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Abstract Photochemically induced dynamic nuclear polarization magic-angle

spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the

investigation of the electronic structure of the photochemical machinery of photo-

synthetic reaction centers (RCs) at atomic resolution. For such experiments, either

continuous radiation from white xenon lamps or green laser pulses are applied to

optically dense samples. In order to explore their optical properties, optically thick

samples of isolated and quinone-removed RCs of the purple bacteria of Rhodob-
acter sphaeroides wild type are studied by nanosecond laser-flash 13C photo-CIDNP

MAS NMR using excitation wavelengths between 720 and 940 nm. Action spectra

of both the transient nuclear polarization as well as the nuclear hyperpolarization,

remaining in the electronic ground state at the end of the photocycle, are obtained. It

is shown that the signal intensity is limited by the amount of accessible RCs and that

the different mechanisms of the photo-CIDNP production rely on the same photo-

physical origin, which is the photocycle induced by one single photon.

1 Introduction

Action spectroscopy measures the response of the system to radiation depending on

the wavelength and may allow for identifying the light-absorbing chromophore in a
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photo-process by comparing the efficiency of radiation of different wavelengths in

driving the process [1–4]. This method has been introduced in 1928 as exakte
Wirkungsspektrometrie by Otto Heinrich Warburg investigating the inhibition of the

Atmungsferment (i.e., cytochrome-c oxidase) by carbon monoxide, leading to the

Nobel Prize in Medicine in 1931. Photosynthesis of plants and bacteria has been

explored by action spectroscopy since the days of Warburg. In general, physiolog-

ical parameters, such as adenosine triphosphate production, are observed to measure

the action [5]. Alternatively, action spectroscopy in photosynthesis has been

measured by optical, photothermal and photoacoustic methods [6–8].

Photosynthetic reaction centers (RCs) of purple bacteria of Rhodobacter (Rb.)
sphaeroides wild type (WT) are well characterized [9]. The cofactor arrangement

(Fig. 1) and the kinetics and spin dynamics of the electron transfer (Fig. 2) are well

known. In its center, the primary electron donor P, called the special pair, is

composed of two Bacteriochlorophyll (BChl) cofactors PL and PM. All cofactors are

symmetrically arranged while the carotenoid alone breaks this symmetry. Upon

illumination, an electron is transferred from the special pair, the primary electron

donor P, and a radical pair P?BPhe- is formed. It is born in a pure electronic singlet

state S0, which evolves coherently into a triplet state T0, whilst the other two triplet

states (T?1 and T-1) are not populated at high magnetic fields. Several mechanisms

have been identified transferring the electron polarization to nuclei. In continuous-

illumination photochemically induced dynamic nuclear polarization magic-angle

spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) experiments [10–

13], up to three mechanisms, called three-spin mixing (TSM) [14, 15], differential

decay (DD) [16] and differential relaxation (DR) [17, 18] cause the build up of net

photo-CIDNP. In laser-flash photo-CIDNP MAS NMR experiments [13, 19–21],

transient nuclear polarization (TNP) is observed occurring selectively from the

singlet branch of the radical-pair decay since the nuclear polarization of the triplet

Fig. 1 Structural arrangement of cofactors in the RCs of Rb. sphaeroides WT. Cofactors involved into
the spin dynamics of the primary radical-pair formation are: the primary electron donor P is formed by
two bacteriochlorophyll a molecules, PL (right) and PM (left), the (primary) electron acceptor U, a
bacteriopheophytin a in the active L branch, and the carotenoid (Car). Other cofactors are shown in light
grey (Protein Data Bank entry 1MX3)
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branch is delayed. The occurrence of TNP can also be rationalized in terms of the

classical radical-pair mechanism (RPM) [22, 23], which relies on diffusion and

diminishes in steady-state experiments [20]. In WT samples, the TNP is caused by

an effect called transiently obscuring polarization (TOP). It is caused by the strong

paramagnetic interaction of the nearby carotenoid during its triplet state (3Car),

which transiently obscures the nuclear polarization of triplet decay branch [20, 21].

After decay of the carotenoid triplet, this pool of nuclear polarization becomes

visible in the NMR experiment again by extinguishing the opposite nuclear

polarization of the singlet branch, and the TNP decays. The enhancement of signal

intensity and selectivity of the nuclei allows for detailed studies on structure and

spin dynamics of the photosynthetic cofactors active in the formation of the primary

radical pair in various RCs [24–28].

Also the excitation transfer processes in RCs of Rb. sphaeroides WT are well

known. The four BChl cofactors and the two bacteriopheophytin (BPhe) cofactors

are excitonically strongly coupled, allowing for fast and efficient excitation transfer

towards P occurring on the time scale of some 100 fs and with a quantum yield

close to unity [29–33]. The carotenoid cofactor also functions as antenna, however,

excitation transfer is slower (*2 ps) and the quantum yield is lower (*75%) [34].

Hence, in optically thin samples, the action spectrum is almost identical with the

absorption spectrum. In optically dense samples, shielding of the interior sample

volume by the pigments in the front layers of the RCs, which are directly exposed to

the laser pulses, blocks light transmission through the sample at the absorption

frequencies and, therefore, the activation of the pigments in the inner parts of the

sample. In addition, light scattering limits the penetration depth, especially of blue

light. Under these conditions, the law of Lambert and Beer cannot be applied.

Fig. 2 Kinetics and spin dynamics of electron transport in quinone-depleted RCs of Rb. sphaeroides
WT. After absorption of a photon, from the photochemically excited state of the primary donor P*, an
electron is transferred to the primary acceptor U, a bacteriopheophytin cofactor. This initial singlet radical
pair 1(P�?U�-) is in a nonstationary state and highly electron polarized. An electron back-transfer leads
to the electronic ground state (dashed arrow). Due to hyperfine interaction with nuclei, the singlet state of
the radical pair evolves also into a triplet state 3(P�?U�-). Concomitant to this process of spin
intersystem crossing (ISC), electron polarization is transferred to nuclei by the TSM and by the DD
mechanisms. Net nuclear polarization is created by unbalancing the decay pathways of the singlet and the
triplet radical pair (singlet and triplet branches). In addition, in time-resolved experiments TNP can be
observed directly from the singlet decay channel because in the triplet decay pathway (triplet branch,
dotted arrow), paramagnetic interaction of the triplet state of the nearby carotenoid, having a lifetime of 5
till 10 ls, leads to transiently obscured polarization (TOP)
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In photosynthetic RC of Rb. sphaeroides, bleaching is expected to cause an additional

effect, since light absorption leads to the formation of radical pairs and these radical

pairs have a different absorption spectrum. The main difference between the

absorption spectrum of the P?BChl- radical pair and that of the electronic ground

state is the total bleaching of the special-pair absorption at 860 nm once a radical pair

is formed, while the other absorption bands undergo only little changes [35]. Hence,

irradiation into the special-pair absorption may allow for substantial bleaching,

especially under highly saturating laser pulses, which are used here and therefore

result in a deeper penetration of the light into optically dense samples. Since NMR

experiments with classical induction coils obtain the strongest signal from the center

of the coil, an increase of penetration depth may have a strong effect on the obtained

light-induced signals. For all photo-CIDNP MAS NMR experiments, as have been

conducted till date, induction coils and samples in MAS rotors with diameters of 4 or

7 mm have been applied. In this study, we investigate the near-infrared (NIR) action

spectrum of the solid-state photo-CIDNP effect in RCs of Rb. sphaeroides WT in

order to explore the way of light penetration into the samples.

2 Materials and Methods

2.1 RC Preparation

d-Aminolevulinic acid (ALA) is a precursor for biosynthetic tetrapyrrole synthesis. Rb.
sphaeroides WT was grown under anaerobic conditions in a medium containing 1.0 mM

[4-13C]-ALA, leading to a specific 13C isotope label pattern on the BChl and BPhe

cofactors (Fig. 3) [36]. The total incorporation (Ptot) was calculated by the weighted sum:

Fig. 3 Bacteriochlorophyll a
(BChl) molecule with isotope
label pattern biosynthetically
introduced by feeding with
4-13C-d-aminolevulinic acid
(4-ALA). The
bacteriopheophytin a (BPhe)
cofactors are labeled according
to the same pattern
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Ptot ¼
X8

n¼0

n

8
� Pn;

where n stands for the number of labels present in an isotopomer and Pn is the

corresponding fraction of labeled BChl estimated from the isotopic labeling pattern

detected with the mass spectrometer [36]. The extent of 13C incorporation has been

determined by gas chromatography–mass spectrometry to be 60 ± 5%. The RCs

were isolated by the procedure described in Ref. [36]. The quinone-depletion in the

WT RC is reported in Ref. [11]. The samples were loaded into optically transparent

colorless 4-mm sapphire rotors. The samples contained 10 mg of RCs in a volume

of about 70 ll and scattered light significantly. The optical density was 1.35 at

865 nm after dilution by a factor 500. Using an extinction coefficient of

75 mM-1 cm-1 [12], a sample concentration of *1 mM has been calculated.

2.2 Absorption spectrum

For measuring of the absorption spectrum of isolated RCs of Rb. sphaeroides WT,

*20 lg of RC has been taken out of the MAS NMR rotor and diluted 500 times

in tris-hydroxymethyl-aminomethane (Tris) and lauryldimethylamine-N-oxide

(LDAO) buffer. The concentration was *0.02 mM (OD = 1.35 cm-1, extinction

coefficient of 75 mM-1 cm-1). The absorption spectrum has been measured at

room temperature.

2.3 Setup

The nanosecond-laser flash photo-CIDNP setup has been described in detail

elsewhere [19, 20]. Into this setup, an optical parametric oscillator (OPO 532/300,

GWU-Lasertechnik, Erftstadt, Germany) tunable between 680 and 1050 nm has

been incorporated. Laser power for all experiments has been 28.2 mJ and the beam

diameter matched the inner diameter of the MAS rotor of about 3 mm.

2.4 MAS NMR measurements

The NMR experiments were performed on an AV-200 NMR spectrometer (Bruker

Biospin, Karlsruhe, Germany). Time-resolved nanosecond-flash photo-CIDNP

MAS NMR measurements have been performed as described in Refs. [19–21] by

changing the delay time between laser light pulse excitation and NMR detection

systematically in three steps from 0 to 10 and 100 ls.

In all experiments, the signal has been detected with a polarization extinction

technique allowing for fast scanning [19], using two-pulse phase modulation

(TPPM) proton decoupling [37]. The cycle delay was 300 ms. The temperature has

been 233 K at a spinning frequency of 8 kHz. Artificial line broadening of 40 Hz

has been applied. The number of scans was 120 k per spectrum. The time-resolved

photo-CIDNP MAS NMR spectra were referenced to the 13COOH response of solid

tyrosine�HCl at 172.1 ppm.
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3 Results and Discussion

3.1 NIR action spectroscopy with time-resolved photo-CIDNP MAS NMR

The NIR absorption spectrum of diluted RCs of Rb. sphaeroides WT is shown as

solid line in Fig. 4. The broad absorption band at longest wavelengths (860 nm) is

the first electronic transition of the primary donor P, which is of Qy character (for

review, see Ref. [9]). The signals at 803 and 756 nm arise from the Qy transitions of

the two accessory BChls and the BPhe cofactors, respectively. The weaker bands at

598 and 524 nm originate from the Qx transitions of the two accessory BChls and

the BPhe cofactors, respectively. Features around 500 nm are caused by the

carotenoid [33, 38]. The large signal around 400 nm, which is not completely

shown, is composed by the Soret bands of several cofactors.

Action spectroscopy requires a systematic variation of the excitation wavelength.

Here, we report the dependence of the 13C photo-CIDNP MAS NMR intensities on

the excitation wavelength at investigating 15 excitations wavelengths in the range

from 720 till 940 nm. In Fig. 5, all the spectra have been collected using a delay

time between the laser pulse and the NMR detection pulse of 100 ls. This set of

experiments has been performed in order to understand the correlation between

photo-CIDNP built up by TSM and DD as a function of the light wavelength. Trace

A in Fig. 5 is obtained at 940 nm, i.e., at wavelengths longer than the most red-

shifted absorption band. Trace B in Fig. 5 is measured at the maximum of the Qy

absorption of the special pair (860 nm). Trace C (820 nm) in Fig. 5 is recorded

between the absorption maxima of the special pair and the accessory BChls. Trace

D (803 nm) in Fig. 5 is obtained at the maximum of the accessory BChl absorption.

Fig. 4 The solid line is an ultraviolet–visible-NIR spectrum of purified RCs of Rhodobacter (Rb.)
sphaeroides WT obtained at room temperature. The spectrum is normalized to the highest signal intensity
at 860 nm (left scale). The peak at 860 nm is assigned to the bacteriochlorophylls of P. The peaks at 803
and 756 nm are assigned to the accessory bacteriochlorophylls and the bacteriopheophytins, respectively.
The dotted line is the action spectrum of photo-CIDNP intensities of C-19 of PL (159.8 ppm) obtained
100 ls after the laser flash and plotted as a function of the wavelength. The action spectrum is normalized
to the highest signal intensity obtained with an excitation wavelength at 860 nm (right scale)
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Trace E (780 nm) in Fig. 5 is measured in between the absorption maxima of the

accessory BChls and the BPheos. Trace F (756 nm) in Fig. 5 is detected at the

maximum of the BPheo absorption, and trace G (720 nm) in Fig. 5 is registered in

the low-absorbing region beyond the Qy transitions.

3.2 Characteristics of action spectrum

The dotted line in Fig. 4 shows the action spectrum as obtained for the C-19

resonance of the PL cofactor at 160.1 ppm (Table 1). The photo-CIDNP intensities

have been quantified for the two signals at 159.8 ppm (assigned to C19 of PL) and

164.0 ppm (assigned to C6 of PL). Since all light-induced signals are of the same

photochemical origin, the ratio between them remains constant over the entire range

of excitation frequencies. Only the value at 940 nm is different since the signal-to-

noise ratio is too low for proper determination.

The action spectrum is essentially a flat but slightly tilted line with a single

maximum at about 860 nm. Once all the RCs are excited regardless of whether

excitation happens to be in the absorption maximum of P860 or at the periphery,

then the full photo-CIDNP signal amplitude is achieved. For this interpretation,

further evidence is obtained by analysis of the shape of the broad action signal

around 860 nm. It shows a sharp increase at its flanks and constancy in its central

area. Such behavior is typical for optical saturation of the signal. At conditions

where the signal intensity is limited by the number of RCs which can be converted

to a radical pair, the signal cannot further increase by increase of absorption.

Fig. 5 13C photo-CIDNP MAS
NMR spectra of RCs of 4-ALA
13C-isotope labeled Rb.
sphaeroides WT collected using
laser pulses at wavelengths of
940 nm (A), 860 nm (B),
820 nm (C), 803 nm (D),
780 nm (E), 756 nm (F),
720 nm (G). The absorption
maxima of BPhe correspond to
trace F, of the accessory BChls
to trace D and of the donor
BChls to trace B. All the spectra
have been collected at a
magnetic field of 4.7 T and a
temperature of 233 K. The laser
pulse length was 8 ns and the
laser energy was 28 mJ in all
experiments
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However, the maximum is clearly correlated with the absorption of P, while the

absorptions of the other bands do not cause any feature into the action spectrum.

They can still contribute to the photo-CIDNP signal by energy transfer to P860 and

subsequent charge separation. But unlike the 860 nm absorption band, these bands

are not bleached, given the relatively long laser pulse width of 8 ns as compared to

the internal energy transfer times of 100–200 fs. Thus, these bands result effectively

in a kind of shielding of the lower sample layers and reduce the overall amount of

radical pairs being formed. Note that RCs in the front layers are already in the

P860?BPhe- state and cannot form a second radical pair during the laser pulse

width again, and so it cannot increase the photo-CIDNP signal accordingly.

The featureless baseline in the regions of strong absorption demonstrates that the

sample is in the regime of high optical density and corresponds with photo-CIDNP

induction on the sample surface only.

While there is no characteristic feature in the photo-CIDNP action spectrum

around the absorption bands of the accessory BChls and the BPheos, the absorption

of the special pair induces a clear effect on the action spectrum. The general

appearance of the action spectrum is clearly distinguished from the absorption

spectrum of the electronic ground state. For an optically thin sample, a coincidence

of both types of spectra would be expected. The features of the action spectrum

indeed agree with the absorption spectrum of the primary radical pair transient,

Table 1 Analysis of photo-CIDNP MAS NMR intensities measured at different excitation wavelengths

kexc and induced by different signal enhancement

Data set Peak area Ratio C19/C6

Number Trace in Fig. 6 kexc (nm) TSM/DD 100 ls

C6-PL C19-PL

1 A 940 0.17 0.24 1.42

2 920 0.56 0.65 1.16

3 900 0.83 0.92 1.11

4 890 0.82 0.97 1.19

5 880 0.94 0.99 1.05

6 870 0.88 1.00 1.14

7 B 860 0.84 0.93 1.11

8 850 0.89 0.97 1.09

9 840 0.91 0.96 1.05

10 C 820 0.74 0.78 1.06

11 D 803 0.50 0.48 0.97

12 E 780 0.45 0.46 1.04

13 F 756 0.50 0.49 0.99

14 740 0.51 0.53 1.03

15 G 720 0.49 0.54 1.11

Signal enhancement by TSM and DD is measured by the intensity of the signal at 159.8 ppm assigned to

C19 of PL and by intensity of the signal at 164.0 ppm assigned to C6 of PL, measured at a delay time D of

100 ls
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showing strong bleaching around 860 nm [35], while there is no significant change

of photo-CIDNP intensities for the other cofactors. Therefore, we conclude that the

action spectrum mainly reflects the transient bleaching of the sample which allows

for deeper penetration of light. Hence, it is the strength of its bleaching which

distinguishes P in the long living radical pair state from the other cofactors and

allows for its direct excitation under conditions of optically dense samples. This

finding is in line with the strong photo-CIDNP MAS NMR signal obtained with

532-nm excitation [19–21], occurring at an absorption wavelength having low

absorption and therefore great penetration depth.

3.3 Ratio of TNP- to TSM/DD-induced nuclear polarization

Figure 6 shows time-resolved photo-CIDNP MAS NMR spectra obtained at three

selected excitation wavelengths (traces A–C) with three delay times between the

laser pulse and the NMR detection pulse of 0, 10 and 100 ls (spectra shown in

black, grey and light grey, respectively). Comparing the three traces, the spectral

Fig. 6 13C photo-CIDNP MAS NMR spectra of RCs of 4-ALA 13C-isotope labeled Rb. sphaeroides WT
collected using laser pulses at wavelengths of 860 nm (A), 803 nm (B) and 756 nm (C), respectively. The
absorption maxima of the donor BChls correspond to trace A, of the accessory BChls to trace B and of the
BPhe to trace C. Traces A, B and C show the superposition of three spectra having different time delays
between the light pulse and the NMR detection pulse (black 0 ls, grey 10 ls, and light grey 100 ls). All
the spectra have been collected at a magnetic field of 4.7 T and a temperature of 233 K. The laser pulse
length was 8 ns and the laser power was 28.2 mJ in all experiments
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evolution from 0 to 100 ls appears not to change, as suggested by the constancy of

all spectral features and their intensity ratios.

While the spectra obtained at 0 ls (black) are mainly caused by the TNP due to

broadening of the signals of the carbons of the donar by the nearby molecular triplet

of the carotenoid (TOP). the spectrum at 100 ls (light grey) fully represents buildup

by TSM and DD. For quantification of the contributions of the different

enhancement mechanisms, we took the signal at 160.1 ppm, assigned to C19 of

PL [20], measured at a delay time of 0 ls for quantification of the TNP/TOP effect.

Signal enhancement via the TSM/DD mechanisms, also quantified by the signal

intensity of the signal at 160.1 ppm, is measured at a delay time of 100 ls. Table 2

compiles the intensities of these signals and demonstrates that the ratio between

TNP- and TSM/DD-induced mechanisms remains constant over the entire range of

excitation wavelengths. Since the probability for two-photon processes has a

different dependence on the gradient of the photon concentration in the sample than

single-photon processes, this finding demonstrates that both TNP- and TSM/DD-

induced nuclear polarization are originating from the same single photocycle.

Since TNP is observed in RCs of Rb. sphaeroides WT for 10 ls [20, 21], i.e., the

lifetime of the triplet state of the carotenoid, it has been proposed that TOP from the

triplet decay branch allows for selective TNP observation of the nuclear spins from

the singlet decay path. Since TOP is observed under both green and red/NIR

excitation, it has been concluded that TNP in WT-RCs is not caused by direct light

absorption of the carotenoid but by triplet transfer from P to the carotenoid [20, 21],

implying that also the TOP-induced intensity relies on a single-photon process.

Here, we provide evidence for this mechanism.

4 Outlook

A quantification of the effect, for example, according to the theory of Kubelka and

Munk [39], may lead to an exact characterization of the optical properties of dense

RC samples as well as of the sensitivity distribution within NMR coils. In particular,

such knowledge would allow optimizing photo-CIDNP MAS NMR signals by using

specific excitation wavelengths.

Table 2 Analysis of photo-CIDNP MAS NMR intensities measured at different excitation wavelengths

kexc and induced by different signal enhancement mechanisms

Data set Peak area Ratio TSM/DD

to TNP/TOP
Number Trace in Fig. 6 kexc (nm) TNP/TOP TSM/DD

0 ls 100 ls

7 A 860 -0.2 -1.0 0.5

11 B 803 -0.1 -0.5 0.5

13 C 756 -0.1 -0.5 0.5

Signal obscured by TOP is measured by the intensity of the signal at 159.8 ppm assigned to C19 of PL

measured at a delay time D of 0 ls. Signal enhancement via the TSM/DD mechanisms is measured by the

intensity of the signal at 159.8 ppm assigned to C19 of PL measured at a delay time D of 100 ls
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