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Abstract

Background: There is currently no way to verify the quality of a multiple sequence alignment that is independent of the
assumptions used to build it. Sequence alignments are typically evaluated by a number of established criteria: sequence
conservation, the number of aligned residues, the frequency of gaps, and the probable correct gap placement. Covariation
analysis is used to find putatively important residue pairs in a sequence alignment. Different alignments of the same protein
family give different results demonstrating that covariation depends on the quality of the sequence alignment. We thus
hypothesized that current criteria are insufficient to build alignments for use with covariation analyses.

Methodology/Principal Findings: We show that current criteria are insufficient to build alignments for use with covariation
analyses as systematic sequence alignment errors are present even in hand-curated structure-based alignment datasets like
those from the Conserved Domain Database. We show that current non-parametric covariation statistics are sensitive to
sequence misalignments and that this sensitivity can be used to identify systematic alignment errors. We demonstrate that
removing alignment errors due to 1) improper structure alignment, 2) the presence of paralogous sequences, and 3) partial
or otherwise erroneous sequences, improves contact prediction by covariation analysis. Finally we describe two non-
parametric covariation statistics that are less sensitive to sequence alignment errors than those described previously in the
literature.

Conclusions/Significance: Protein alignments with errors lead to false positive and false negative conclusions (incorrect
assignment of covariation and conservation, respectively). Covariation analysis can provide a verification step, independent
of traditional criteria, to identify systematic misalignments in protein alignments. Two non-parametric statistics are shown
to be somewhat insensitive to misalignment errors, providing increased confidence in contact prediction when analyzing
alignments with erroneous regions because of an emphasis on they emphasize pairwise covariation over group covariation.
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Introduction

Two or more variable positions in a protein may coadapt

to conserve interactions needed for proper structure or function

[1–3]. Strong covariation between pairs of positions is taken to

indicate the presence of coadaptation events which are maintained

in the alignment as coevolution. It is often assumed that coadapted

residues contact each other in the folded protein structure [1,4–6],

thus the proportion of putative coadapted positions in contact is

often used to benchmark covariation methods. This assumption is

not bidirectional, only a small proportion of contacting sites are

thought to coevolve strongly [1,3]. Furthermore, pairs that are

very close in sequence are trivially in contact and thus are

disregarded when evaluating covariation statistics.

Covariation statistics are often used to aid in residue contact

identification, de novo protein structure prediction and structure-

function analysis [7–11]. Indeed, the first step in many structure

prediction algorithms is a multiple sequence alignment followed

by some sort of covariation measure. Even predictions with

modest accuracies are helpful because they restrict the positions

to be examined. Standard benchmarks for covariation accuracy

measure the fraction of covarying amino acid pairs that are in

contact. There are a large number of methods to identify

covarying positions [12] in part because some methods work

better on certain alignments than on others. Many groups have

observed high covariation between residues close in sequence—

leading to the belief that two or more positions can only be

identified as coevolving if they are some minimum distance apart

in sequence. However, little attention is paid to the overall

problem that there is no consensus as to the characteristics of

truly covarying positions. This results in a counter-intuitive

situation where contact is used as a proxy for covariation for
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benchmarking purposes, but traditional measures like sensitivity

and specificity of contact prediction are not very meaningful

because only some contacting pairs covary.

Atchley et al. [13,14] suggested that covariation observed

between positions i and j in a protein is composed of a signal from

1) structural or 2) functional constraints, 3) background noise

contributed by shared phylogenetic ancestry, and 4) stochastic

events. Thus, the structural and functional signal is superimposed

on the background noise contributed by phylogeny and by

random processes. As implied by this model there are several

intrinsic limitations to detecting coevolution between amino acid

positions in protein families. First, the sequence alignments must

contain sufficient sequences with enough variation for the signal to

exceed the noise. Estimates of the required number of sequences

needed in the alignments for this to be true vary from *30 [6] to

w125 [4,8,15,16]. Secondly, all positions in a protein appear to

covary because of their shared ancestry, and this signal is the only

systematic source of covariation for the vast majority of position

pairs [6,14,17]. We recently showed that the phylogenetic signal

was similar for all positions in a protein family and that it could be

estimated as the product of the average covariation of positions i
and j with all other positions [17]. This resulted in ‘product-

corrected Mutual Information’ MIp and its transform, Zp, which

was much more sensitive and specific than other previous non-

parametric methods.

The goal of multiple sequence alignment is to place residues

from each sequence in the protein family at homologous

positions in the final sequence alignment. The multiple sequence

alignment for a given protein family is usually different in the

various standard collections of protein families and the

disagreement between protein datasets demonstrates that all

multiple sequence alignment methods produce errors. Further-

more, the placement of a gap in the protein family is an explicit

acknowledgement that no homologous position exists for one or

more members of the protein family. The difficulty in

generating a sequence alignment is highlighted by the

observation that even structure-based alignment methods

disagree [18,19]. As one example, structure-based alignment

algorithms are susceptible to shift error [18], meaning that

positions in the structure alignment are not orthologous despite

the fact that much of the secondary structural elements seem to

overlap between aligned structures.

We observed that the same protein family often gave different

numbers of covarying positions when alignments were from

different sources even if the alignments contained comparable

numbers of sequences. We also found that alignments generated

without structural information identified fewer pairs in contact in

the folded protein compared to alignments generated with

structural information. These observations suggested that the

quality of the alignment made a large contribution to the

background covariation signal. This observation is supported by

Wong et al. [20] who found that alignments of the same sequence

dataset by different methods lead to different conclusions in

comparative genomics studies.

Here we examine the effect of systematic misalignment on

covariation scores. We demonstrate that alignment errors lead

to incorrect conclusions about covariation and conservation. We

show that Zp can be used to identify systematic misalignments in

protein families. Furthermore, we show that new statistics DZp
and Zpx are relatively insensitive to systematic alignment errors,

and are especially effective at identifying pairwise covarying

residues. Significantly, these two corrections identify substan-

tially different populations of covarying pairs with similar

accuracy.

Results

Systematic sources of error
Many commonly-used multiple sequence alignment programs

use the progressive sequence alignment strategy in which the

alignment and the locations of insertions and deletions are

permanently fixed in the growing alignment [21]. An alternative

method is structure-based multiple sequence alignment which

aligns three-dimensional protein structures and then aligns

sequences progressively to the initial structure alignment [22].

Both structure-based and progressive methods systematically

propagate early errors through the alignment. Another alignment

strategy is iterative alignment, where progressive alignments are

built and then iteratively refined to attempt to remove errors that

are introduced in the growing progressive alignment [23]. The

phylogeny-aware strategy attempts to minimize systematic errors

by preventing incorrect gap placement [24]. While it is clear that

each alignment strategy is susceptible to varying types and

amounts of systematic error, we began by approximating it by

using a simple experiment to estimate its effects.

The impact of systematic errors on the estimation of covariation

was tested in an alignment of triosephosphate isomerase by

randomly shifting a fraction of the sequences in one aligned

segment left or right by 1 residue. We chose to shift between 0 and

30% of the sequences within the selected segment positions—a

range chosen because the commonly-used multiple sequence

alignment programs have between 70% and 80% accuracy [21].

Figure 1 shows that the Zp signal increased if both positions in a

pair were in the misaligned segment (red) and decreased if one of

the positions in the pair was in the misaligned segment and the

other was outside the segment (green) when compared with the

pairs unaffected by the misalignment (blue).

The increased Zp values were not distributed evenly among all

positions in the alignment (Fig. 1, 2). Figure 1 shows that

misaligned pairs have a marked increase in Zp score with other

residues in the misaligned region. There are several interesting

features of such misaligned families: 1) Contacting pairs of

positions in the properly aligned regions tend to be assigned Zp

scores that are much higher than the mean, but often not large

enough to stand out against the misaligned region. However, there

is often a large difference between the score of a contacting pair

and the next-highest score. 2) Noncontacting pairs tend to have

small differences between consecutive scores. 3) High-scoring pairs

due to misalignment tend to cluster together. Thus we introduce

DZp, a relative Zp measure (Materials and Methods), to

compensate for high-scoring noncontacting pairs due to misalign-

ment.

Figure 2 shows a plot of the mean Zp score between all pairs of

positions in a 6-residue window for a structure-guided alignment

of triosephosphate isomerase. The first third of the misaligned

segment was highly conserved and had very low Zp scores, the

remainder was highly entropic and had higher initial Zp scores.

The systematic misalignment of even 5% of the sequences resulted

in a dramatic increase in local Zp values for the conserved but not

for the non-conserved portion of the segment (Fig. 2). This effect

was even more pronounced when larger fractions of the multiple

sequence alignment were misaligned. We concluded that system-

atic sequence misalignment resulted in a characteristic pattern of

elevated local Zp scores which was most extreme for conserved

segments.

The effect of systematic misalignments on the underlying

information theoretic values is shown in Figure 3. We consider an

arbitrary four residue sequence where each position is conserved

(panel A). Each position in this alignment contains no entropy

Detecting Alignment Errors

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e11082



meaning that the residue at that position is certain. Because there

is no variation, there cannot be any covariation and thus the values

for any covariation statistic is 0. However, when half of the

sequences are shifted to the right by one residue, the entropy and

joint entropy of the positions increase. The reason that positions 2,

3, and 4 covary is easy to understand intuitively: if you are given

the alignment and the identity of a residue at one position, you

know the identity of the other two with 100% confidence. It is

tempting to think that this effect is simply due to the increase in

entropy at each position; this is demonstrably untrue as the effect is

still visible when using the covariation statistic Zp, which does not

correlate with entropy [17].

To demonstrate the increase in Zp, the 5-position misaligned

block in Figure 3 was attached to the N-terminus of a

triosephosephate isomerase alignment so Zp could be estimated.

The covariation in the misaligned region can not be due to shared

ancestry, but rather is an entirely synthetic side-effect of the

alignment process and thus the phylogeny correction of Zp does

not compensate for it. The result is a Zp score much higher than

the 4.5 cutoff judged to be significant [17]. This effect is analogous

to any position which contains information, but with a moderately

decreased effect. The increase in covariation is, in fact, due to the

proportionally larger increase in positional entropy to joint

entropy which is localized only to the misaligned positions.

Little and Chen [25] showed that the covariation statistic, Zres,

was capable of high accuracy when predicting contacting pairs of

positions. Zres emphasizes pairs of positions which covary strongly

relative to the covariation distribution of positions involved, rather

than the entire Zp distribution. We investigated whether DZp and

Zres predict contacts with high accuracy because of insensitivity to

misalignment. However, we used Zpx, a variation on Zres which is

calculated more efficiently but is virtually identical (Methods S1).

Figure 4 shows the difference across a 6-residue window in

mean Zp, DZp, and Zpx (calculated as in Materials and Methods)

values between the initial alignment and an alignment where an

interior segment was systematically misaligned by 30%. Here,

positions in the alignment were found to have mean local Zp scores

that were up to 60-fold greater than the mean local value for the

initial alignment (Figure 2 - Initial alignment vs. 30% misalign-

ment). In contrast, the difference scores in DZp and Zpx were

much smaller in the misaligned region. Thus, we predicted that

high local Zp values may be useful to detect misaligned segments in

protein families and that DZp and Zpx may be insensitive to

misaligned segments.

Systematic misalignments in CDD
The above analysis on modeled data suggests that if systemat-

ically misaligned protein families exist in popular datasets, they

might have segments that display high local Zp values. The

Conserved Domain Database (CDD) [26] was examined for

protein families that contained aligned segments displaying

elevated mean Zp values in 6-residue windows; a number were

identified that had 5 or more 6-residue windows with mean local

Zp scores §2:5 (Table S1). cd00300, the alignment for L-lactate

Figure 1. Misalignments cause increased covariation scores. All pairwise Zp scores are shown by position in a triosephosphate isomerase
alignment which contains a synthetic systematic misalignment in the 4th ungapped segment. Pairs where both positions are from within the
misaligned segment are shown in red. Positions where both positions are from outside the misaligned segment are shown in blue. Positions where
one position is within and one position is outside the misaligned segment are shown in green. Positions in contact are represented by white-filled
circles, positions not in contact are represented by solid colours. The misalignment was made by shifting 20% of sequences in the red-highlighted
region by one position to the left or right. Intra-misalignment pairs (red) have higher Zp scores and inter-misalignment pairs (green) have lower Zp
scores when compared to the normal pair distribution (blue).
doi:10.1371/journal.pone.0011082.g001
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dehydrogenases which is shown in Figure S1A, is one example of

an alignment identified to contain systematic misalignments.

Examination of the alignment found two sub-populations of

sequences that did not fit the overall alignment consensus in these

regions (Table S2). One population included sequences that were

misaligned in the central portion of the alignment; these were

found to be malate dehydrogenase sequences. The second

population was composed of partial sequences that were stretched

to fit the overall alignment model. Furthermore, the ungapped

segments of the structure alignment were placed incorrectly.

Removal of both classes of sequence as well as correcting the

structure alignment resulted in a more uniform mean local Zp as

shown in Figure S1B. Interestingly, the residues near the central

catalytic core region were much more conserved when the malate

dehydrogenase sequences were removed from the alignment. As

expected from the modeled data, the contamination of the initial

alignment by the paralogous malate dehydrogenase protein family

increases Zp scores at the conserved active site.

Systematic misalignment errors have a dramatic effect on the

predictions of a covariance method. The set of predicted covarying

pairs are often visualized as a contact map, a two dimensional

array where the secondary and tertiary structure of the protein are

visible [27]. Because Zp is sensitive to systematic misalignment

errors, the contact map produced from the original cd00300

alignment contains predictions centered around the sites of

misalignment and contains no useful structural information as

shown in Figure 5-Zp:original. In contrast, DZp and Zpx produce

more informative contact maps than Zp even with systematically

misaligned data; however, the contact maps are largely composed

of local contacts covering the secondary structure of the protein

(Fig. 5-original). When the repaired alignment was used, the

contact maps of all three measures show predictions across the

length of the protein encompassing both secondary and tertiary

structure (Fig. 5-repaired). We conclude that the corrected

alignment was more informative than the initial alignment for

contact prediction.

We next measured the mean number of pairs in contact

between the pair of positions with the nth highest or better MI,

Zp, DZp or Zpx values using the set of alignments in the CDD

that met the minimum criteria, outlined in the Materials and

Methods; these criteria are established as requirements to

accurately identify contacting pairs in protein families. From

these families, those that possessed 5 or more 6-residue segments

with mean local Zp values §2:5 were selected. There were 16

such families that met the criteria for making contact predictions.

These alignments are referred to as the ‘worst CDD’ because they

are likely to contain systematic misalignments. The 84 protein

families which were not included in the worst alignments set,

which also met criteria for presence of covariation (Materials and

Methods) are referred to as the ‘best CDD’ dataset. We also

examined 5 highly curated protein families that were aligned

using the Cn3D program [22] with multiple structural lines of

evidence to support the inclusion of each sequence in the

alignment (Materials and Methods).

The circles in Figure 6 show that all four covariation measures

were able to identify many contacting pairs of positions in the

curated alignments. MI was the worst performing measure, but the

top 3 pairs were in contact in 4 of the 5 curated alignments. Zp was

much better than MI, and DZp and Zpx outperformed Zp. The

DZp and Zpx measures had similar accuracies; the top 7 highest

scoring pairs of both DZp and Zpx were in contact and the top 20

pairs of each had a §80% likelihood of contact.

All four methods performed much worse in the CDD-based

datasets. Again DZp and Zpx performed similarly and both were

superior to Zp. However, Zp and MI identified very few positions

in contact in the ‘worst’ alignments, and the highest scoring pair

Figure 2. Systematically misaligned regions have high local Zp values. The plots show the mean Zp score for all pairs of positions in
overlapping 6-residue windows versus the window start position. The light bars show the segment of the alignment that was systematically
misaligned with the fraction of misaligned sequences indicated. The mean entropy (H) of the positions in the same window multiplied by 21 is
shown below.
doi:10.1371/journal.pone.0011082.g002
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was no more likely to be in contact than the nth-best scoring pair.

We suggest that the large disparity between contact prediction

accuracy of Zp on the best and worst datasets is because Zp is

sensitivite to systematic misalignments present in the ‘worst’

dataset while DZp and Zpx are not.

Comparison of sensitivity
We were interested in the sensitivites of Zp, DZp, and Zpx. The

sensitivity of covariation methods is affected by the number of

sequences [15], the number of positions in the alignment [17] and

the structure used as the reference. The sensitivity of each method

Figure 3. Positions with shift error have high markedly increased covariation scores. When positions 1, 2, 3, and 4 are aligned correctly (A)
the positions are conserved and thus there is no entropy (B), joint entropy (C) and therefore no mutual information (D) between the positions. Zp was
calculated by replicating and attaching the sequences in (A) and (D) to the N-terminus of a triosephosphate isomerase alignment such that every
sequence began with the four-residue insertion and gap at the N terminus. The Zp scores of the conserved positions fell below the significance
threshold of 4.5 (E). The alignment was altered to simulate worst-case shift error; half the sequences were shifted one position to the right (F). These
positions have the highest possible entropy (G), joint entropy (H), and mutual information (I) scores for a position with only two residues. As with the
conserved alignment, the shifted alignment was inserted at the N-terminus of an alignment of triosephosphate isomerase, such that half the
sequences contained a gap after the four residues and the other half contained a gap before the four residues. The resulting Zp scores are well above
the threshold of 4.5 (J).
doi:10.1371/journal.pone.0011082.g003

Figure 4. DZp and Zpx are less affected by sequence misalignments than Zp. The difference between the mean block scores (Zp, Zpx, DZp )
for the reference alignment and the alignment containing 30% misalignment is plotted for each measure.
doi:10.1371/journal.pone.0011082.g004

Detecting Alignment Errors
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Figure 5. Predicted contact map shows repaired cd00300 alignment is more informative than the original. The top 50 highest Zp, DZp,
and Zpx values were plotted on the 2-D map of the original cd00300 alignment (top) which contains systematic misalignments and the repaired
version of cd00300 (bottom) with many misalignments removed. The data is displayed as a predicted contact map where black-filled circles are pairs
in contact and white-filled circles are pairs not in contact. The majority of high-scoring Zp pairs in the original alignment are uninformative local
contacts located in a major region of misalignment (top left). The contact maps of DZp and Zpx cover much more of secondary and tertiary structure
in both the original and repaired alignments.
doi:10.1371/journal.pone.0011082.g005

Figure 6. The effect of alignment quality on contact identification. All methods identify many contacts in the curated dataset. Plotted here is
the mean fraction of pairs in contact of the top nth ranked pairs (up to 20) for the Curated, Best CDD, and Worst CDD datasets using MI, Zp, DZp, and
Zpx. The Curated dataset contains ideal alignments that are hand-curated for accuracy. Best CDD contains alignments which are unlikely to contain
systematic misalignments. Worst CDD contains alignments which are likely to contain systematic misalignments. Only pairs 10 or more positions
apart in sequence are included to prevent proximity in sequence from biasing results.
doi:10.1371/journal.pone.0011082.g006
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was determined by assessing the number of contacting pairs found

at given likelihoods of contact, and is shown in Table S3 for

contact likelihoods between 50% and 90%. All three methods

identified over 17 pairs of positions per protein family with a

contact likelihood of 50%. The number of pairs identified dropped

off dramatically as the contact likelihood increased; Zp found an

average of 4.4 pairs, DZp found an average of 5.6 pairs and Zpx

identified 6.5 pairs at 90% contact likelihood. We conclude that

Zpx is more sensitive than the other measures, but that no measure

vastly outperforms any other.

We wanted to know if the three methods were identifying the

same set or a different set of contacting pairs. We identified

alignments in the CDD where §80% of the pairs found were in

contact in each alignment (Materials and Methods, Table S4). Zp

identified 767 pairs of which 85% were in contact, DZp identified

906 (85% contacting) and Zpx identified 1055 pairs (84%

contacting). The overlap in the 1411 total pairs is shown in

Figure 7, with the proportion of pairs in contact given below each

measure. Several observations can be made. First, no method

identified all pairs found by any other method; Zpx, DZp and Zp

identified 75%, 64% and 54% of the total pairs with 15%, 14%

and 10% of the pairs being unique to each method. The pairs

most likely to be in contact were pairs identified by both DZp and

Zpx. These 685 pairs composed 49% of the total pairs identified

with 626 in contact (91% contacting). We conclude that pairs

identified by both DZp and Zpx were more likely to be in contact

than if either was used by itself.

DZp and Zpx emphasize pairwise covariation
We were interested why DZp and Zpx were so effective at

identifying contacting pairs. We examined this by modeling group

coevolution with the simple model of in silico evolution described in

the Materials and Methods and generated 10 independent

alignments where the size of the coevolving group varied between

0 (no covariation) and 10, and the probability of coevolution was

varied in increments between 0 and 0.95. These model alignments

were used to examine the relationship between group size and the

covariation score for each measure.

Figure 8 shows the effect of group size and coevolution

probability on the mean values for the three statistics. If we

examine the mean values for the extreme case where coevolution

occurs at the maximum probability, we see that in all 3 methods

the pairwise coevolving positions (ie. group size = 2) have much

higher mean values than do instances where coevolution occurs in

groups of 10. This effect is less pronounced for the intermediate

group sizes of 4 or 5. In the case of Zp, residues that coevolve with

an intermediate group size attain mean scores greater than 6,

which is close to the mean Z score for coevolving pairs of

positions. However, both DZp and Zpx show markedly lower

mean scores for the intermediate sized groups of coevolving

positions than for pairwise coevolving positions. The effect is

similar at lower coevolution probabilities for all three methods,

although it is non-linear for Zpx. We conclude that the ability of

DZp and Zpx to emphasize the effect of pairwise covariation at the

expense of group covariation explains in part why these two

methods identify contacting pairs with greater sensitivity and

specificity than other non-parametric methods.

Discussion

It is assumed that the covariation signal derived from structural

and functional constraints is superimposed on the phylogenetic

and stochastic signal [14]. This idea has led several groups to make

the assumption that if a method identifies some structural

covariation as indicated by contacting pairs, then other pairs with

equivalent or higher scores not in contact must be caused by

functional constraints [5,8,11]. However, since the true coevolving

pairs in an alignment are unknown [14,28], the alternative

explanation is that some of these pairs may be false positive

identifications. Here we show that a strong covariation signal can

be caused by alignment error, potentially leading to false positive

predictions. Specifically, covariation analysis of cd00300 would

result in incorrect assignment of both conserved and covarying

residues and thus an incorrect understanding of the protein.

Local covariation increases with misalignment proportionally to

the amount of conservation at a position and inversely

proportional to the amount of entropy. Covariation can be

understood as proportionally high positional entropy relative to

low joint entropy. This is related to the underlying information-

theoretic values outlined in figure 3. Positions with low

conservation are less susceptible to the local covariation effect

because they already contain many of the possible residues making

the proportional increase of entropy to joint-entropy less

significant. Similarly, misaligning random sequences has a smaller

effect than sequences that are misaligned together as a clade. If

sequences are misaligned as a clade, the increase in joint-entropy is

proportionally smaller because the sequences are related and

aligned together which causes a larger increase in local

covariation. The test to generate figures 1 and 2 is very

conservative since the selection and shift are both done randomly.

Conversely any algorithm which uses a phylogenetic tree to build

the alignment will be susceptible to hierarchical clustering of

misaligned sequences, which are easier to detect.

It is worth noting that the ability to detect misalignments is

unique to Zp when compared to other statistics outlined in this

manuscript. MI does not identify misalignments because back-

ground covariation signal is too high. The DZp and Zpx statistics

do not identify mistalignments because they filter out the

misalignment covariation signal. Zp works because it transforms

Figure 7. Zp, DZp, and Zpx find different subsets of contacting
positions. Venn diagram of pairs identified at 80% contact likelihood
cutoff shown as number in contact vs. total predictions. Only pairs 10
residues or more apart in sequence were considered to prevent
proximity in sequence from biasing results.
doi:10.1371/journal.pone.0011082.g007
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the covariation values based on the assumption that the

background covariation is due to shared phylogeny and relative

entropy — an assumption that is explicitly violated when

misalignments are introduced.

The increased local covariation methods outlined in this

paper have already been critical to the completion of two

publications. In one [29], Gloor et al. used local covariation (as

in Figure 2) to improve a structure-based sequence alignment of

phosphoglycerate kinase. As outlined below, increased local

covariation was the crucial tool that identified regions in the

alignment which were likely to produce false positive results. In

the second [30], Kleinstiver et al. used increased local

covariation to validate an alignment of the GIY-YIG homing

endonuclease I-Bmol, and prevented contamination by para-

logous sequences. Furthermore, covariation statistics Zp, DZp,

and Zpx were used to identify new structurally and functionally

important pairs of residues. These successes demonstrate the

effectiveness of increased local covariation and the new

covariation statistics.

We found that flaws in the alignments themselves often result

in positions having high covariation scores because of systematic

misalignments. Since systematic misalignments involve several

positions that are close in sequence (eg. cd00300), this could

explain some of the group covarying positions that have been

seen by many investigators, eg. [5,6]. We suggest that evidence of

group covariation between residues close in sequence be

investigated carefully. For example, Gloor et al. found that

increased local Zp identified two regions of phosphoglycerate

kinase which contained subclusters of residues found in

completely different environments [29]; structurally-conserved

segments were either exposed to solvent or buried because of the

replacement of a nearby alpha helix in some structures with a

beta strand in others.

The logic of building an alignment is partially circular:

alignments are built in part by maximizing sequence conservation,

but then are used to find conserved positions which are, in turn,

identified as important. While structure-based methods are often

used as the benchmark and standard for protein alignments [31],

Löytynoja and Goldman [24] showed that structure-based

alignments are not as reliable as expected for genome annotation.

Similarly, we found that some structure-based protein alignments

are inappropriate for covariation analysis and, as noted above, that

Zp can identify misaligned regions. We found that markedly

elevated local Zp values were the hallmark of misaligned regions

and suggest that the investigator proceeds with caution during the

analysis of positions showing this pattern of covariation. If an

investigator draws conclusions from an alignment which has not

been examined with increased local covariation, there is an

increased risk of drawing erroneous conclusions from the

alignment.

Finally, we demonstrated that Zpx and DZp are relatively

insensitive to sequence misalignments explaining the increased

sensitivity and selectivity of these methods to identify contacting

pairs. The ability to identify misaligned segments coupled with the

use of measures insensitive to misalignment reduces the risk of

systematic misalignment and provides opportunities to correct and

re-analyze the alignment. Zpx and DZp identified different

subpopulations of pairs, which implies that neither method is, as

yet, optimal. We find it interesting that both modifications use the

independent covariation signal from positions i and j to derive the

final statistic, suggesting that the relative covariation signal of each

position is informative.

The sensitivity of Zp to systematic alignment errors can be

exploited to identify regions of potential misalignment. Covaria-

tion provides an independent method for verifying the quality of

an alignment and should therefore be especially useful for verifying

alignments built on sequence conservation alone. The cd00300

alignment showed that misalignments occur in structure-based

alignment datasets; importantly, cd00300 showed that misalign-

ments occur in functionally-important conserved regions. We

recommend investigating any incidents of increased local Zp (as in

Figure 1, 2 or S1) as they may indicate systematic misalignment or

an interesting phenomenon causing increased local covariation.

We conclude that increased local covariation is an effective guide

for improving or validating a multiple sequence alignment and

initial observations suggest that mean pairwise Zp scores above 2.5

over a window of 6 should be investigated.

Our work shows that the quality of the alignment is critical for

correct assignment of pairs of residues in covariation analyses;

unfortunately, all alignment methods produce lower-quality

Figure 8. The effect of covariation probability and covarying group size on covariation measures. Sequences were evolved with each
residue having a fixed probability of changing to another residue per time step as described in the Materials and Methods. Positions were placed in
groups of 2 (p), 4 (%), 5 (e), or 10 (D) and constrained to coevolve with likelihoods of 0.1, 0.25, 0.5, 0.75 and 0.95. For example, if the group size was
4 and the likelihood of coevolution was 0.25, then if the residue of one member of the group was changed during the time step, then each of the
other three members of the group was allowed to change to another residue with the fixed probability given on the X axis. The Y axis shows the
mean score for each group size and each probability for 10 replicate in silico evolution runs.
doi:10.1371/journal.pone.0011082.g008
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covariation predictions when erroneous sequences are included.

However, it is impossible to know for certain if all positions in an

alignment are assigned correctly even when using state-of-the-art

methods. Therefore, we recommend DZp and Zpx over other

statistics as they provide better contact prediction because they are

demonstrably less susceptible to systematic misalignment errors

than other covariation measures like Zp.

Materials and Methods

Modeling Systematic Misalignment
A hand-curated alignment for triosephosphate isomerase was

created using Cn3D [22]. An ungapped segment of the alignment

was selected to be the artificially misaligned segment. The

misaligned segment is highlighted in each figure. Within this

segment, each sequence has a 5%, 10%, or 30% chance of being

shifted. Each sequence selected to be misaligned has an equal

chance of being shifted one position left or right.

Alignment curation and criteria for contact prediction
Multiple sequence alignments were extracted from the CDD

database downloaded from NCBI on April 17, 2008. They were

curated to include only those alignments with at least one

structure, more than 125 sequences and §50 ungapped

positions in the alignment. Three datasets were benchmarked

in Figure 6. ‘Worst CDD’ are a subset of the outlined CDD

sequences which are likely to contain misalignments as they

contain 5 or more 6-residue segments with mean Zp§2.5. ‘Best

CDD’ contains sequences which are not in the ‘Worst CDD’

dataset, but which also have at least (L/10) values of Zp§4.5

(where L is the length of the protein). This ensures that the

alignment has some covariance information, but makes no

judgements about the location of these pairs in sequence or in

structure. The ‘Curated’ dataset contains 5 structure-based

hand-curated alignments curated according to Dunn et al. [17].

For Figure 7, we identified alignments in the CDD that had

§150 sequences, §50 non-gapped positions. We curated this

set so that each covariance method was able to predict

contacting pairs at an accuracy of at least 80%. To ensure the

structure used to assign contacting pairs did not bias the results,

we used alignments where the covariance methods agreed on

which structure was of highest quality. The 100 alignments

meeting these criteria are listed in Table S4. When covariation

statistics predict contacting pairs, we define contact as any non-

hydrogen atom from one residue being within 6 Å of any non-

hydrogen atom from the other residue. To prevent proximity in

sequence from biasing results, only positions 10 or more apart in

sequence are considered when using contact as a benchmark.

cd00300-based alignments
cd00300 is a structure-based alignment of lactate dehydroge-

nase from CDD. The original cd00300 dataset is composed of the

sequences in this alignment. The repaired cd00300 dataset has 13

sequences removed because of alignment issues (annotated in

Table S2). The original cd00300 alignment is used as it existed in

CDD. The repaired version of cd00300 was realigned using

Cn3D [22] based on a refined structure alignment based on

errors of probable misalignment according to increased local

covariance.

Covariance statistic calculations
Covariance statistics were calculated according to Martin et al.

[15], and Dunn et al. [17]. Zpx is similar to the Zres statistic of

Little and Chen [25], but simpler to calculate (Methods S1).

Positions that contain gaps are not analyzed because gaps violate

the assumption of orthology connecting covariation with coadap-

tation and coevolution (Figure S2).

Mutual Information (MI ) measures the reduction in uncer-

tainty of one variable given information about another variable

and was calculated as previously [15]. As shown in equation 1, in

the context of protein sequence families it measures the

difference between the expected entropy (H ) of residues in two

columns i and j if they were independent against the observed

joint entropy, Hi,j .

MIi,j~HizHj{Hi,j ð1Þ

The underlying assumption when calculating MI is that all events

are independent; this is not true in the context of protein families

since, to a first approximation, every position in a protein family

shares common ancestry with every other position, and the

positions in a gene for a given protein are rarely split by

recombination. MIp, the product corrected MI, estimates the

background MI signal caused by sequence non-independence

[17] as shown in equation 2

MIpi,j~MIi,j{(MIi,x|MIj,x)=MI ð2Þ

where MIi,x is the mean MI of position i with all other positions

and MI is the overall mean MI.

The MIp values were converted to Z scores since absolute MIp

values vary somewhat between alignments and because the underlying

distribution of MIp values approximates a Gaussian distribution in the

absence of structural and functional covariation [17]:

Zpi,j~(MIpi,j{MIp)=s(MIp) ð3Þ

where again MIp is the mean MIp and s(MIp) is its standard

deviation.

Zpx is a modification of Little and Chen’s Zres statistic [25] that

is based on the residual MI of a linear regression between MIi,j

and the mean MI of positions i and j, MIi|MIj . The plot shown

in Figure 1A shows that the residual is nearly identical to MIp with

a slope of 1, an intercept of 0 and an r2 value of 0.9995. Zres is the

product of the Z scores derived from the residuals for each

individual position [25]. Since the residual and MIp are virtually

indistinguishable (Methods S1), we substituted the more efficiently

calculated MIp for the residual in the formula for Zres as shown in

equation 5 to calculate Zi|j .

Zi|j~
MIpi,j{MIpi

s(MIpi)
|

MIpij{MIpj

s(MIpj)
ð4Þ

As expected from the similarity of the underlying statistics, Zres
and Zi|j are extremely similar with a slope of 0.9998, an intercept

of 0.0005 and an r2 value of 0.9998. Note that the Zres and Zi|j

values are the product of the two Z scores, and so these values

scale geometrically when compared to Zp. In this study we use

Zpx, which is the square root of Zi|j to allow comparison of the

Zp and Zi|j values on similar scales.

DZp is a measure of the difference score between successive Zp

scores at position i. DZp was calculated by placing the Zp values of

position i with all other positions, x, in an ordered list, with the largest

Zp value first, i.e. Li~(Zpi,x,Zpi,xz1,Zpi,xz2:::Zpi,xz(N{1)), where

N is the number of Zp values for position i. DZp is the sequential
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difference between list elements scaled by interquartile units as

follows:

DZpi,x~
Zpi,x{Zpi,xz1

R
ð5Þ

where R is the interquartile range calculated as
1

2
the difference

between the 75th and the 25th percentile for the data in Li. The

interquartile range scaling factor and the median provide robust

estimates of dispersion and central tendency that compensate for

variation in the distribution of Zp at each position while making the

minimum number of assumptions about the underlying distribution.

Thus DZp measures how extreme the difference in Zp scores is for all

pairs of positions, i,x.

Since each Zp score is a measure of the covariation between two

positions, i and j, there are two DZp scores for each pair of

positions: one is the difference between Zpi,j and the next highest

score for position i, and the other is the difference between Zpj,i

and the next highest scoring position for position j. We used the

greater of the DZp scores.

MI, and the derived statistics, MIp, DZp and Zpx were

calculated only for ungapped positions in the multiple sequence

alignments. Covariation analysis attempts identify those positions

that are coevolving for structural or functional reasons, and as

shown in this report, depends upon the precise placement of

homologous positions in the alignment.

Screening for misalignments using increased local MIp
The average Zp score and average entropy were calculated

for all pairs in a ungapped window of width 6. When graphed,

high peaks represent increased local Zp. We consider peaks

of height 2.5 or higher to be worth investigating, but these

could also represent strong covariation due to secondary

structure.

Synthetic coevolution dataset
The data in Figure 8 were generated using the simple model

of coevolution described previously [15]. In brief, the initial

sequence had substitutions introduced at each position with a

probability derived from a uniform probability distribution.

Sequences were split or ‘speciated’ with a constant probability.

Groups of positions were constrained to coevolve such that if a

substitution occurred in one member of the group the remaining

members of the group had a substitution introduced with a

given probability which ranged between 0.1 to 0.95. Group sizes

were varied between 2 and 10. Alignments derived from this

method have been shown to recapitulate many properties

relevant to coevolution [15].

Supporting Information

Methods S1 Supplementary figure and text for Material and

Methods section.

Found at: doi:10.1371/journal.pone.0011082.s001 (0.75 MB

PDF)

Figure S1 A plot of local Zp values in cd00300, the lactate

dehydrogenase superfamily. Panel A shows a histogram of the

mean Zp value between all pairs of ungapped positions in a 6

residue window. Red and blue bars are positions in the alignment

that are adjacent to indels. The mean entropy of the residues

multiplied by 21 in the window is plotted in green below. Panel B

shows the same plot from an alignment with the malate

dehydrogenase sequences and partial sequences (identified in

Table S2) removed with a subsequent adjustment of the structure

alignment.

Found at: doi:10.1371/journal.pone.0011082.s002 (0.03 MB

PDF)

Figure S2 Positions containing gaps violate the assumption of

positional homology. Strong structural conservation flanks an

insertion of two residues in a surface loop. The gap region is

highlighted in grey and is two residues long for the shorter

sequences and four residues long for the longer sequences.

Highlighted in yellow are two alternate hypotheses of the residues

which are homologous to the two residues in the shorter

sequences. Structurally, it is impossible to determine which two

residues are homologous to the shorter gap sequences. Choosing

two of the four residues in the insertion region as homologous to

the shorter sequence residues will likely introduce error into the

alignment.

Found at: doi:10.1371/journal.pone.0011082.s003 (0.13 MB

PDF)

Table S1 Alignments containing probable systematic misalign-

ments. Table of alignments in CDD which have 5 or more peaks

of mean Zp score greater than or equal to 2.5 for all pairs of

positions over a residue window of width 6.

Found at: doi:10.1371/journal.pone.0011082.s004 (0.04 MB

PDF)

Table S2 Sequences removed from cd00300 because of poor

alignment to structure alignment. Not all possibly erroneous

sequences were removed in order to meet the cutoff for minimum

number of sequences for covariance methods.

Found at: doi:10.1371/journal.pone.0011082.s005 (0.08 MB

PDF)

Table S3 Scoring cutoffs for arbitrary accuracy in CDD

alignments. CDD alignments were examined and those that

contained $150 sequences, $50 nongapped positions and where

each method made at least one true prediction were identified at

an accuracy of 80% or higher. There were 100 such protein

families and they are identified in Table S4. The cutoff values for

each measure at which at least the fraction of pairs identified were

in contact is given along with the mean number of pairs identified

in each protein family. Previous work had identified a cutoff of 4.5

for MIp, and the analysis here suggests that cutoff is appropriate

for ,80% accuracy. Only pairs 10 or more positions apart in

sequence are included to prevent proximity in sequence from

biasing results.

Found at: doi:10.1371/journal.pone.0011082.s006 (0.02 MB

PDF)

Table S4 Venn Diagram Alignments. Alignments curated

according to Materials and Methods, used to generate Figure 7

and Table S3.

Found at: doi:10.1371/journal.pone.0011082.s007 (0.09 MB

PDF)
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