
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9020  | https://doi.org/10.1038/s41598-021-88694-7

www.nature.com/scientificreports

Tumor mutation burden 
(TMB)‑associated signature 
constructed to predict survival 
of lung squamous cell carcinoma 
patients
Dan Yan1* & Yi Chen2

Lung squamous cell carcinoma (LUSC) is a common type of lung cancer with high incidence and 
mortality rate. Tumor mutational burden (TMB) is an emerging biomarker for selecting patients with 
non‑small cell lung cancer (NSCLC) for immunotherapy. This study aimed to reveal TMB involved in 
the mechanisms of LUSC and develop a model to predict the overall survival of LUSC patients. The 
information of patients with LUSC were obtained from the cancer genome atlas database (TCGA). 
Differentially expressed genes (DEGs) between low‑ and the high‑TMB groups were identified and 
taken as nodes for the protein–protein interaction (PPI) network construction. Gene oncology (GO) 
enrichment analysis and gene set enrichment analysis (GSEA) were used to investigate the potential 
molecular mechanism. Then, we identified the factors affecting the prognosis of LUSC through cox 
analysis, and developed a risk score signature. Kaplan–Meier method was conducted to analyze the 
difference in survival between the high‑ and low‑risk groups. We constructed a nomogram based on 
the risk score model and clinical characteristics to predict the overall survival of patients with LUSC. 
Finally, the signature and nomogram were further validated by using the gene expression data 
downloaded from the Gene Expression Omnibus (GEO) database. 30 DEGs between high‑ and low‑
TMB groups were identified. PPI analysis identified CD22, TLR10, PIGR and SELE as the hub genes. 
Cox analysis indicated that FAM107A, IGLL1, SELE and T stage were independent prognostic factors 
of LUSC. Low‑risk scores group lived longer than that of patients with high‑risk scores in LUSC. 
Finally, we built a nomogram that integrated the clinical characteristics (TMN stage, age, gender) with 
the three‑gene signature to predict the survival probability of LUSC patients. Further verification in 
the GEO dataset. TMB might contribute to the pathogenesis of LUSC. TMB‑associated genes can be 
used to develope a model to predict the OS of lung squamous cell carcinoma patients.

Lung cancer is the commonest cancer, and is the main cause of global tumor morbidity and  mortality1. Non-
small cell lung cancer (NSCLC) is a common type of lung cancer, including lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC) and large cell lung carcinoma (LCLC). Among NSCLC, LUAD is the most 
common followed by LUSC which constitutes approximately 30% of all lung cancer  cases2. With the discovery of 
target genes and the development of targeted therapy and immunotherapy, the survival of patients with NSCLC 
has been  extended3, especially patients with  LUAD4. However, due to the lack of effective targeted treatments, 
the progress of LUSC therapy is very slow and the clinical outcome of LUSC remains unsatisfactory.

TMB is the number of mutations per million bases in tumor tissue, including base substitutions, gene inser-
tion, and gene coding and deletion errors. TMB has a vital role in tumor occurrence and development, and affects 
the immune response and survival prognosis of LUSC  patients5. And many studies suggest that TMB is a potential 
and emerging biomarker for selecting NSCLC patients suitable for immunotherapy, even better than PD-1/PDL-1 
 expression6,7. In resected NSCLC patients, decreased TMB is believed to be associated with poor prognosis 8.
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NSCLC patient prognosis is most often evaluated in light of the American Joint Committee on Cancer 
(AJCC) staging system (8th edition), with the stage of the cancer being used to guide treatment decision  making9. 
However, in many cases this system may fail to accurately predict the prognosis of a given patient, as a number 
of other factors can influence such outcomes. Several studies have suggested that TMB might be a potentially-
useful clinical predictor in NSCLC patients undergoing  immunotherapy10 and patients with resected  NSCLC8. 
However, there are few studies focusing on the relationship between TMB and LUSC. However, few studies have 
focused on the relationship between TMB and LUSC. Therefore, using data from the TCGA database, we built 
a novel predictive model able to predict the survival probability of LUSC patients.

Method
Data acquisition. The RNA transcriptome sequences and corresponding clinicopathological data for LUSC 
patients were collected from The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/) and used for 
model training; this included 502 tumors and 49 paracancerous tissues. Information obtained from the Gene 
Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) was used for external validation; 
this included 69 lung squamous carcinoma samples (GSE73403). Data was obtained solely from public data-
bases, obviating any ethical conflict.

TMB calculation and differential expressed genes (DEGs) screening. TMB is the sum of muta-
tions per megabase in tumor tissue. TMB for each organization can be detected using the VarScan method, 
as calculated by the R package "maftools". The R package "limma" was used to identify differentially expressed 
genes (DEGs) between a high TMB population and a low TMB population. Classification used the median of 
the TMB score and a |log2 fold change |≥ 1.0. A P value < 0.05 and a False Discovery Rate (FDR) < 0.05 were the 
screening criteria. TMB evaluation of different analysis pipelines (MuTect and Muse detected Mutation data) 
was undertaken using R package ‘maftools’. Kaplan–Meier analysis was used to show the survival difference 
between high and low TMB expression groups.

Protein–protein interactions (PPI) network construction. We construction a PPI network of DEGs 
using the STRING database (https:// string- db. org/) and visualized using Cytoscape software. A confidence score 
of C ≥ 0.15 was defined as the threshold criterion.

Functional enrichment analysis. We used Gene Set Enrichment Analysis (GSEA) to analyze the signal 
path for two different TMB expression groups. Gene Ontology (GO) enrichment analysis was used to reveal 
potential biological processes of TMB-associated DEGs in LUSC.

Construct and validate a Cox proportional hazards model. Univariate and multivariate Cox analysis 
were used to identify factors affecting survival and prognosis of LUSC. The risk associated with TMB-related 
genes was found from multivariate Cox regression analysis. From the median calculated score, patients were 
classified into high- and low-risk groups. Kaplan–Meier curves showed the survival difference between groups 
for both training and validation groups. A nomogram utilizing the risk score and baseline clinical information 
was able to predict 1-, 3- and 5-year overall survival (OS) in LUSC patients. The predictive accuracy of the model 
was found using ROC curves. RNA transcriptome profiles of LUSC patients were downloaded from the GEO 
database and used for external validation.

Statistical analysis. DEGs were screened using the R package "Limma". GO was conducted using “clus-
terProfiler”, “ggplot2”, “enrichplot”, “stringi”, and “DOSE” packages. By using the TMB value, GSEA was able to 
analyze the signal path. We choose the "c2.cp.kegg.v6.2.symbols.gmt” gene set downloaded from the MSigDB 
database (http:// softw are. broad insti tute. org/ gsea/ msigdb/) as the reference. To assess prognostic value, Cox 
regression analysis was used to estimate the hazard ratio and 95% confidence interval (95% CI) for each variable 
in the LUSC cohort. Statistically significant variables (P < 0.05) in the initial univariate Cox regression analysis 
were used in the subsequent multivariate analysis. A predictive risk model was created using multivariate Cox 
regression analysis implemented in the “survival” package. The resulting model and clinical information were 
incorporated into a final predictive nomogram, able to predict 1-, 3-year and 5-year LUSC patient OS. Nomo-
gram prediction was undertaken using the “survival” package. Predictive accuracy was evaluated using ROC 
curves. All statistical analysis was performed using R (version 3.5.2), Cytoscape, GSEA, and perl. A P value < 0.05 
was considered significant.

Result
DEGs screening and PPI network construction. 30 DEGs (including CCL19, BPIFB1, SCGB1A1, 
PIGR, SELE, NR5A1, PIP) were sorted into low and high expression TMB groups: threshold |Log2 FC|> 1.0, P 
value < 0.05 and FDR < 0.05 (in Table1; Fig. 1a). Kaplan–Meier analysis indicated patient OS in the low expres-
sion group was significantly lower than in the high expression group. When evaluating TMBs generated by 
different analysis pipelines this remained true (Fig. 5). Figure 2 shows the distribution of DEGs in the two TMB 
expression groups. By using a STRING database comprising 25 nodes and 44 edges, we established a PPI net-
work between DEGs, using a confidence threshold of C ≥ 0.15 (Fig. 1b). CD22, TLR10, PIGR, and SELE were 
identified as hub genes and visualized using Cytoscape (https:// cytos cape. org/) (Fig. 1c). DEGs included in the 
model and hub genes are verified in TMB evaluation of different analysis pipelines (Table 2).

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
http://software.broadinstitute.org/gsea/msigdb/
https://cytoscape.org/
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Enrichment analysis. GO analysis indicated that the identified DEGs participated in regulation of lympho-
cyte activation, lymphocyte, mononuclear cell, and leukocyte proliferation (Table 3; Fig. 3). MS4A1, TNFSF8, 
SCGB1A1, CD22, and CCL19 were associated with lymphocyte, Leukocyte and mononuclear cell proliferation. 
TNFSF8, SCGB1A1, CD22, and CCL19 were involved with regulating lymphocyte proliferation and leukocyte 
proliferation. GSEA analysis indicated that high expression of TMB correlated with DNA replication, cell cycle, 
oocyte meiosis, spliceosome, RNA degradation, base excision repair, and pyrimidine metabolism. Low-TMB 
was mainly associated with B cell receptor, T cell receptor, and chemokine signaling pathways (Fig. 4).

Cox proportional hazards model construction. Univariant analysis suggested that survival rate was 
correlated with FAM107A, IGLL1, SELE and T stage. Multivariate Cox analysis indicated that FAM107A, IGLL1, 
SELE and T stage were independent prognostic factors of LUSC (Table 4). The regression model we constructed 
using multivariate Cox analysis can be used to predict LUSC patient OS. According to the median score, patients 
were divided between high- and low-risk groups. In training, Kaplan–Meier indicated patient OS in the low-risk 
group was significantly lower than in the high-risk group, as confirmed by external validation using data from 
the GEO database (GSE73403) (Fig. 5).

Development of a nomogram. A nomogram able to predict LUSC patient survival at 1 year, 3 years, 
5 years was constructed, incorporating the following information: T stage, M stage, N stage, age, gender and risk 
score model. In this nomogram, lines under each independent prognostic factor correspond to a score, with a 
combined score produced by summing all individual scores. This overall score allows prediction of patient prog-
nosis after 1 years (“sur1year”), 3 years (“sur3year”) and 5 years (“sur5year”) (Fig. 6).

Nomogram validation. We then validated this nomogram using Receiver Operator Characteristic (ROC) 
curves (Fig. 7). We found that in training the area under the ROC curve was 0.672 (95%CI: 0.632–0.684) for 
1-year survival, 0.659 (95%CI: 0.621–0.665) for 3-year survival, and 0.645 (95%CI: 0.621–0.665) for 5-year sur-
vival (Fig. 7). In external validation the corresponding areas were 0.648 (95%CI: 0.632–0.684) for 1-year sur-
vival, 0.681 (95%CI: 0.661–0.695) for 3-year survival, and 0.652 (95%CI: 0.621–0.665) for 5-year survival.

Table 1.  Differential expressed genes between low TMB and high TMB groups.

Gene logFC pValue

CYSLTR2 − 1.6898991 0.00010269

MS4A1 − 1.1441338 0.00058734

FAM107A − 1.0200621 7.73E−05

IGLL1 − 1.7638948 0.00533523

LRRC55 − 1.785876 0.00055621

MS4A8 − 1.8295919 0.00021727

C20orf85 − 1.1821732 0.00062144

SELE − 1.2084087 0.00472061

TNFSF8 − 1.1427382 0.0032476

NR5A1 1.9226092 7.87E−06

CADM3 − 1.2047907 5.53E−05

FCRL2 − 1.159438 0.0008174

BPIFB1 − 1.4510685 0.00011556

ADH1B − 1.1416372 9.09E−06

INHA 1.85340517 0.00362178

SCGB1A1 − 1.1115467 1.63E−05

PIGR − 1.0412167 0.00022015

C1orf189 − 1.1341047 0.00026482

WFDC12 − 1.2491682 0.00164705

FAM216B − 1.3900118 2.55E−06

HS3ST4 − 1.504201 0.00026443

PIP − 1.0171485 0.00026387

CD22 − 1.0772369 0.00013723

FCER2 − 1.3194606 0.00204346

C2orf40 − 1.2412141 3.72E−05

CCL19 − 1.073972 0.00058595

TLR10 − 1.0166526 0.00302647

C1orf194 − 1.0624677 0.00026991

APOA1 6.52638412 0.00622402

SMIM24 1.10145976 0.00793992
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Discussion
LUSC is a common type of lung cancer with high incidence and mortality rate. Despite the improved diagnosis 
and therapy of LUSC, the prognosis is still very  poor11. As the survival of NSCLC patients is influenced by many 
factors beyond just tumor stage, the use of the TNM staging system to estimate patient prognosis can often lead 
to inaccurate survival estimates. Many other studies have generated prognostic models aimed at more accurately 
estimating the survival of patients with NSCLC in a comprehensive  manner12.

TMB can alter responses to immunotherapy and affect the prognosis of many cancers, including breast 
 cancer13, lung  cancer14 and colon  cancer15. We identified 30 genes differentially expressed between high- and 
low-expression TMB groups. This included 4 up-regulated genes and 26 down-regulated genes. Univariate and 
multivariate analyses were used to examine the influence of each gene and clinical characteristic on OS, allowing 
a combined model and nomogram to be developed to predict LUSC patient OS.

Figure 1.  Identification of DEGs in LUSC between tumor and normal tissues. (a) The heatmap of DEGs 
between the high‐TMB and low‐TMB groups in LUSC by analysis of the TCGA datasets. Each column 
represents a sample, and each row represents one of DEGs. The levels of DEGs are shown in different colors, 
which transition from green to red with increasing proportions. The lines before the heat map indicated 
the dendrogram of DEGs cluster analysis. (b) The protein–protein interaction network (PPI) analysis was 
constructed by all the 30 DEGs using STRING database. (c) Four hub genes (PIGR, TLR10, SELE and CD22) in 
the PPI were screened by Cytoscape based on their connectivity degree. Red circles indicated four hub genes.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9020  | https://doi.org/10.1038/s41598-021-88694-7

www.nature.com/scientificreports/

Figure 2.  The expression of DEGs distributed in high-TMB and low-TMB groups.

Table 2.  DEGs are verified in TMB evaluation of different analysis pipelines.

Gene

SomaticSniper MuTect Muse

logFC pValue logFC pValue logFC pValue

CD22 − 0.738376 1.22E−09 − 0.8605324 0.00718201 − 0.4142631 0.00088519

SELE − 1.3754053 7.29E−05 − 1.0018508 0.01206434 − 0.5736792 0.00823645

PIGR − 1.1479969 1.06E−06 − 0.7435242 0.00391641 − 1.0187546 0.00018397

TLR10 − 1.0942878 1.68E−07 − 0.9334027 0.03117443 − 0.9074117 0.01194325

FAM107A − 1.2206673 1.58E−07 − 0.6545071 0.00402084 − 0.860165 0.00012132

IGLL1 − 2.1140051 2.21E−07 − 0.9500279 0.02153361 − 1.5941 0.01274359

Table 3.  GO enrichment analysis of TMB associated DEGs in LUSC.

Description P value geneID

Lymphocyte proliferation 0.007 MS4A1/TNFSF8/SCGB1A1/CD22/CCL19

Mononuclear cell proliferation 0.007 MS4A1/TNFSF8/SCGB1A1/CD22/CCL19

Regulation of lymphocyte activation 0.007 IGLL1/TNFSF8/INHA/SCGB1A1/CD22/CCL19

Leukocyte proliferation 0.007 MS4A1/TNFSF8/SCGB1A1/CD22/CCL19

Regulation of lymphocyte proliferation 0.018 TNFSF8/SCGB1A1/CD22/CCL19

Regulation of mononuclear cell proliferation 0.018 TNFSF8/SCGB1A1/CD22/CCL19

Regulation of leukocyte proliferation 0.020 TNFSF8/SCGB1A1/CD22/CCL19

Negative regulation of immune system process 0.026 BPIFB1/INHA/SCGB1A1/CD22/APOA1

Regulation of endocytosis 0.037 SELE/CD22/CCL19/APOA1

adrenal gland development 0.037 NR5A1/APOA1

B cell receptor signaling pathway 0.038 MS4A1/IGLL1/CD22

B cell activation 0.038 MS4A1/IGLL1/INHA/CD22

Response to tumor necrosis factor 0.038 SELE/TNFSF8/CCL19/APOA1

Negative regulation of production of molecular Mediator of immune response 0.041 CD22/APOA1

negative regulation of Interferon-gamma production 0.041 INHA/SCGB1A1

positive regulation of Endocytosis 0.041 SELE/CCL19/APOA1

Mucosal immune response 0.041 BPIFB1/PIGR

Lymphocyte differentiation 0.041 MS4A1/TNFSF8/INHA/CCL19

Regulation of T cell proliferation 0.041 TNFSF8/SCGB1A1/CCL19
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GO enrichment analysis indicated these DEGs were mainly involved in lymphocyte activation and lympho-
cyte/leukocyte/monocyte proliferation. These genes are likely to be closely related to the functioning of immune 
checkpoint inhibitors in the cancer microenvironment. The proliferation, activation, and differentiation of lym-
phocytes are critical to the immune  system16. Many studies have indicated TMB to be an independent predictor 
of immune checkpoint inhibitor therapy influencing the immune  microenvironment17. Our work supports the 
view that TMB is closely related to immunity.

Univariant analysis and multivariate Cox analysis revealed that FAM107A, IGLL1 and SELE were independ-
ent prognostic factors of LUSC. These genes reportedly participate in the pathological processes of the TMB 

Figure 3.  GO enrichment analysis of the DEGs between high- and low-TMB groups.

Figure 4.  GSEA analysis was performed to further screen the significant pathway between high TMB group 
and low TMB group. The q‐value < 0.05 was considered as significance. (a) Significant pathway identified in the 
high-TMB group. (b) Significant pathway identified in the low-TMB group.
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Table 4.  Cox proportional hazards model analysis of prognostic factors.

Variables

Univariate Cox analysis Multivariate Cox analysis

HR 95% CI P HR 95% CI P

FAM107A 1.015 1.01–1.025 0.0035 1.0156 1.00–1.03 0.044

IGLL1 1.062 1.01–1.113 0.0124 1.0723 1.02–1.127 0.006

SELE 1.025 0.99–1.054 0.05 1.0006 1.01–1.045 0.012

PIGR 1.011 0.98–1.023 0.542 0.9977 0.99–1.004 0.66

ADH1B 1.022 0.097–1.02 0.548 1.1697 0.99–1.007 0.62

T 1.94 0.95–3.959 0.068 1.8135 0.767–1.78 0.03

M 1.85 0.59–5.841 0.291 1.7957 1.05–3.12 0.47

N 1.156 0.84–1.564 0.379 1.2321 0.84–3.86 0.12

Figure 5.  Kaplan–Meier survival curves. (a/b) Patients from the TCGA and GSE73403 dataset are stratified 
into two groups according to median values for the risk scores calculated by three gene based on risk score 
signature. (a) Kaplan–Meier survival curves of the signature in TCGA dataset. (b) Kaplan–Meier survival curves 
of the signature in GSE73403 dataset. (c) Kaplan–Meier survival curves of different TMB groups calculated by 
VarScan. (d) Kaplan–Meier survival curves of different TMB groups calculated by MuTect. (Red means high-
TMB group and blue means low-TMB group).
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microenvironment. FAM107A, a putative tumor suppressor, was originally identified within common missing 
area of 3p21 in renal cell  carcinoma18. FAM107A plays a vital role in lung  carcinogenesis19. Katarzyna Kiwer-
ska et al. found that the expression of FAM107A was reduced significantly in larynx squamous cell carcinoma 
(LSCC)20, and the recurrent inactivation of FAM107A may be involved LSCC development. FAM107A expres-
sion was low or even absent in Hodgkin Reed-Sternberg (HRS)  cells21. IGLL1 is part of the immunoglobulin 
gene superfamily, and its expression is closely related to humoral  immunity22. It is associated with immune cell 
 progression23. IGLL1 is thought to be a component of pre-BCR (precursor B cell antigen receptor)24. IGLL1 Muta-
tions can induce blood system  disease25. SELE, a selectin, is a cell adhesion molecule that contributes significantly 
to tumorigenesis and tumor  progression26. By studying TCGA data, we found that low SELE expression was 
associated with worse OS in female lung cancer patients who never  smoked27. Kang et al. found that E-selectin 
could act as a circulating signaling molecule and facilitate tumor progression and  metastasis28. SELE was associ-
ated with several cancers, including lung  cancer29, prostate  cancer30 and colon  cancer31.

The PPI network indicated that CD22, TLR10, PIGR, and SELE were hub genes. CD22, a transmembrane 
glycoprotein, is thought to be a regulator of autoimmunity and B cell  responses32,33. It is also expressed in human 
lung  tumors34,35. CD22 is an important drug target for ameliorating autoimmune diseases and acute lympho-
blastic  leukemia36,37. TLR-10 is a pattern recognition receptor with anti-inflammatory  properties38. Kopp et al. 

Figure 6.  A prognostic nomogram predicting 1-, 2-, and 3-year overall survival of LUSC patient.
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found that TLRs are associated with colorectal cancer via nuclear transcription factor-κB-initiated transcrip-
tion of inflammatory  genes39. TLR-10 is particularly important in asthma  genetics40. It is an anti-inflammatory 
factor affecting the risk of  tuberculosis41. Polymeric immunoglobulin receptor (PIGR) is a component of the 
mucosal immune system correlated with several cancers, such as pancreatic  cancer42, colon  cancer43, hepatocel-
lular  carcinoma44 and bladder  cancer45.

TMB has a clear role in tumorigenesis and development. It is associated with the immune microenvironment 
and inflammation. In this study, using TMB-associated genes we developed a three gene risk model to predict 
patient survival. Patient mortality increases with increasing risk score. We also constructed a nomogram based 
on the TMB-associated genes and clinical characteristic to predict LUSD patient OS.

This study has shortcomings. First, there is no direct experimental verification of the identified DEG in LUSC. 
Secondly, there is not a large enough number of clinical samples to confirm the risk model and nomogram. Larger 
clinical trials will be needed to verify this in the future.

Conclusion
TMB correlated with tumourigenesis and the development of LUSC. We constructed a TMB-associated risk 
score and nomogram to predict LUSC patient survival.
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