological network and the
effects of imitation behavior of individuals on the vaccination
uptake using evolutionary game theory [18]. Zhang et al.
constructed and analyzed two simple models to investigate
the “double-edged sword” effect that rational decisionmaking
has on public health condition [19]. Using an evolutionary
game-theory based strategy, Poletti et al. studied several
patterns of risk perception and information diffusion during
an epidemic spread [20]. Chen constructed a mathematical
model to investigate the strategic behaviors of individuals
to avoid public places during an epidemic [21]. Shim et al.
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investigated how the avoidance of Measles-Mumps-Rubella
vaccination due to the perceived side effects is related to the
spread of this disease [22].

The paper is organized as follows. In Section 2, we present
the epidemic model with the (smoothed) best response
vaccination dynamics included. The existence and stability
of the disease free and endemic equilibria of the model
are analyzed in Section 3. Section 4 is devoted to discuss
the results and their significance with detailed numerical
simulations. Finally, conclusions are given in Section 5.

2. The Epidemic Model with
Voluntary Vaccination

We assume that the total population size at time 𝑡 is classified
into four groups with respect to their epidemiological status.
These groups are susceptibles (𝑆(𝑡)), infected (𝐼(𝑡)), recovered
(𝑅(𝑡)), and vaccinated (𝑉(𝑡)). New susceptible individuals
enter the subgroup 𝑆(𝑡) at a constant rate of 𝐴 through
birth or immigration. The death rate 𝑑 is assumed to be
constant for all four groups. Individuals leave subgroup 𝑆(𝑡)
through death, infection, and vaccination. We assume that
susceptible individuals contract the disease with incidence
rate𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞, where 𝑞 ∈ [0, 1] is a fixed parameter.
This includes the two most common incidence rates used in
the literature, namely, the standard incidence rate (𝑞 = 1) and
the bilinear incidence rate (𝑞 = 0) [23].

If an individual’s decision on taking the vaccination
follows a cost-benefit analysis, the vaccination rate will be a
function 𝜑(𝑆, 𝐼, 𝑅, 𝑉) of the sizes of these four groups. Sus-
ceptible individuals who acquire infection enter the infective
group, and infective individuals exit this group by death (with
rate 𝑑) or recovery (with rate 𝑟). Recovered infective indi-
viduals enter the recovered group and susceptible individuals
who get vaccines enter the vaccinated group. We assume
that both naturally acquired immunity (through infection)
and artificially acquired immunity (through vaccination) are
permanent; that is, individuals in the recovered group or in
the vaccinated group do not leave their groups to enter other
groups.

The epidemicmodel with game-theory based vaccination
decisions is then given by the following system of differential
equations:

̇𝑆 = 𝐴 −
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑑𝑆 − 𝑆𝜑 (𝑆, 𝐼, 𝑅, 𝑉) ,

̇𝐼 =
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑟𝐼 − 𝑑𝐼,

𝑅̇ = 𝑟𝐼 − 𝑑𝑅,

𝑉̇ = 𝑆𝜑 (𝑆, 𝐼, 𝑅, 𝑉) − 𝑑𝑉.

(1)

The variables in system (1) describe the population sizes of
each epidemiological group, and thus we assume that they
are all nonnegative. In the following, we will investigate

the dynamical behavior of system (1) in the biologically
feasible region Γ given by

Γ = {(𝑆, 𝐼, 𝑅, 𝑉) ∈ R
4

+
: 𝑆 + 𝐼 + 𝑅 + 𝑉 ≤

𝐴

𝑑
} . (2)

Notice that the total population size 𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝑉

satisfies 𝑁̇ = 𝐴 − 𝑑𝑁, indicating that 𝑁(𝑡) = 𝐴/𝑑 +

e−𝑑𝑡(𝑁(0) − 𝐴/𝑑). Hence, the region Γ is positively invariant
and globally attracting. In this work, we only investigate
the dynamic behavior of the model with initial conditions
(𝑆(0), 𝐼(0), 𝑅(0), 𝑉(0)) ∈ Γ.

2.1. Game-Theoretic Vaccination Decisions. Vaccination is an
effective approach to prevent disease infection. However,
there is a cost to being vaccinated, including the risk of
infection by taking the vaccine and perhaps some financial
cost as well. If each individual is able to make their own
decision on whether or not to be vaccinated, then this behav-
ior can be modeled using game theory. If (unvaccinated)
susceptible individuals contract the disease with incidence
rate 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞, for 𝑞 ∈ [0, 1], then this value can
be used as the payoff benefit obtained by an individual who
takes the vaccine. Here it is assumed that the vaccination is
effective (i.e., vaccinated individuals are not susceptible). For
simplicity, we also assume that the perceived cost of taking
the vaccination is a constant 𝛼 for each individual. Then
an individual also incurs a payoff loss of −𝛼 from taking
the vaccination. The total payoff of an individual who is
vaccinated compared to one who is not is then given by𝑊 =

𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝛼.

Recently, the logistic equation [24] and its inverse (the
logitmap [25]) have beenused in evolutionary game theory to
describe a particular type of rational decision making called
the smoothed best response correspondence [7]. The logistic
equation [24] takes the form of a sigmoid function, which can
be written as

L (𝑥) =
e𝑥

e𝑥 + e𝑎
. (3)

Logistic equations are widely used in statistics and have broad
applications in chemistry, physics, biology, and economics.
For game-theoretic applications with two strategies, the
smoothed best response function has the form

𝑠 (𝑊𝑝,𝑊𝑛) =
e𝑘𝑊𝑝

e𝑘𝑊𝑝 + e𝑘𝑊𝑛
, (4)

where 𝑊𝑝 = 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞 and 𝑊𝑛 = 𝛼 denote the

positive and negative payoffs, respectively, and 𝑘 ≥ 0 is
constant. In our context, 𝑠 is interpreted as the probability a
susceptible individual decides to take the vaccine when faced
with this decision. Notice that L(𝑥) and 𝑠 are both in the
interval (0, 1).
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The smoothed best response function 𝑠(𝑊𝑝,𝑊𝑛) of the
vaccination game can also be expressed as the function of the
total payoff of the game𝑊 = 𝑊𝑝 −𝑊𝑛; that is,

𝑠 =
e𝑘𝛽𝐼/(𝑆+𝐼+𝑅+𝑉)

𝑞

e𝑘𝛽𝐼/(𝑆+𝐼+𝑅+𝑉)𝑞 + e𝑘𝛼
=
tanh ((1/2) 𝑘𝑊) + 1

2
. (5)

When 𝑘 = 0, the individual is indifferent and decides to be
vaccinated half the time irrespective of costs and benefits. For
positive 𝑘, almost all individuals will choose to be vaccinated
when benefits greatly exceed costs (i.e., for large𝑊) but very
few will be vaccinated when costs are much higher than
benefits. With an increase in 𝑘, the sensitivity of the response
to the changes in differences in costs and benefits when 𝑊
is close to zero becomes more pronounced (Figure 1).That is,
the “right” choice ismore likely to bemadewith respect to the
cost-benefit analysis as 𝑘 increases. For the extreme situation
when 𝑘 → ∞, the smoothed best response approaches the
best response; that is,

𝑏 =

{{

{{

{

0 if 𝑊 < 0

[0, 1] if 𝑊 = 0

1 if 𝑊 > 0.

(6)

Both the classic best response [6] and the smoothed
best response [7] have been widely used to address rational
decisionmaking of an individual [9, 18, 19, 26].The smoothed
and nonsmoothed best response behave differently when
𝑊 → 0. For the classical best response function, the value
of 𝑏 is either 1 or 0, determined by the sign of𝑊 even if𝑊
is close to 0. In this case, individual decisions are extremely
sensitive to the payoff difference.When benefits and costs are
equal (i.e., the total payoff is𝑊 = 0), 𝑏 can be any value in
the interval [0, 1]. For the smoothed best response function,
𝑠(𝑊) is a continuous function on (−∞,∞), increasing from
0 to 1. In particular, lim𝑊→0𝑠(𝑊) = 𝑠(0) = 1/2, implying
that the probability of picking either strategy is approximately
1/2 when 𝑊 is small (and, when 𝑊 = 0, each strategy is
equally likely to be chosen). The relation between smoothed
and nonsmoothed best response is shown in Figure 1. Notice
that parameter 𝑘 is proportional to the slope of the curve 𝑠(𝑊)
at𝑊 = 0.

Under the smoothed best response, the per individual
rate of vaccination uptake is then given as 𝜑(𝑆, 𝐼, 𝑅, 𝑉) =
𝜙𝑠(𝑊) = 𝜙(e𝑘𝛽𝐼/(𝑆+𝐼+𝑅+𝑉)

𝑞

/(e𝑘𝛽𝐼/(𝑆+𝐼+𝑅+𝑉)
𝑞

+ e𝑘𝛼)). Here 𝜙
is a constant between 0 and 1 indicating the proportion
of susceptible individuals who are faced with the decision
of whether or not to be vaccinated per unit time. Since
max(𝜑(𝑆, 𝐼, 𝑅, 𝑉)) = lim𝑊→∞𝜙𝑠(𝑊) = 𝜙, 𝜙 is also the
proportion of the susceptibles who take the vaccine per unit
time when the total payoff of the vaccination is quite high.

3. The Disease Free and Endemic Equilibria:
Existence and Stability

System (1) always admits a disease free equilibrium 𝐸0 =

(𝑆
∗

0
, 0, 0, 𝑉

∗

0
), where

𝑆
∗

0
=

𝐴

𝑑 + 𝜙𝑠
=

2𝐴

2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼))
,

𝑉
∗

0
=

𝜙𝐴 (1 − tanh ((1/2) 𝑘𝛼))
𝑑 (2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼)))

,

(7)

since 𝑠 = (tanh(−(1/2)𝑘𝛼) + 1)/2 = (1 − tanh((1/2)𝑘𝛼))/2
when𝑊𝑝 = 0. Note that 𝑆

∗

0
and𝑉∗

0
are both positive since 0 <

tanh((1/2)𝑘𝛼) < 1 for positive 𝑘 and 𝛼. The basic reproduc-
tion number R0 (i.e., the expected number of infected
individuals generated over its lifetime by the introduction
of a single infected at the disease free equilibrium) plays an
important role in the stability of 𝐸0. For system (1), R0 can
be obtained by using the next generation method [27] and is
given by (see the Appendix)

R0 =
2𝛽𝐴

(𝐴/𝑑)
𝑞
(𝑟 + 𝑑) (2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼)))

.

(8)

Theorem 1. IfR0 < 1, the disease free equilibrium𝐸0 ofmodel
(1) is the only equilibrium and it is locally asymptotically stable.
IfR0 > 1, 𝐸0 is unstable.

Proof. The local stability of the disease-free equilibrium 𝐸0
is determined by the Jacobian matrix 𝐽0 of system (1) at 𝐸0,
which is given by (9)

[
[
[
[
[
[

[

𝐿

2
−
(−4 − 𝑘𝜙 + 𝑘𝜙 (tanh ((1/2) 𝑘𝛼))2) 𝛽𝐴

2(𝐴/𝑑)
𝑞
𝐿

0 0

0 −
2𝛽𝐴

(𝐴/𝑑)
𝑞
𝐿
− 𝑑 − 𝑟 0 0

0 𝑟 −𝑑 0

−
1

2
𝜙 (tanh( 1

2
𝑘𝛼) − 1)

(1/2) 𝜙𝐴(−1 + (tanh ((1/2) 𝑘𝛼))2) 𝑘𝛽
(𝐴/𝑑)

𝑞
𝐿

0 −𝑑

]
]
]
]
]
]

]

,

(9)

where 𝐿 = 𝜙 (tanh((1/2)𝑘𝛼) − 1) − 2𝑑 < 0. We notice that −𝑑
is an eigenvalue of 𝐽0 with multiplicity 2, and the remaining
two eigenvalues are also eigenvalues of the 2 × 2matrix

[
[
[

[

𝐿

2
−
(−4 − 𝑘𝜙 + 𝑘𝜙 (tanh ((1/2) 𝑘𝛼))2) 𝛽𝐴

2(𝐴/𝑑)
𝑞
𝐿

0 −
2𝛽𝐴

(𝐴/𝑑)
𝑞
𝐿
− 𝑑 − 𝑟

]
]
]

]

. (10)

Since 𝐿 < 0, all eigenvalues of 𝐽0 are negative if and only if
−2𝛽𝐴/((𝐴/𝑑)

𝑞
𝐿) − 𝑑 − 𝑟 < 0, which is equivalent toR0 < 1.

Thus, the disease free equilibrium 𝐸0 is locally asymptotically
stable whenR0 < 1. Furthermore, −2𝛽𝐴/((𝐴/𝑑)𝑞𝐿)−𝑑−𝑟 >
0 when R0 > 1, indicating that the disease free equilibrium
𝐸0 is unstable in this case.
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Any other equilibrium 𝐸1 (𝑆
∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, 𝑉
∗

1
) of system (1)

has 𝐼∗
1
̸= 0. From this, it follows that 𝐸1 has the form

𝑆
∗

1
=
(𝐴/𝑑)

𝑞
(𝑟 + 𝑑)

𝛽
,

𝐼
∗

1
=
(𝐴/𝑑)

𝑞
(𝑘𝛼 + 2𝑄)

𝑘𝛽
,

𝑅
∗

1
=
(𝐴/𝑑)

𝑞
𝑟 (𝑘𝛼 + 2𝑄)

𝑘𝛽𝑑
,

𝑉
∗

1
=
𝐴𝑘𝛽 − (𝐴/𝑑)

𝑞
(𝑟 + 𝑑) (𝑑𝑘 + 2𝑄 + 𝑘𝛼)

𝑘𝛽𝑑
,

(11)

where 𝑄 is the root of the following function:

𝑃1e
2𝑥
𝑥 + 𝑃2e

2𝑥
+ 𝑃3𝑥 + 𝑃4 = 0. (12)

Here,

𝑃1 = 2(
𝐴

𝑑
)

𝑞

(𝑟 + 𝑑) ,

𝑃2 = (
𝐴

𝑑
)

𝑞

𝑘 (𝑟 + 𝑑) (𝑑 + 𝛼) − 𝐴𝑘𝛽 + 𝑘𝜙(
𝐴

𝑑
)

𝑞

(𝑟 + 𝑑) ,

𝑃3 = 2(
𝐴

𝑑
)

𝑞

(𝑟 + 𝑑) = 𝑃1,

𝑃4 = (
𝐴

𝑑
)

𝑞

𝑘 (𝑟 + 𝑑) (𝑑 + 𝛼) − 𝐴𝑘𝛽 = 𝑃2 − 𝑘𝜙(
𝐴

𝑑
)

𝑞

(𝑟 + 𝑑) .

(13)

From (12) and (13), 𝑄 satisfies 𝑃2/((𝐴/𝑑)
𝑞
𝑘𝜙(𝑟 + 𝑑)) +

(2/(𝜙𝑘))𝑄 = 1/(e2𝑄 + 1) and so it is the intersection of the
following two functions:

𝑓1 (𝑥) =
1

e2𝑥 + 1
,

𝑓2 (𝑥) =
𝑃2

(𝐴/𝑑)
𝑞
𝑘𝜙 (𝑟 + 𝑑)

+
2

𝜙𝑘
𝑥.

(14)

Here 𝑓1(𝑥) is a decreasing function and 𝑓2(𝑥) is a linear
function with slope 2/(𝜙𝑘). By substitution, 𝑓1(−𝑘𝛼/2) =
𝑓2(−𝑘𝛼/2) when R0 = 1 (i.e., 𝐸1 = 𝐸0 since 𝑄 = −𝑘𝛼/2

and so 𝐼∗
1
= 0 = 𝑅

∗

1
).

When R0 < 1, we have 𝑓1(−𝑘𝛼/2) < 𝑓2(−𝑘𝛼/2). Thus
the point of intersection of the curve 𝑦 = 𝑓1(𝑥) and the line
𝑦 = 𝑓2(𝑥) is to the left of 𝑥 = −𝑘𝛼/2 (i.e.,𝑄 < (−𝑘𝛼/2)).Thus,
𝐼
∗

1
< 0. In summary, ifR0 < 1, there is no biologically feasible

solution to (12) and (13) for which 𝐸1 has all nonnegative
components.

Theorem 2. When R0 > 1, the endemic equilibrium
𝐸1 (𝑆
∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, 𝑉
∗

1
) exists in Γ and it is locally asymptotically

stable.

Proof. Suppose thatR0 > 1.

Existence. From the proof of Theorem 1, 𝑓1(−𝑘𝛼/2) >

𝑓2(−𝑘𝛼/2). Furthermore, −𝑘𝛼/2 < 𝑘(𝐴𝛽 − (𝐴/𝑑)𝑞(𝑟 + 𝑑)(𝑑 +
𝛼))/(2(𝐴/𝑑)

𝑞
(𝑟 + 𝑑)) and 𝑓1(𝑘(𝐴𝛽 − (𝐴/𝑑)

𝑞
(𝑟 + 𝑑)(𝑑 +

𝛼))/(2(𝐴/𝑑)
𝑞
(𝑟 + 𝑑))) < 𝑓2(𝑘(𝐴𝛽 − (𝐴/𝑑)

𝑞
(𝑟 + 𝑑)(𝑑 +

𝛼))/(2(𝐴/𝑑)
𝑞
(𝑟+𝑑))) = 1. Since𝑓1(𝑥) is a decreasing function

and𝑓2(𝑥) is an increasing function, the solution𝑄 to (12) is in
the interval (−𝑘𝛼/2, 𝑘(𝐴𝛽−(𝐴/𝑑)𝑞(𝑟+𝑑)(𝑑+𝛼))/(2(𝐴/𝑑)𝑞(𝑟+
𝑑))), indicating that 𝐼∗

1
> 0, 𝑅∗

1
> 0, 𝑉∗

1
> 0. Notice that

𝑆
∗

1
= (𝐴/𝑑)

𝑞
(𝑟+𝑑)/𝛽 > 0 and 𝑆∗

1
+𝐼
∗

1
+𝑅
∗

1
+𝑉
∗

1
= 𝐴/𝑑. Hence,

𝐸1 is an endemic equilibrium of system (1) whenR0 > 1.

Stability. To prove the local stability of the endemic equilib-
rium, the Jacobian matrix 𝐽1 of system (1) at 𝐸1 is given by
(15) (this linearization and the subsequent evaluation of the
eigenvalues of 𝐽1 were obtained using MAPLE)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐻(4(cosh (𝑄))2 + 𝜙𝑘)

4𝑘𝛽(cosh (𝑄))2𝐴
− 𝑑

𝐻(4(cosh (𝑄))2 + 𝜙 𝑘)

4𝑘𝛽(cosh (𝑄))2𝐴

𝐻(4(cosh (𝑄))2 + 𝜙𝑘)

4𝑘𝛽(cosh (𝑄))2𝐴

𝐻(4(cosh (𝑄))2 + 𝜙𝑘)

4𝑘𝛽(cosh (𝑄))2𝐴

−𝛼 − 2
𝑄

𝑘
−
𝜙 (tanh (𝑄) + 1)

2
−
𝜙𝑘 (𝑟 + 𝑑)

4(cosh (𝑄))2
− 𝑟 − 𝑑

2𝑄 + 𝛼𝑘

𝑘
−
𝐻

𝐴𝑘𝛽
−
𝐻

𝐴𝑘𝛽
−
𝐻

𝐴𝑘𝛽
−
𝐻

𝐴𝑘𝛽

0 𝑟 −𝑑 0

𝜙 (1 + tanh (𝑄))
2

−
𝜙𝐻

4𝛽𝐴(cosh (𝑄))2
𝜙 (𝑟 + 𝑑) 𝑘

4(cosh (𝑄))2
−

𝜙𝐻

4𝛽𝐴(cosh (𝑄))2
−

𝜙𝐻

4𝛽𝐴(cosh (𝑄))2
−𝑑 −

𝜙𝐻

4𝛽𝐴(cosh (𝑄))2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(15)



6 Computational and Mathematical Methods in Medicine

where𝐻 = (𝐴/𝑑)𝑞𝑞𝑑(𝑟+𝑑)(2𝑄+𝛼𝑘). Two of the eigenvalues
of 𝐽1 are 𝜆1 = −𝑑 and 𝜆2 = −𝑑, and the other two eigenvalues,
𝜆3 and 𝜆4, are the roots of the following polynomial:

𝜆
2
+
(2𝑄 + 𝑑𝑘 + 𝛼𝑘) (e2𝑄 + 1) + 𝜙𝑘

𝑘 (e2𝑄 + 1)
𝜆

+
(𝑑 + 𝑟) (𝛼𝑘 + 2𝑄) (2e2𝑄 + 𝜙𝑘e2𝑄 + e4𝑄 + 1)

𝑘(e2𝑄 + 1)2
.

(16)

Notice that when R0 > 1, 𝑄 ∈ (−𝑘𝛼/2, 𝑘(𝐴𝛽 − (𝐴/𝑑)
𝑞
(𝑟 +

𝑑)(𝑑 + 𝛼))/(2(𝐴/𝑑)
𝑞
(𝑟 + 𝑑))), which guarantees that ((2𝑄 +

𝑑𝑘 + 𝛼𝑘)(e2𝑄 + 1) + 𝜙𝑘)/(𝑘(e2𝑄 + 1)) > 0 and (𝑑 + 𝑟)(𝛼𝑘 +
2𝑄)(2e2𝑄 + 𝜙𝑘e2𝑄 + e4𝑄 + 1)/(𝑘(e2𝑄 + 1)2) > 0. Thus, the
roots of polynomial (16) have negative real parts. Hence, the
endemic equilibrium𝐸1 of system (1) is locally asymptotically
stable forR0 > 1 (and does not exist as a biologically feasible
equilibrium whenR0 < 1).

4. Discussions

From the theory developed in the preceding section, we see
that the disease free equilibrium 𝐸0 is locally asymptotically
stable if and only ifR0 < 1, where

R0 =
2𝛽𝐴

(𝐴/𝑑)
𝑞
(𝑟 + 𝑑) (2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼)))

. (17)

Furthermore, the endemic equilibrium 𝐸1 exists (and is
locally asymptotically stable) if and only if R0 > 1 (see
Figure 2).

It is therefore important to analyze how R0 changes
in terms of model parameters in order to study methods
to control the spread of the epidemic. For instance, when
vaccination rates do not depend on benefits or costs (i.e.,
𝑘 or 𝛼 is 0), there is a constant vaccination rate 𝜙. Not
surprisingly, as this rate increases, R0 decreases and so the
disease can be controlled by a sufficiently high vaccination
rate. Constant vaccination rates correspond to involuntary
vaccination programs, where the latter result is well-known
in related models [28, 29].

Of more importance for us, since we are interested in the
effects of voluntary decisions concerning vaccinations, is how
R0 changes when 𝑘 and 𝛼 are both positive (as well as 𝜙
and 𝛽). For instance, for fixed 𝜙, 𝛽, and 𝛼, R0 increases as
𝑘 increases (see Figure 3(a)). That is, as individuals become
more precise in their estimates of benefits and costs (basing
their decision whether or not to be vaccinated on which
action has the higher payoff), their degree of rationality 𝑘may
increase and cause the disease free equilibrium to become
more unstable. There are a number of policy implications
contained in this result. One implication is then that too
much information in the general population may be bad for
the control of an epidemic (a somewhat surprising outcome)
unless other model parameters are also changed (e.g., the
perceived cost of vaccination 𝛼 is reduced). This outcome
is examined more closely later in this section and policy
initiatives to counteract it are discussed in the conclusions
(Section 5).

The disease free equilibrium also becomes more unstable
when𝛼 is increased (with other parameters fixed) (see Figures
3(a), 3(b), and 3(c)), but this is not so surprising since one
would expect fewer susceptibles to be vaccinated if the cost of
vaccination increases. On the other hand, as the percentage
of susceptible individuals making the decision whether to
be vaccinated per unit time increases (i.e., 𝜙 increases), the
disease is better controlled (see Figure 3(b)). Put another way,
this also says that for diseases that progress at a slower time-
scale (e.g., through a lower incidence rate 𝛽), lower decision
rates 𝜙 on vaccination can still be effective in controlling the
disease (everything else being equal) (see Figure 3(d)). This
is also a well-known result [28, 29] for related models with
constant (involuntary) vaccination rates 𝜑(𝑆, 𝐼, 𝑅, 𝑉) = 𝜙.

Similar results can also be obtained from the bifurcation
diagram (see Figure 4); that is, increasing the rate 𝜙 at which
decisions are made or decreasing the cost 𝛼 of vaccination
are both effective means in slowing down the spread of
an epidemic. However, with the increase in the amount of
information individual decision-makers have (reflected by an
increase in 𝑘), the chances that an epidemic spreads actually
increase.

In order to further discuss the effect of 𝑘 on the spread of
an epidemic, we compare the general smoothed best response
for 𝑘, a fixed positive parameter, to an extreme situation, the
best response (i.e., 𝑘 → ∞). For the best response, when
𝑊𝑝 > 𝑊𝑛 (i.e., 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)

𝑞
> 𝛼), we have 𝑏(𝑊) = 1,

indicating that the per individual rate of vaccination uptake
is 𝜙. Thus system (1) can be written as

̇𝑆 = 𝐴 −
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑑𝑆 − 𝑆𝜙,

̇𝐼 =
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑟𝐼 − 𝑑𝐼,

𝑅̇ = 𝑟𝐼 − 𝑑𝑅,

𝑉̇ = 𝑆𝜙 − 𝑑𝑉,

𝛼 <
𝛽𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
,

(18)

with basic reproduction number R𝐵𝑝0 = 𝐴𝛽/((𝑟 + 𝑑)(𝑑 +
𝜙)(𝐴/𝑑)

𝑞
). When 𝑊𝑝 < 𝑊𝑛, we have 𝑏(𝑊) = 0, and thus

the per individual rate of vaccination uptake is 0. In this case,
system (1) becomes

̇𝑆 = 𝐴 −
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑑𝑆,

̇𝐼 =
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
− 𝑟𝐼 − 𝑑𝐼,

𝑅̇ = 𝑟𝐼 − 𝑑𝑅,

𝑉̇ = − 𝑑𝑉,

𝛼 >
𝛽𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
.

(19)

The basic reproduction number of system (19) is R𝐵𝑛0 =
𝛽𝐴/((𝐴/𝑑)

𝑞
(𝑟+𝑑)𝑑). Here we consider the case when the dis-

ease becomes endemic without vaccination (i.e.,R𝐵𝑛0 > 1)
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Figure 2: Simulated phase portraits of system (1) for 𝐴 = 0.5, 𝛽 = 0.25, 𝑞 = 0.9, 𝑑 = 0.1, 𝛼 = 0.01, 𝑟 = 0.1, and 𝑘 = 2, projected on the 𝑆 − 𝐼
plane (a, c) and on the 𝑅 − 𝑉 plane (b, d). For (a) and (b), 𝜙 = 0.15. Since R

0
= 0.84, the disease free equilibrium 𝐸

0
is stable. For (c) and

(d), 𝜙 has been decreased to 0.05 causingR
0
to increase to 1.18. SinceR

0
> 1, the disease free equilibrium 𝐸

0
is unstable and the endemic

equilibrium 𝐸
1
exists and is stable.

but can be controlled with a sufficiently high constant
vaccination rate 𝜙 (i.e., with a properly chosen 𝜙, the basic
reproduction number of model (18) R𝐵𝑝0 is less than 1).
Hence, the disease-free equilibrium of subsystem (18), 𝐸𝐵𝑝0 =
(𝐴/(𝑑 + 𝜙), 0, 0, 𝜙𝐴/(𝑑(𝑑 + 𝜙))), is globally asymptotically
stable, and the endemic equilibrium of the subsystem (19),
𝐸𝐵𝑛1 = (𝑆

∗

𝐵𝑛1
, 𝐼
∗

𝐵𝑛1
, 𝑅
∗

𝐵𝑛1
, 𝑉
∗

𝐵𝑛1
), where

𝑆
∗

𝐵𝑛1
=
(𝑟 + 𝑑) (𝐴/𝑑)

𝑞

𝛽
,

𝐼
∗

𝐵𝑛1
=

𝐴

𝑟 + 𝑑
−
(𝐴/𝑑)

𝑞
𝑑

𝛽
,

𝑅
∗

𝐵𝑛1
=

𝑟𝐴

𝑑 (𝑟 + 𝑑)
−
𝑟(𝐴/𝑑)

𝑞

𝛽
,

𝑉
∗

𝐵𝑛1
= 0,

(20)

is globally asymptotically stable (see the Appendix).
The discussion on the behavior of models (18) and (19) is

divided into the following three cases depending on the cost
𝛼 of being vaccinated. When there is no cost of vaccination
(𝛼 = 0, Case 1), we have𝑊𝑝 > 𝑊𝑛 as long as the number of
infected is not 0. Thus the epidemic is described by system
(18) which evolves to the disease-free equilibrium 𝐸𝐵𝑝0.
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Figure 3: The logarithm logR
0
of the basic reproduction number of system (1). Except as described below, the parameters used here are as

follows: 𝐴 = 0.5, 𝛽 = 0.25, 𝑞 = 0.9, 𝑑 = 0.1, 𝑟 = 0.1, 𝑘 = 2, 𝛼 = 0.1, and 𝜙 = 0.1. logR
0
is shown (a) when the degree of rationality 𝑘 is

increased from 0 to 6 and the perceived cost of vaccination 𝛼 is varied from 0 to 0.15; (b) when the decision rate 𝜙 is varied from 0.09 to 0.11
and 𝛼 is varied from 0 to 0.1; (c) when the incidence rate 𝛽 is varied from 0.2 to 0.3 and 𝛼 is varied from 0 to 0.2; (d) when 𝛽 is varied from 0.2
to 0.3 and 𝜙 is varied from 0.09 to 0.11. The solid curve in each panel denotes the points where the basic reproduction number R

0
is equal

to 1 (i.e., logR
0
= 0). The disease-free equilibrium is stable for parameter values corresponding to points under these curves and unstable

for those above for (a), (b), and (c) and the opposite holds for (d). The column on the right-hand side of each panel gives the color coding for
different values of logR

0
.

On the other hand, for any positive cost of vaccination,
the disease-free equilibrium is unstable and a stable endemic
equilibrium that depends on the cost level exists as shown in
the appendix. For high costs (specifically, for 𝛼 > 𝐴𝛽/((𝑟 +
𝑑)(𝐴/𝑑)

𝑞
) − 𝑑, Case 2), it is shown there that 𝐸𝐵𝑛1 is stable.

We note that 𝐴𝛽/((𝑟 + 𝑑)(𝐴/𝑑)𝑞) − 𝑑 > 0 is guaranteed by
R𝐵𝑛0 > 1.

For intermediate costs (specifically, for 0 < 𝛼 < 𝐴𝛽/((𝑟 +
𝑑)(𝐴/𝑑)

𝑞
) − 𝑑, Case 3), the endemic equilibrium has a lower

proportion of infected:

𝐼
∗

𝐵1
=
𝛼(𝐴/𝑑)

𝑞

𝛽
(21)

than that given by 𝐼∗
𝐵𝑛1

in (20). In fact, 𝐼∗
𝐵1
can also be obtained

from (11) by taking the limit

𝐼
∗

𝐵1
= lim
𝑘→∞

𝐼
∗

1
= lim
𝑘→∞

(𝐴/𝑑)
𝑞
(𝑘𝛼 + 2𝑄)

𝑘𝛽

=
𝛼(𝐴/𝑑)

𝑞

𝛽
+
2 (𝐴/𝑑)

𝑞

𝛽
lim
𝑘→∞

𝑄

𝑘

(22)

and showing that lim𝑘→∞(𝑄/𝑘) = 0 (see the Appendix). It
is also interesting to note that, in this last case, the epidemic
dynamics will continue to switch between the two systems
(18) and (19), driven by the best response based vaccine
uptake (see Figure 5(a)).
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Figure 4: Bifurcation diagrams showing the equilibrium structure of system (1). Except as described below, the parameters used here are as
follows: 𝐴 = 0.5, 𝛽 = 0.25, 𝑞 = 0.9, 𝑑 = 0.15, 𝑟 = 0.08, 𝑘 = 2, 𝛼 = 0.01, and 𝜙 = 0.12. With these parameters, R

0
= 0.8786. (a) 𝜙, the

proportion of susceptible individuals who are faced with the decision of whether or not to be vaccinated per unit time, is varied from 0 to
0.25; (b) 𝛼, the perceived cost of taking the vaccination, is varied from 0 to 1; (c) 𝑘, the degree of rationality, is varied from 0.01 to 104.

The above discussion indicates that, when susceptibles
make vaccination decisions based on the best response, the
disease-free equilibrium is unstable when 𝛼 > 0. In fact,
the best response correspondence can then be approximately
obtained by letting 𝑘 → ∞ in the smoothed best response.
Thus, the basic reproduction number of systems (18) and (19)
can be calculated by taking the limit

R𝐵0 = lim
𝑘→∞

R0 =
𝛽𝐴

(𝐴/𝑑)
𝑞
(𝑟 + 𝑑) 𝑑

. (23)

We notice that R𝐵0 = R𝐵𝑛0, indicating that an epidemic
cannot be totally eliminated if each individual adopts the best
response (see Figure 5(a)).

However, under the smoothed best response, the per indi-
vidual rate of vaccination uptake is still positive even when
0 < 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)

𝑞
< 𝛼, and so the number of infected

can continue to decrease. In fact, the disease-free equilibrium
may be locally asymptotically stable. For properly chosen
𝜙 and 𝑘, the epidemic can be eliminated (see Figure 5(b)).
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Figure 5: (a) Simulated results of the best-response systems (18) and
(19) for 𝐴 = 0.5, 𝛽 = 0.23, 𝑞 = 0.9, 𝑑 = 0.13, 𝑟 = 0.08, 𝜙 = 0.1, and
𝛼 = 0.01. With these parameters, the basic reproduction number
of models (18) and (19) are R

𝐵𝑝0
= 0.7083 and R

𝐵𝑛0
= 1.2532,

respectively. Since 𝛼 < 𝐴𝛽/((𝑟 + 𝑑)(𝐴/𝑑)
𝑞
) − 𝑑 = 0.0329, the

epidemic dynamics switch between models (18) and (19) until an
endemic equilibrium is reached. (b) Simulated results of system (1)
for 𝑘 = 2 with all the other parametric values are the same as (a).
Since the basic reproduction numberR

0
= 0.9076, the disease free

equilibrium 𝐸
0
of model (1) is stable.

That is, the smoothed best response is more effective in
controlling the disease than the best response. Generally, the
basic reproduction numberR0 is an increasing function of 𝑘,
indicating that the more sensitive the susceptible population
is to the payoff difference, themore difficult it is to control the
initial spread of the disease.

In Case 1 (i.e., 𝛼 = 0), we have shown that the disease dies
out under the best response whenR𝐵𝑝0 < 1. For the smooth
best response with 𝑘 bounded, the epidemic model is given

by (1). The corresponding basic reproduction number can be
obtained by substituting 𝛼 = 0 into (8), which yields

R𝛼0 =
𝛽𝐴

(𝐴/𝑑)
𝑞
(𝑟 + 𝑑) ( 𝑑 + (1/2) 𝜙)

. (24)

We notice that the condition R𝐵𝑝0 < 1 does not guarantee
that R𝛼0 < 1. Thus, the smoothed best response is not as
effective as the best response with respect to epidemic control
when 𝛼 = 0 (see Figure 6).That is to say, if there is no “cost” to
take the vaccine, the disease might be endemic if vaccination
decisions are based on the smoothed best response in cases
when the epidemic can be controlled under the best response.
Furthermore, as seen in Figure 6(c), the number of infected
at the endemic equilibrium decreases to 0 as 𝑘 → ∞,
illustrating again that the epidemic model with best response
is the limiting case as 𝑘 → ∞ of the outcome for the
smoothed best response.

5. Conclusions

In this paper, the smoothed best response correspondence is
used to model a game-theory based vaccination uptake deci-
sion during an epidemic. It is assumed that each individual is
rational and follows a cost-benefit analysis to make decisions
on vaccination uptake. We obtain the basic reproduction
number of the model and investigate how the sensitivity of
these decisions to differences in costs and benefits affects the
spread and control of the epidemic. The effect of vaccination
decisions based on the best response (that assumes complete
and accurate information on costs and benefits) is also
analyzed and compared to that based on the smoothed best
response.

Our investigation indicates that, when the “cost” of taking
the vaccination is positive, the smoothed best response is
more effective controlling the disease than the best response.
As mentioned in Section 4, this result suggests a number of
policy implications. As the amount of information available
to the population on the risks of being infected and the risks
𝛼 associated with the vaccine increase, it is important that 𝛼
be made as small as possible compared to the infection risk.
Besides making vaccines safer, policy makers can emphasize
the benefits of vaccination to those susceptibles who have
higher risk of infection in order to convince them to be vacci-
nated. Although this is beyond the scope of our investigation
since we assume each epidemiological class is homogeneous
(in particular, all susceptibles have the same risk of infection),
this is an important direction of future research.

Secondly, the social benefits of being vaccinated can be
emphasized so that individuals obtain positive payoff effects
associated with the public health benefits of vaccinations.
Such initiatives have the potential to counteract the free
riding problem and drive perceived vaccination costs to zero
(or perhaps even negative). As we have shown, when there
is no cost to take the vaccine, the best response becomes
superior to the smoothed best response in controlling the
disease.

In general, rational decision-making by individuals is
based on up-to-date information about the spread of an
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Figure 6: (a) Simulated results of the best-response systems (18) and (19) for 𝐴 = 0.5, 𝛽 = 0.3, 𝑞 = 0.9, 𝑑 = 0.1, 𝛼 = 0, 𝜙 = 0.1, and 𝑟 = 0.1.
The system is converging to the disease-free equilibrium. (b) Simulated results of system (1) for 𝑘 = 2 with all the other parametric values
the same as (a). (c) Simulated results of system (1) for 𝑘 = 200000 with all the other parametric values as (a). All these systems have the same
disease-free equilibrium. In (c), the system is converging to an endemic equilibrium that is very close to this disease-free equilibrium and so
the number of infected is almost 0.

epidemic as well as about the “cost” of vaccination.These two
types of information have opposite effects since knowledge
about the spread of an epidemic encourages individuals to
take the vaccine, while the information about the “cost”
discourages them (if the cost is positive). Hence, with respect
to the control of an epidemic, (smoothed) best response-
based vaccination decisions might not be as effective as
compulsory vaccination programs with constant vaccination
rates. However, compulsory programs may not be possible
in this information age where individuals want to avoid
taking unnecessary vaccinewith potential side effects. In such
scenarios, it becomes more important to understand how

individual rational decisions based on game theory affect the
spread of a disease.

Appendix

We first calculate the basic reproduction number for system
(1). Using the standard notation of the next generation
method [27], we have

F =
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅 + 𝑉)
𝑞
, V = 𝑟𝐼 + 𝑑𝐼. (A.1)
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It follows from (A.1) that

F =
2𝛽𝐴

(𝐴/𝑑)
𝑞
(2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼)))

,

V = 𝑟 + 𝑑.

(A.2)

The basic reproduction number is then obtained as (in
general, 𝜌(FV−1) is the spectral radius of the matrix FV−1;
since FV−1 is a 1 × 1 matrix with a positive entry, 𝜌(FV−1)
equals this entry)

R0 = 𝜌 (FV
−1
)

=
2𝛽𝐴

(𝐴/𝑑)
𝑞
(𝑟 + 𝑑) (2𝑑 + 𝜙 (1 − tanh ((1/2) 𝑘𝛼)))

(A.3)

which is (8) in the main text.
We now discuss the behavior of the best response (i.e.,

models (18) and (19)) when the cost of vaccination is positive
(i.e., 𝛼 > 0). First assume that we are in Case 2 (i.e., 𝛼 >
𝐴𝛽/((𝑟+𝑑)(𝐴/𝑑)

𝑞
)−𝑑). When the initial value of this system

satisfies

𝛽𝐼0

(𝑆0 + 𝐼0 + 𝑅0 + 𝑉0)
𝑞 < 𝛼, (A.4)

we have 𝑊𝑝 < 𝑊𝑛, indicating that the epidemic dynam-
ics is described by model (19). Since the endemic equi-
librium of subsystem (19), 𝐸𝐵𝑛1, is globally asymptotically
stable, the trajectory is convergent to this equilibrium
point. At 𝐸𝐵𝑛1, the benefit of taking the vaccine becomes
𝛽𝐼𝐵𝑛1/(𝑆𝐵𝑛1 + 𝐼𝐵𝑛1 + 𝑅𝐵𝑛1 + 𝑉𝐵𝑛1)

𝑞
= 𝐴𝛽/((𝑟+𝑑)(𝐴/𝑑)

𝑞
)−𝑑 <

𝛼. Since 𝑊𝑝 < 𝑊𝑛, the vaccine uptake rate is 0 (i.e., the
epidemic dynamics is still governed by system (19)). Hence
the trajectory of themodel converges to the equilibrium𝐸𝐵𝑛1.

On the other hand, if the initial condition of the systems
(18) and (19) satisfies

𝛽𝐼0

(𝑆0 + 𝐼0 + 𝑅0 + 𝑉0)
𝑞 > 𝛼, (A.5)

we have𝑊𝑝 > 𝑊𝑛 at the start. According to the best response,
the epidemic dynamics is initially described by system (18).
Since R𝐵𝑝0 < 1, the number of infected will decrease. If
the vaccination uptake remained at 𝜙, the trajectory would
be attracted to the disease-free equilibrium 𝐸𝐵𝑝0. However,
under the best response, with the decrease of 𝐼, once 𝛽𝐼/(𝑆 +
𝐼 + 𝑅 + 𝑉)

𝑞
< 𝛼 (i.e., 𝑊𝑝 < 𝑊𝑛), the vaccine uptake

rate becomes 0. Then the epidemic dynamics is described by
subsystem (19). Since 𝐸𝐵𝑛1 is globally asymptotically stable
and 𝛼 > 𝐴𝛽/((𝑟 + 𝑑)(𝐴/𝑑)𝑞) − 𝑑, the trajectory is convergent
to the equilibrium 𝐸𝐵𝑛1. Thus, in Case 2, 𝐸𝐵𝑛1 is globally
asymptotically stable.

Now assume that we are in Case 3 (i.e., 0 < 𝛼 <

𝐴𝛽/((𝑟 + 𝑑)(𝐴/𝑑)
𝑞
) − 𝑑). Driven by the best response,

the epidemic dynamics now switches between models (18)
and (19). When 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞 > 𝛼, since the benefit
of taking a vaccine is higher than the cost, the epidemic
spreads according to model (18). Because R𝐵𝑝0 < 1, the

number of infected decreases. With the decrease of 𝐼, an
individual’s chance of being infected also decreases. As soon
as 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞 < 𝛼, according to the best response, a
rational individual should not take the vaccine.Thus, the epi-
demic dynamics is described by (19). SinceR𝐵𝑛0 > 1 and the
number of infected is not 0 (since the switch starts as soon as
𝐼 < 𝛼(𝑆 + 𝐼 + 𝑅 + 𝑉)

𝑞
/𝛽), the number of infected increases.

With the increase of 𝐼, as soon as 𝛽𝐼/(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞 > 𝛼,
under the best response, the epidemic spreadwill be governed
by system (18) again. The epidemic dynamics will continue
to switch between the two systems (18) and (19), driven by
the best response based vaccine uptake. From the numerical
simulations (e.g., Figure 5(a)) eventually an equilibrium will
be reachedwith 𝐼 = 𝛼(𝑆 + 𝐼 + 𝑅 + 𝑉)𝑞/𝛽. Since 𝑆+𝐼+𝑅+𝑉 =
𝐴/𝑑 as 𝑡 → ∞, the endemic equilibrium satisfies

𝐼
∗

𝐵1
=
𝛼 (𝐴/𝑑)

𝑞

𝛽
. (A.6)

Themain text claims that (A.6) can also be obtained from
(11) by taking the limit

𝐼
∗

𝐵1
= lim
𝑘→∞

𝐼
∗

1
= lim
𝑘→∞

(𝐴/𝑑)
𝑞
(𝑘𝛼 + 2𝑄)

𝑘𝛽

=
𝛼(𝐴/𝑑)

𝑞

𝛽
+
2(𝐴/𝑑)

𝑞

𝛽
lim
𝑘→∞

𝑄

𝑘
.

(A.7)

To see this, consider lim𝑘→∞(𝑄/𝑘). Recall that 𝑄 is the
intersection of the following two functions:

𝑓1 (𝑥) =
1

e2 𝑥 + 1
,

𝑓2 (𝑥) =
𝑃2

(𝐴/𝑑)
𝑞
𝑘𝜙 (𝑟 + 𝑑)

+
2

𝜙𝑘
𝑥.

(A.8)

As 𝑘 → ∞, the second equation of (A.8) is reduced to

𝑓2 (𝑥) =
𝑃2

(𝐴/𝑑)
𝑞
𝑘𝜙 (𝑟 + 𝑑)

, (A.9)

indicating that 𝑄 is the solution of

1

e2𝑥 + 1
=

𝑃2

(𝐴/𝑑)
𝑞
𝑘𝜙 (𝑟 + 𝑑)

:= 𝑀. (A.10)

There is a unique solution to (A.10) if and only if 1 > 𝑀 > 0.
We note that𝑀 = (𝑑+𝛼)/𝜙+1−𝐴𝛽/((𝐴/𝑑)

𝑞
𝜙(𝑟+𝑑)), which

does not depend on 𝑘. It is not difficult to show that𝑀 > 0

if and only if 𝐴𝛽/((𝐴/𝑑)𝑞(𝑑 + 𝛼 + 𝜙)(𝑟 + 𝑑)) < 1, which is
guaranteed by the assumption thatR𝐵𝑝0 < 1. Next, we show
that𝑀 < 1. It is easy to verify that𝑀 < 1 is equivalent to
(𝑑 + 𝛼)/𝜙 −𝐴𝛽/((𝐴/𝑑)

𝑞
𝜙(𝑟 + 𝑑)) < 0, which is guaranteed by

the condition of Case 3; that is,

0 < 𝛼 <
𝐴𝛽

(𝑟 + 𝑑) (𝐴/𝑑)
𝑞 − 𝑑. (A.11)

The solution to (A.10) can then be obtained as 𝑄 =

(1/2) ln((1/𝑀) − 1), implying that

lim
𝑘→∞

𝑄

𝑘
= 0. (A.12)
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Thus, it follows from (A.7) that

𝐼
∗

𝐵1
= lim
𝑘→∞

𝐼
∗

1
=
𝛼(𝐴/𝑑)

𝑞

𝛽
. (A.13)

Next, we prove the global stability of the endemic equilib-
riumofmodel (19). It follows from 𝑉̇ = −𝑑𝑉 that lim𝑡→∞𝑉 =
0. Thus, when there is no game theory involved, system (19)
is reduced to

̇𝑆 = 𝐴 −
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅)
𝑞
− 𝑑𝑆,

̇𝐼 =
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅)
𝑞
− 𝑟𝐼 − 𝑑𝐼,

𝑅̇ = 𝑟𝐼 − 𝑑𝑅.

(A.14)

We note that the equation for 𝑅 in the above system is
decoupled from other equations and as such we only need
to consider the dynamical behavior of the first two equations
of system (A.14). We construct the following Lyapunov
function:

𝑈 (𝑆, 𝐼) = (
𝑆

𝑆∗
𝐵𝑛1

− 1 − ln( 𝑆

𝑆∗
𝐵𝑛1

))

+
𝐼
∗

𝐵𝑛1

𝑆∗
𝐵𝑛1

(
𝐼

𝐼∗
𝐵𝑛1

− 1 − ln( 𝐼

𝐼∗
𝐵𝑛1

))

(A.15)

that has a unique minimum at (𝑆∗
𝐵𝑛1
, 𝐼
∗

𝐵𝑛1
). The derivative of

𝑈 along the solutions of model (A.14) is

𝑈̇ =
𝑆 − 𝑆
∗

𝑆𝑆∗
𝐵𝑛1

̇𝑆 +
𝐼
∗

𝐵𝑛1

𝑆∗
𝐵𝑛1

𝐼 − 𝐼
∗

𝐼𝐼∗
̇𝐼

=
𝑆 − 𝑆
∗

𝐵𝑛1

𝑆𝑆∗
𝐵𝑛1

(𝐴 −
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅)
𝑞
− 𝑑𝑆)

+
𝐼
∗

𝐵𝑛1

𝑆∗
𝐵𝑛1

𝐼 − 𝐼
∗

𝐵𝑛1

𝐼𝐼∗
𝐵𝑛1

(
𝛽𝑆𝐼

(𝑆 + 𝐼 + 𝑅)
𝑞
− 𝑟𝐼 − 𝑑𝐼) .

(A.16)

Using lim𝑡→∞(𝑆 + 𝐼 + 𝑅) = 𝐴/𝑑, we have

𝑈̇ =
𝑆 − 𝑆
∗

𝐵𝑛1

𝑆𝑆∗
𝐵𝑛1

(−𝛽
𝑆𝐼 − 𝑆

∗

𝐵𝑛1
𝐼
∗

𝐵𝑛1

(𝐴/𝑑)
𝑞

− 𝑑 (𝑆 − 𝑆
∗

𝐵𝑛1
))

+
𝐼
∗

𝐵𝑛1

𝑆∗
𝐵𝑛1

𝐼 − 𝐼
∗

𝐵𝑛1

𝐼𝐼∗
𝐵𝑛1

(𝛽
𝑆𝐼 − 𝑆

∗

𝐵𝑛1
𝐼
∗

𝐵𝑛1

(𝐴/𝑑)
𝑞

− (𝑟 + 𝑑) (𝐼 − 𝐼
∗

𝐵𝑛1
) )

= −(
𝐼
∗

𝐵𝑛1

𝑆𝑆∗
𝐵𝑛1
(𝐴/𝑑)

𝑞
+

𝑑

𝑆𝑆∗
𝐵𝑛1

) (𝑆 − 𝑆
∗

𝐵𝑛1
)
2
.

(A.17)

Thus, every trajectory of (A.14) converges to an invariant
subset of {(𝑆, 𝐼, 𝑅) | 𝑆 = 𝑆∗

𝐵𝑛1
} by LaSalle’s invariance principle

[30]. Since ̇𝑆 = 0 in this set, it is clear that the only such
invariant subset is the endemic equilibrium 𝐸𝐵𝑛1 and so 𝐸𝐵𝑛1
is globally asymptotically stable.
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Royale des Sciences et Belles-Lettres de Bruxelles, vol. 18, pp. 1–
42, 1845.

[25] J. S. Cramer, Logit Models from Economics and other Fields,
Cambridge University Press, Cambridge, UK, 2003.

[26] F. Xu, R. Cressman, and V. Křivan, “Evolution of mobility
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