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Abstract

Activity-dependent transcriptional responses shape cortical function. However, we lack a 

comprehensive understanding of the diversity of these responses across the full range of cortical 

cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied 

high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes 

that occur across cell types in mouse visual cortex following exposure to light. We identified 

significant and divergent transcriptional responses to stimulation in each of the 30 cell types 

characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit 
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inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal 

cells demonstrated clear transcriptional responses that may regulate experience-dependent changes 

in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of 

stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are 

likely critical for cortical function and may be sites of de-regulation in developmental brain 

disorders.

Introduction

Neuronal activity shapes brain development and function by multiple mechanisms1,2. Post-

translational modifications affect excitability and synapse function in the short term3. These 

effects are followed by activity-dependent transcriptional programs which lead to long-

lasting cellular adaptations necessary for learning and circuit-level homeostasis4,5. Such 

transcriptional responses are evoked in the brain by a wide range of stimuli, including 

sensory experience, metabolic changes, circadian rhythm, stress, injury and pharmacological 

intervention, and are implicated in many biological responses and diseases6–10.

Early work characterizing activity-dependent transcription in cultured neurons revealed that 

a depolarizing stimulus rapidly induces calcium- and MAPK-dependent early-response 

genes (ERGs)11. These ERGs include factors like Arc, which alters synaptic transmission12, 

but consist mostly of early-response transcription factors (ERTFs). The ERTFs induce a 

second wave of late-response genes (LRGs) including neuronal modulators and secreted 

factors (e.g. Bdnf) that effect changes in circuitry13,14. Until recently, the study of such 

responses had largely been limited to neurons in vitro or bulk tissue15,16. Newer 

technologies, however, extended this analysis to multiple genetically defined but 

investigator-selected neuronal cell types in vivo13,17. From these studies, a model emerged 

in which sensory experience induces a common ERTF program across neuronal types, 

followed by distinct LRG programs that regulate synaptic plasticity in a cell-type-specific 

manner.

Despite this recent progress in understanding sensory experience-dependent gene 

expression, significant gaps in knowledge still remain. Previous approaches analyzed a 

limited number of inhibitory cell types and masked the full diversity of excitatory 

populations that form functionally and molecularly distinct layers with specialized roles 

within the local microcircuitry. Furthermore, neuronal activity can induce calcium waves in 

astrocytes, proliferation and myelination by oligodendrocytes, and structural changes in the 

neurovasculature18–20. Despite the considerable diversity of stimulus-responsive cell types 

in the cortex, we lack a comprehensive understanding of how the full complement of cells 

within a cortical microdomain respond to a sensory stimulus and how their response 

contributes to neuronal plasticity.

To address this issue, we performed unbiased high-throughput droplet-based single-cell 

RNA sequencing (scRNA-seq) of 114,601 individual cells in mouse visual cortex to map 

their transcriptional response to visual stimulation21. Remarkably, cells of all 30 

transcriptionally identified types (hereafter referred to as “cell types”) responded to the 

visual stimulus with diverse transcriptional changes. These transcriptional cascades diverged 
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immediately across cell populations, with the induction of different early-response 

transcription factors. Surprisingly, astrocytes, oligodendrocytes, and endothelial cell types 

were highly responsive to the visual stimulus initiating transcriptional changes indicative of 

structural remodeling of these non-neuronal cells. Among excitatory neurons, late-response 

genes were enriched for secreted factors that may modulate neural circuit connectivity and 

serve to demarcate inter- and intra-layer cell type organization. Together, these results 

indicate that in response to sensory stimuli the cortical transcriptome is much more dynamic 

than previously appreciated, and that the widespread changes in sensory-dependent gene 

expression among diverse cell types identified in this resource are likely essential for proper 

brain function.

Results

inDrop sequencing to study neuronal activity

We used an in vivo visual stimulus paradigm to study sensory-dependent gene expression in 

primary visual cortex13,16,17. 6–7 week old mice were housed in complete darkness for one 

week followed by either zero (control), one, or four hours of light exposure (Fig. 1a, 

Methods). We used fluorescence in situ hybridization (FISH) to confirm the efficacy of the 

light stimulus to induce expression of ERGs (Fig. 1b). Quantitative reverse transcription 

PCR (qRT-PCR) revealed that light induction of ERGs was specific to the visual cortex and 

did not occur in somatosensory, motor, or auditory cortex (Supplementary Fig. 1).

Immediately following light stimulation, the visual cortices were dissected and dissociated 

into single-cell suspensions (Fig. 1a, Online Methods). In contrast to the stimulus-dependent 

induction of Fos measured by FISH and qRT-PCR, RNA extracted in bulk from single-cell 

suspensions initially displayed high ERG expression in control samples (Fig. 1c). It was 

recently reported that protocols relying on enzymatic digestion induce activity-dependent 

gene transcription in brain cells22, making it difficult to use previously generated single cell 

RNA-seq data sets to identify genes whose activity is induced in vivo in response to sensory 

stimuli. We therefore added a cocktail of inhibitors to the dissociation solution that block 

neuronal activity, calcium entry, transcription, and translation (Online Methods). This 

reduced the expression of Fos in the control but not stimulated sample (51-fold, p=3.2×10−5, 

unpaired t-test), thus preserving the pattern of in vivo activity-dependent gene induction that 

was detected by FISH (Fig. 1b). Genome-wide analysis showed differential expression of 

114 genes (FDR-corrected q<0.01, ≥ 2-fold change in expression), 110 of which were down 

regulated with inhibitor treatment (Supplementary Table 1). 45 of these 110 genes were also 

regulated by the light stimulus (FDR-corrected q<0.01) (Fig. 1d, Supplementary Fig. 2), 

further supporting the use of these blockers in preventing aberrant transcription during the 

enzymatic dissociation.

Using this optimized dissociation protocol to preserve the dynamic transcriptional state of 

ERGs in vivo, we conducted stimulus-dependent scRNA-seq profiling of visual cortex after 

light exposure of various durations. Following dissociation, single cells were captured and 

their mRNA barcoded using the inDrops platform21 (Online Methods). In total 28 

preparations from 23 animals were sequenced (Supplementary Fig. 3), yielding 65,539 cells 

that passed initial quality control tests (Online Methods).
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Identification of cell types in the adult mouse visual cortex

The inDrops dataset was analyzed using two independent clustering approaches to classify 

individual cells into cell types based on their patterns of gene expression, generating a final 

dataset containing 47,209 cells (Supplementary Fig. 4, Online Methods). On average, we 

recovered 3,234 transcripts per cell and 1,453 unique genes expressed per cell 

(Supplementary Fig. 5). The cells robustly classified into 8 main cell types (excitatory 

neurons, inhibitory neurons, oligodendrocytes and oligodendrocyte precursor cells (OPCs), 

astrocytes, endothelial and smooth muscle cells, pericytes, microglia, and macrophages) and 

30 subtypes (Fig. 1e–f, Supplementary Fig. 6–10, Supplementary Table 2). The cluster 

identities are consistent with recent scRNA-seq data from the murine visual cortex 

(Supplementary Fig. 11)23.

Identification of sensory stimulus-regulated transcriptional programs

To identify visual experience-regulated genes within each cell type, we carried out 

differential gene expression analysis (Online Methods) across time points, requiring FDR 

<0.05 and ≥ 2-fold change in expression (example results for Exc_L23 Fig. 2a). Of 25,187 

genes, 8,313 were significantly stimulus-dependent in at least one cell type and 611 passed 

the fold change threshold (419 upregulated, 192 downregulated, Supplementary Table 3, 

Supplementary Fig. 12).

We identified light-induced gene expression changes in all neuronal and also, surprisingly, 

non-neuronal cell types in the visual cortex. Across all cell populations, the sensory 

experience-regulated genes were grouped into early (362) and late (249) response genes 

based on their temporal pattern of gene induction (Online Methods, Fig. 2b, Supplementary 

Table 3). Gene ontology (GO) analysis across all 611 genes showed significant enrichment 

for positive regulation of transcription and MAPK-signaling (additional terms in 

Supplementary Table 4).

The single cell resolution of the inDrops data also allowed estimation of the fraction of cells 

in each population exhibiting acute transcriptional responses to light stimulation (Online 

Methods, Fig. 2c). This analysis revealed that 49–69% of excitatory neurons exhibited light-

induced transcriptional changes, irrespective of type or laminar position. By contrast, 

inhibitory neuronal subtypes showed variable fractions of transcriptionally responsive cells, 

ranging from 71% in the case of a somatostatin (Sst)-expressing subpopulation (Int_Sst_2) 

to only 29% of parvalbumin-expressing interneurons (Int_Pv).

Remarkably, a large fraction of non-neuronal cells also exhibited acute light-induced 

transcriptional responses, with endothelial and smooth muscle cell types showing the largest 

fraction of transcriptionally active cells (49–68%), followed by astrocytes (47%), pericytes 

(38%), and macrophages (38–47%). By contrast, a small fraction of oligodendrocytes and 

microglia showed light-induced transcriptional responses (4–37% and 11–12%, 

respectively). Light-exposure following dark housing thus triggers acute transcriptional 

responses in a large fraction of cells across the full range of V1 cell types, including a 

surprisingly high proportion of non-neuronal cell classes.
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Diversity of experience-regulated early-response genes

One prevalent model for stimulus-dependent gene expression in the brain suggests that 

neuronal activity triggers several calcium-dependent signaling pathways, including the Ras/

MAPK pathway, which drive the expression of a common cohort of ERGs ubiquitously 

across many cell types25. Many of these ERGs encode transcription factors (TFs) that have 

been hypothesized to trigger unique patterns of late-response gene (LRG) expression 

through differential binding to cell-type-specific cis-regulatory elements13,17. This 

hypothesis, however, is based on findings from a limited number of cell types. An alternative 

model is that the induction of ERTFs themselves is at least somewhat cell-type-specific and 

leads to the activation of distinct sets of LRGs in different cell types.

We tested these two models by examining the ERTF and LRG programs across cell types. 

Consistent with previous reports, LRGs were shared across fewer cell types than ERTFs 

(Mann-Whitney U-test, p=2×10−5) (Fig. 3a). However, of the 38 ERTFs identified, only 19 

were induced in three or more cell types, suggesting that there is considerable divergence 

within the early stimulus-responsive gene expression program. To gain further insight into 

the 19 shared ERTFs, we classified them based on their expression patterns across the 30 

cell types and identified four distinct gene sets (Fig. 3b). Two of these gene sets showed 

increased expression across most neuronal and non-neuronal cell types (between 3–14 cell 

types). These sets contained canonical immediate-early genes (IEGs), known to regulate the 

late phases of gene expression (Nr4a1, Nr4a2, Nr4a3, Fos, Fosl2, Egr1, etc.). We confirmed 

the induction of a subset of these IEGs across multiple cell types via FISH (visual 

presentation and quantification in Fig. 3c, Supplementary Fig. 13). By contrast, the final two 

gene sets were specific to either neuronal (Egr2, Egr4, Fosb, Junb, and Npas4) or non-

neuronal cell populations (Atf3, Klf2, Klf4, Klf10, and Maff), respectively.

We investigated the extent to which these ERTFs are co-expressed within individual cells of 

a given type to determine whether their co-expression is stochastic or reflects a deeper 

structure in ERTF regulation. To this end, we correlated the expression of ERTFs across 

individual excitatory neurons, focusing on this cell population as it represented the largest 

cohort of transcriptionally responsive cells. We found a significantly higher pairwise 

correlation between ERTFs within individual cells (Pearson r=0.23±0.13) than was observed 

for ERTFs shuffled across cells, or for expression-matched non-induced genes (Pearson 

r=0.002±0.017, r=0.002±0.029, p=0, p=0, Mann-Whitney U-test, respectively) (Online 

Methods, Fig. 3d–e). 3-color FISH confirmed these conclusions for Fos and Egr1 or Fos and 

Nr4a1 in excitatory neurons (Vglut1+), which demonstrated a high degree of pairwise 

correlation (Pearson’s r=0.74, r=0.76, respectively) within individual excitatory neurons 

(Fig. 3f).

Taken together, our findings provide a more nuanced view of diversity of experience-

regulated gene expression across cell-types. Although our data confirm the existence of a 

core set of early-response transcription factors induced in both neuronal and non-neuronal 

cell types, we also find substantial divergence in ERTF expression that may contribute to 

late-response gene diversity between cell types. Moreover, our results suggest that, within 

individual excitatory neurons, the expression of ERTFs is tightly co-regulated to enable the 

concerted action of these factors in the regulation of late-response gene programs.
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Excitatory neuronal LRGs

Excitatory neurons throughout cortical laminae are molecularly, physiologically, and 

hodologically diverse26; however, the diversity of late-response gene programs between 

excitatory neuronal subtypes has yet to be systematically explored. We identified 19 cell-

type-enriched LRGs (of 55 LRGs induced in excitatory neurons), including several secreted 

modulators of synaptic plasticity15. For example, Cerebellin 4 (Cbln4), which encodes a 

secreted factor implicated in inhibitory synapse recruitment27, was enriched in layer 4 

excitatory neurons, which we confirmed by FISH (Fig. 4a). Gene ontology analysis of 

excitatory late response genes revealed an over-representation of secreted factors and genes 

regulating synapse formation (Supplementary Table 4), consistent with experience-

dependent transcriptional regulation of neuronal connectivity. These findings suggest that 

long-term adaptations to visual stimuli differ across excitatory neuronal subtypes in visual 

cortex and could enable distinct functions in visual processing.

We assessed whether we could detect intra-layer differences in sensory experience-

dependent transcriptional responses. We focused first on layer 5 excitatory neurons, which 

have been classified into subtypes defined by axon projection patterns and 

electrophysiological properties23,26,28. We mapped three putative layer 5 excitatory neuron 

populations onto previously defined transcriptional cell types from mouse visual cortex23 

(Supplementary Fig. 11, 14). The three populations of excitatory neurons respond to sensory 

stimulus by activating a similar number of genes (34–55 genes per cell type); however, 

despite their anatomical proximity, several of these genes are subset enriched (Fig. 4b). For 

example, stimulus-dependent induction of Pdlim1, a gene that encodes a protein involved in 

AMPA receptor trafficking29, is restricted to predicted cortico-fugal projecting ExcL5_2 

neurons. Thus, even within a single cortical layer, functionally heterogeneous cell types 

exhibit distinct sensory-dependent transcriptional responses.

We next asked whether other cortical laminae had subpopulations that transcriptionally 

diverged upon sensory stimulus. Further subclustering of excitatory populations identified 

two layer 2/3 and three layer 4 excitatory neuron subtypes, consistent with previous 

transcriptionally defined cell types (Online Methods, Fig. 4c, Fig. 4d, Supplementary 15–

18). We identified both sensory-experience regulated and unregulated genes as distinct 

across these cell types. Non-induced gene markers include Cdh13 for layer 2/3 and Ctxn3, 
Calb1, and Hsd11b1 for layer 4 (Fig. 4c, Fig. 4d, Supplementary Fig. 19, 20). These layer 

2/3 and layer 4 excitatory neuronal cell types displayed marked differences in experience-

regulated transcriptional responses (Fig. 4e). For example, Cbln4 was differentially 

expressed across layer 4 subtypes, with the largest light-stimulus induction occurring within 

the Calb1+ subtype (Fig. 4f), which was corroborated via FISH (Fig. 4g).

Finally, we asked whether these cell-types exhibiting distinct sensory-induced transcriptional 

responses were further organized into specific spatial arrangements within their respective 

layers. FISH revealed that the transcriptionally less responsive Cdh13+ excitatory cells are 

enriched superficially in layer 2/3 (Supplementary Fig. 21), consistent with previous 

observations of sparser firing in layer 2 in response to sensory stimuli compared to layer 

326,30,31. In layer 4, we first looked at the two most transcriptionally responsive layer 4 

subpopulations, Calb1+ and Hsd11b1+ neurons (Fig. 4e), which differed in 44 of the 90 
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stimulus-regulated genes identified within these subtypes. Whereas Calb1+ neurons are 

enriched superficially, the Hsd11b1+ neuronal population is found deep within layer 4 and 

spans the boundary between layers 4 and 5 (Fig. 4h, Supplementary Fig. 22). Ctxn3+ 
neurons, the least transcriptionally responsive population, are also enriched within 

superficial layer 4 and interspersed with the Calb1+ population (Supplementary Fig. 22). 

The anatomical organization of these cell types into sublayers, coupled with divergent 

transcriptional responses to a sensory stimulus, suggests unappreciated functional 

subdivisions within the laminae of mouse visual cortex resembling the cytoarchitecture in 

higher mammals32.

In summary, we observe that distinct transcriptional responses exist both between cortical 

layers and among neuronal subtypes within individual layers in response to light stimulation. 

Moreover, we find that the late response gene programs activated in response to visual 

stimulation are highly cell type specific and likely contribute to the cellular features that 

define the function of each subtype within the circuit (Fig 4i).

Inhibitory neuronal LRGs

V1 interneurons were classified into six distinct subtypes (Int_Pv, Int_Vip, Int_Cck, 

Int_Npy, Int_Sst_1, Int_Sst_2), consistent with other scRNA-seq-based taxonomies23,33 

(Fig. 1f, Supplementary Fig. 11, 23). Analysis of sensory stimulus-regulated gene expression 

in these cell types showed broad agreement with our prior findings based on cell-type-

specific isolation of ribosome-associated mRNA13,17. Specifically, we identified 75 ERGs 

and 70 LRGs whose expression is light-dependent in at least one of the six inhibitory 

subtypes with 14 LRGs enriched in a single inhibitory subtype (Fig. 5a).

Of particular interest, we observed selective induction of Corticotropin-releasing hormone 

(Crh) mRNA, encoding a stress hormone, in the Int_Vip population. In the hippocampus, 

Crh signals through the G-protein coupled receptor Crhr1 to increase the excitability of 

pyramidal cells34. Crhr1 expression in V1 was enriched in excitatory cell types, suggesting 

that Vip interneuron-derived Crh might directly modulate the excitability of pyramidal 

neurons in a stimulus-dependent manner (Fig. 5b). Moreover, building upon a recent study 

in prefrontal cortex35, we observed stimulus-dependent induction of Crh-binding protein 

(Crhbp), a gene that encodes a secreted factor known to negatively regulate Crh signaling, in 

Sst-expressing interneurons. Together, these findings suggest a possible mechanism for the 

control of cortical microcircuit excitability involving the opposing action of two activity-

regulated signaling peptides derived from distinct inhibitory subtypes.

Experience-dependent transcriptional changes in vasculature-associated cells

Since the discovery over a century ago that neuronal activity rapidly triggers changes in 

local blood flow36, researchers have recognized that neurons, glia, and associated 

vasculature (endothelial cells, smooth muscle, and pericytes) coordinate their signaling and 

activity37. In addition, sensory-related neural activity restructures cortical vascular networks, 

although the mechanisms that regulate this process remain unknown18.

We asked whether the vascular transcriptional response was induced by local neuronal 

activity or by systemic, brain-wide changes in blood flow or oxygen levels. To address this 
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question, we carried out qRT-PCR for the endothelial and smooth muscle-specific early 

response transcription factor Klf4 across multiple cortical regions. We found that Klf4 is 

induced in V1, but not other regions of the cortex indicating that the sensory stimulus-

dependent changes in vascular architecture occur specifically in the region of the brain that 

is activated by the sensory stimulus (Fig. 6a).

We were surprised to identify a larger number of activity-regulated genes (257) in 

endothelial and smooth muscle cells than in excitatory and inhibitory neurons combined 

(231, Fig. 6b). The large number of induced genes in endothelial and smooth muscle cells 

suggests that sensory-dependent transcriptional programs play an important role in the 

vascular response. For example, angiopoietin 2 (Angpt2), which encodes a canonical 

vascular growth factor involved in blood brain barrier permeability as well as embryonic and 

adult angiogenesis38,39, is significantly induced more than 2-fold in Endo_1 and SM_2 cell 

types within 4 hours of light stimulation (Fig. 6c).

Beyond several broadly induced genes, we identified 12 sensory-regulated transcription 

factors (Klf2, Klf4, Klf7, Atf3, Atf4, Bcl6b, Jund, Maff, Mafk, Srf, Zfp36, and Ing3) that are 

selectively induced in endothelial and smooth muscle cells but not in neuronal cell types 

(Fig. 6d–f). A subset of these TFs have previously been implicated in structural changes to 

brain vasculature40. For example, aberrant over-expression of Klf2/4 in endothelial cells 

causes cerebral cavernous malformations41. Thus, the induction of these ERTFs is likely to 

be vital for vascular structural remodeling in response to sensory stimuli.

Experience-dependent transcriptional changes in oligodendrocytes

Although neuronal activity is known to regulate oligodendrogenesis and myelination, the 

transcriptional pathways underlying these processes remain unclear19,42. Oligodendrocytes 

displayed a decreased transcriptional response to light stimulus, with only 33 differentially 

expressed genes identified, despite an abundance of these cells in our dataset (10,158 cells). 

Nevertheless, we did observe in multiple oligodendrocyte populations several stimulus-

induced transcriptional changes of interest, including the induction of serum/glucocorticoid-

regulated kinase (Sgk1) (Fig. 6g). Sgk1 overexpression enhances the arborization of 

oligodendrocytes43, suggesting that sensory experience-dependent induction of Sgk1 may 

lead to oligodendrocyte remodeling.

We observed the induction of several transcription factors (Egr1, Pou3f1, and Erf) 
specifically in OPCs and not in immature, pre-myelinating, or mature oligodendrocytes 

suggesting that these TFs may play a role in the process of oligodendrogenesis (Fig. 6g). 

Interestingly, in contrast to their dynamics in other cell types, we observed delayed induction 

of Erf and Egr1 in OPCs consistent with the possibility that the induction of these genes in 

OPCs is dependent upon the prior activation of activity-regulated secreted proteins in 

neurons or other non-neuronal cells (Fig. 6h). Indeed, we found nine receptors44 that are 

both enriched in OPCs relative to other oligodendrocytes and are predicted to bind stimulus-

responsive ligands induced in neurons and vasculature-associated cells including those 

encoded by Bdnf, Ptgs2, and Inhba (Fig. 6i, Online Methods). Together, these findings 

identify sensory responsive genes that might regulate OPC proliferation, differentiation, and 

recruitment to neuronal axons.
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Discussion

The cerebral cortex is composed of a vast array of cell types whose coordinated activity is 

necessary for normal brain development and function. Several laboratories have recently 

applied scRNA-seq to characterize these cell types across brain areas8,22,23,33,45–47, but this 

work has largely focused on producing a static cellular taxonomy at a defined developmental 

time point, remaining agnostic to the transcriptional changes induced by acute sensory 

experience and neuronal activity. Moreover, the enzymatic brain dissociation methods 

applied in these previous studies likely activate stimulus-regulated transcriptional programs, 

which may obscure the identification of genes that are induced in the brain in response to 

sensory stimuli22. The resource presented here, by contrast, represents an additional 

dimension of cellular state that must be considered when examining existing cell type atlases 

and serves as a critical step towards a holistic understanding of the mechanisms by which 

experience modulates cortical circuits through the concerted action of diverse cell types.

The degree to which transcriptional responses vary across the panoply of experiences 

encountered throughout life remains unknown. We restricted our analysis to a single 

stimulus and cortical region. Intriguingly, despite differences in brain region, stimulus 

paradigm, and methodology, our 611 experience-regulated genes are highly enriched among 

those reported by a recent study of activity-dependent chromatin accessibility and bulk gene 

expression in the dentate gyrus48 (Supplementary Fig. 24). Nevertheless, similar analyses of 

dynamic gene expression in other brain regions in response to a multitude of stimuli will be 

essential in constructing a complete cell atlas of the central nervous system.

Although droplet-based single cell RNA-Seq has significant advantages enabling high-

throughput and cost-effective analysis of the transcriptomes of thousands of cells, several 

key limitations remain. First, the anatomical location of individual cells is lost, requiring 

FISH or other spatially precise methods to physically map transcriptionally defined cell 

types. Second, the low transcript-capture efficiency21 and shallow depth of sequencing 

(Supplementary Fig. 3, 5, 9, 10) resolve only a fraction of transcripts within each cell, 

requiring the analysis of large numbers of cells to differentiate cell types. For example, 

targeted deep sequencing of inhibitory neurons identified 23 subtypes which are fine-grained 

subsets of the types described here (Supplementary Fig. 17, 23). It follows that sequencing 

even more cells may uncover additional rare cell types and reveal further heterogeneity of 

stimulus-dependent transcriptional programs within mouse visual cortex.

Through the analysis of stimulus-regulated genes, we identified excitatory neuron cell types 

that dramatically differ in their response to the light stimulus both between and within 

cortical laminae. Closer examination revealed that cell types residing in the same cortical 

layer had differentially evoked transcriptional responses and were found to be organized in 

discrete laminar positions within their respective layers. Thus, despite their proximity, these 

cell types may have different synaptic connectivity and could serve distinct functions within 

cortical circuitry. Future studies of these cell types could test whether cells displaying 

unique sensory-dependent transcriptional responses have distinct physiological properties 

and, within thalamorecipient layer 4, whether they receive different thalamocortical inputs, 

as has been reported for primates32.
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Non-neuronal cells have functions vital to the maintenance of cortical circuitry including 

regulating synapse development and maturation, neurotransmitter reuptake, and metabolite 

and oxygen supply. We reveal that, in parallel to the experience dependent transcriptional 

response in neurons, a distinct and variable gene network is induced in glial, immune, and 

vascular cell types. The functions of many of these regulated genes are unknown, but likely 

contribute to the regulation of previously identified activity-dependent processes in non-

neuronal cells including the remodeling of vascular networks and structural remodeling of 

oligodendrocytes. Future studies are necessary to determine how these transcriptional 

programs act in concert to remodel cortical function and circuitry in response to changes in 

sensory experience.

Online Methods

Mice

Animal experiments were approved by the National Institute of Health and Harvard Medical 

School Institutional Animal Care and Use Committee, following ethical guidelines described 

in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

The experiments used adult (6–8 weeks old) C57BL/6J virgin male mice (The Jackson 

Laboratory).

Visual stimulation and brain dissection

Mice were housed in a standard light cycle (6AM–6PM) before placement into constant 

darkness for 7 days. Mice were either sacrificed in the dark (0h-control condition) or light-

exposed for 1 h or 4 h before sacrifice. After isofluorane anesthetization the eyes were 

enucleated, the animal sacrificed, the brain isolated, and desired cortical regions 

microdissected according to the protocols listed below.

Fluorescence in situ hybridization (FISH)

Sample preparation—Mice were light-exposed and sacrificed as above. Brains were 

immediately frozen on dry ice in tissue freezing medium. Brains were sliced on a cryostat 

(Leica CM 1950) into 20 µm sections, adhered to SuperFrost Plus slides (VWR), and 

immediately stored at −80C until use. Samples were processed according to the ACD 

RNAscope Fluorescent Multiplex Assay manual.

Sample imaging—Sections containing V1 were imaged on a Leica SP8 X confocal 

microscope using a 63× 1.4 NA oil immersion objective (Harvard NeuroDiscovery Center). 

Tiled V1 cortical areas of ~1.1 mm by ~0.5 mm, containing all cortical layers, were imaged 

with optical sectioning of 0.5 µm. Channels were imaged sequentially to avoid any optical 

crosstalk.

Image analysis pipeline—We developed automated software to segment DAPI-stained 

nuclei in FISH images and count the fluorescent puncta from hybridized probes within each 

nucleus. A labeled set of 23 images containing a total of ~2000 nuclei was used to train a 

stacked Random Forest (RF) classifier, using contextual "offset" features adapted from 

Refs.49 and50, as well as newly developed circularity features. The RF was trained on three 
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labels: background, nuclei contour, and nuclei, therefore producing three respective 

probability maps. We used a watershed algorithm on the output probability maps to split 

neighboring nuclei and create masks. Finally, we eroded the nuclei masks to 80% of the 

original radius for conservative analysis of fluorescent puncta. Puncta detection was 

performed as described in Ref.51. Code for the image analysis pipeline is available upon 

request, and detailed in Ref.52.

Typically, one or two channels of a FISH experiment were devoted to cell type markers. We 

used a model-based minimum error thresholding method53 over all cells in an image to 

determine the fewest number of marker puncta necessary to classify the cell as positive for 

that marker. To mitigate the risk of false positives, a lower limit of 4 puncta was used if the 

model yielded a smaller number of puncta. A lower threshold (2 puncta) was used for the 

layer 4 excitatory neuron cell type marker Ctxn3, which was detected at very low abundance 

(Supplementary Fig. 22). The following cell-type markers were used: Vglut1 for excitatory 

neurons, Pecam1 for endothelial and smooth muscle cells, Aldh1l1 for astrocytes, and a 

combination of Gad1 and Gad2 were used to label inhibitory neurons. Layer 4 was marked 

by Rorb expression and a peak in the density of DAPI-stained nuclei, and layer 6 was 

marked by Foxp2 expression. Subtypes of excitatory neurons were marked by Cdh13, Calb1, 
Ctxn3, Hsd11b1 (Fig 4h, Supplementary Fig. 20–22), Gpr88, Bcl6, and Nnat 
(Supplementary Fig. 14).

Image presentation—For large area images (Fig. 1b, 4a and 4h, Supplementary Fig. 14, 

21 22), nuclei masks created in the analysis pipeline are displayed and pseudo-colored 

according to the number of puncta contained within the mask. For single cell images (Fig. 

3c, Fig. 3f, Fig. 6e), a Gaussian filter was used to reduce uncorrelated noise for visualization 

purposes only.

Generation of single-cell suspensions

Standard protocol—V1 was dissected bilaterally in ice-cold Choline solution containing: 

2.1 g/l NaHCO3, 2.16 g/l glucose, 0.172 g/l, NaH2PO4 * H2O, 7.5mM MgCl2•6H2O, 

2.5mM KCl, 10mM HEPES, 15.36 g/l choline chloride, 2.3 g/l ascorbic acid, and 0.34 g/l 

pyruvic acid. The tissue was cut into 300um slices and dissociated using the Papain 

dissociation system (Worthington) according to the manufacturer’s instructions with the 

following modifications: The EBSS solution was replaced by our Dissociation Solution: 

HBSS (Life Technologies), 10mM HEPES (Sigma), 172mg/l kynurenic acid (Sigma), 0.86 

g/l MgCl2•6H2O (Sigma), 6.3 g/l D-glucose (Sigma), was saturated with 95% O2, 5% CO2, 

and was pH adjusted to 7.35. Dissociation was carried out at 37C for 1h with 20U/ml of 

Papain.

Protocol optimized for preserving transcriptional state—Once anesthetized the 

animals were transcardially perfused with ice-cold Choline solution (above) containing the 

following small molecule cocktail for 5 minutes: 1 uM TTX (Sigma), 100 uM AP-V 

(Thermo Fisher Scientific), 5 ug/ml Actinomycin D (Sigma) and 10 uM Triptolide (Sigma). 

V1 was then microdissected, cut into 300um slices, and incubated on ice for 30 minutes in 

Dissociation Solution containing 1uM TTX, 100 uM AP-V (Thermo Fisher Scientific), 5 
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ug/ml Actinomycin D (Sigma), 10 uM Triptolide (Sigma) and 10 ug/ml Anicomycin 

(Sigma). Papain was added to a final concentration of 20 U/ml and the tissue dissociated for 

1h at 37°C with gentle agitation in a total volume of 3.2ml. The remaining procedures were 

performed per manufacturer’s instructions without the small molecule cocktail. Following 

gradient centrifugation the cells were washed in Dissociation Solution containing 0.04% 

BSA and resuspended in Dissociation Solution containing 0.04% BSA and 15% Optiprep 

(Sigma) for single cell RNA-Seq.

RNA isolation, reverse transcription, and qRT-PCR analysis

For quantitative reverse transcription PCR (qRT-PCR) experiments across brain regions (Fig. 

6a, Supplementary Fig. 1), the dissected regions from 3–4 mice were immediately frozen for 

RNA isolation. For experiments comparing the expression of activity-regulated genes across 

dissociation procedures, the cells were dissociated using the standard and optimized 

dissociation methods (below) from 4 mice per condition and immediately frozen. The 

RNeasy Mini (Qiagen) isolation procedure was carried out according to the manufacturer’s 

instructions including a DNase I digestion. For qRT-PCR analysis, the RNA was reverse-

transcribed using the High Capacity cDNA Reverse Transcription kit (Life Technologies). 

qRT-PCR was performed using the LightCycler 480 SYBR Green I Master (Roche) on the 

LightCycler 480 system (Roche). Reactions were run in technical duplicates which were 

averaged before subsequent analysis. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) 

was used as a normalization control for the ΔΔCt-based quantification. The sequences of 

real-time PCR primers for Gapdh were TGTGTCCGTCGTGGATCTGA (forward) and 

TTGCTGTTGAAGTCGCAGGAG (reverse). For Fos we used 

CTGGATTTGACTGGAGGTCTGC (forward) and TTGCTGATGCTCTTGACTGGC 

(reverse). For Klf4 we used GCAGTCACAAGTCCCCTCTC (forward) and 

TAGTCACAAGTGTGGGTGGC (reverse).

RNA-seq analysis of bulk visual cortex

RNA from three experimental conditions with four replicates each was isolated as described 

in the RNA isolation, reverse transcription, and qRT-PCR analysis section. The three 

conditions were: drug cocktail-treated and visually unstimulated, drug cocktail-untreated 

and visually-unstimulated, and drug cocktail-treated and visually stimulated (1 h). 

Sequencing libraries were prepared using the SMART-Seq® v4 Ultra® Low Input RNA Kit 

for Sequencing and the Nextera XT DNA sample prep kit according to manufacturer’s 

instructions.

Samples were sequenced on the NextSeq 500 (Illumina) and paired end reads of lengths 

38,38 were obtained. Reads were trimmed with Trimmmomatic −0.33 using the following 

parameters: ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:20 MINLEN:3054. A reference transcriptome was built with Tophat 

2.1.1 and Bowtie 1.1.1 against the GRCm38.dna_sm.primary_assembly genome with the 

GTF file constructed above for inDrops mapping55,56. Reads were mapped against this 

transcriptome with Tophat using the following options: --mate-inner-dist 500 --no-mixed --

transcriptome-index [CUSTOM_TRANSCRIPTOME] --bowtie1 --no-novel-juncs. All 

samples showed ≥90% concordant pair alignment rate. The featureCounts57 package was 
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used to obtain gene counts with the following command options: -p -B -C -g gene_name -a 

[GTF] -s 1.

Counts tables were TMM-normalized and converted to CPM using the edgeR software 

analysis package58,59. Any genes that were not expressed in at least 3 samples with TMM-

normalized CPM>1 were dropped from further analysis. Differential expression (DE) 

analyses were conducted using the voom/limma analysis software packages (requiring FDR-

corrected q<.01) to identify drug-dependent (DE between visually-unstimulated cocktail-

treated and visually-unstimulated not-cocktail-treated, Fig. 1d) and bulk visual-stimulus-

dependent (DE between visually-unstimulated cocktail-treated and visually-stimulated 

cocktail-treated, Supplementary Fig. 2a) genes60,61.

Single-cell RNA sequencing (inDrops)

One to two libraries of approximately 3,000 cells were collected from each animal. inDrops 

was performed as previously described21,62, generating indexed libraries that were then 

pooled and sequenced across 15 runs on a NextSeq 500 (Illumina). Four libraries were 

down-sampled to match sequencing depths across samples.

inDrops sequencing data processing

Transcripts were processed according to a previously published pipeline21. Briefly, this 

pipeline was used to build a custom transcriptome from the Ensembl GRCm38 genome and 

GRCm38.84 annotation using Bowtie 1.1.1,56 after filtering the annotation gtf file 

(gencode.v17.annotation.gtf filtered for feature_type=”gene”, gene_type="protein_coding" 

and gene_status="KNOWN"). Read quality control and mapping against this transcriptome 

then followed. Finally, unique molecular identifiers (UMIs) were used to reference sequence 

reads back to individual captured molecules, hereafter referred to as UMIFM counts.63 All 

steps of the pipeline were run using default parameters unless explicitly specified.

Quality control for the inclusion of cells

Our initial dataset contained 114,601 cells with more than 1,000 reads assigned to each cell. 

All mitochondrially encoded genes were removed from the dataset. Cells with fewer than 

700 or more than 15,000 UMI counts were next excluded, yielding 65,539 high quality cells 

isolated across 23 animals. The average transcript count per cell was 3,045.

Dimensionality reduction and clustering

All 65,539 cells were combined into a single dataset. Two independent approaches were 

used to cluster cells (described in Supplementary Fig. 4):

1. t-SNE based approach (Approach 1)—Raw counts were first linearly normalized 

such that each cell in the dataset contained the same number of transcripts (3,045). Next, 

4,000 most variable genes in cells derived from zero hour samples were identified as 

previously described in Klein et al.21. Briefly, the v-statistic for each gene (a corrected Fano 

Factor accounting for noise in method efficiency, and variation in cell size) was computed 

and the genes with the largest v-statistics were chosen as the most variable genes. Principle 

component analysis (PCA) based on the 4,000 most variable genes in cells derived from zero 
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hour samples was applied to reduce the dimensionality of the dataset as described in Klein et 
al.21. The MATLAB implementation of the t-SNE dimensionality reduction algorithm used 

in this publication was next applied to position cells on a 2D coordinate system using the 

principal components generated above. Perplexity was set to 30, other t-SNE arguments 

were left as default64. A machine learning algorithm with minimal user input was used to 

define clusters of cells based on their proximity to one another in this 2D space as described 

in Rodriguez et al.65. The parameters used were: percNeigh=0.02; kernel='Gauss'; 

minRho=10, minDelta=3. This method resulted in 91 initial clusters.

2. Seurat-based approach (Approach 2)—The second approach applied the Seurat R 

package66,67. The data were log normalized and scaled to 10,000 transcripts per cell. 

Variable genes were identified using the MeanVarPlot() function, which calculates the 

average expression and dispersion for each gene, then bins genes and calculates a z-score for 

dispersion within each bin. The following parameters were used to set the minimum and 

maximum average expression and the minimum dispersion: x.low.cutoff=0.0125, 

x.high.cutoff=3, y.cutoff=0.5. Next, PCA was carried out and the top 30 principal 

components (PCs) were kept. Clustering resolution was set to 0.6. This method resulted in 

32 initial clusters.

Doublet removal and additional clustering

The following analysis was carried out for each approach independently. All clusters 

containing fewer than 100 cells were discarded. The expression of known marker genes 

(Slc17a7, Gad1, Olig1, Aldoc, Cldn5, Vtn, Cx3cr1 and Mrc1) was used to assign each 

cluster to one of the main cell types: excitatory neurons, inhibitory neurons, 

oligodendrocytes, astrocytes, endothelial and smooth muscle cells, pericytes, microglia, and 

macrophages. Clusters with substantial expression of two or more markers were removed as 

they most likely represented doublet artifacts arising from the co-capture of multiple cells in 

one droplet.

To resolve additional diversity across these main cell classes identified with either method, 

all clusters assigned to a single class were then pooled and re-analyzed by reapplying the 

same method (t-SNE-based approach or Seurat-based approach). On occasion clusters were 

identified that contained a disproportional fraction of cells either from 0, 1, or 4 h samples 

regardless of animal of origin, suggesting that stimulus-dependent expression was a major 

contributor to variance in these cell types. In all such cases the clusters expressing identical 

cell-type markers were combined into a single cluster. This analysis resulted in 33 final 

clusters across 55,986 cells for the t-SNE-based approach and 48 final clusters across 56,372 

cells for the Seurat-based approach.

Intersecting results obtained from the two approaches

The results from both approaches were intersected to exclude cells that were not consistently 

assigned. Since there were more clusters generated by Approach 2 (48), we took each of 

those clusters and assessed their degree of overlap with Approach 1-generated clusters (33). 

First, a 2D matrix was generated with Approach 1 clusters along one dimension and 

Approach 2 clusters along the other. The values in the matrix corresponded to the number of 
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cells that were shared between any Approach 1 and Approach 2 cluster. 3 of the 48 

Approach 2 clusters had cells distributed across several Approach 1 clusters with no 

Approach 1 cluster encompassing the majority (>50%) of the cells. All the cells from these 

three clusters were removed from the analysis as the overlap was not deemed sufficient. For 

each of the remaining 45 Approach 2 clusters we identified a single corresponding Approach 

1 cluster that encompassed the majority (>50%) of the cells. Only the cells that were shared 

between each Approach 2 cluster and a single majority-corresponding Approach 1 cluster 

were kept for subsequent analysis. This conservative approach filtered out 12% of the cells 

and generated a dataset containing 48,266 cells robustly classified into 9 main cell types 

(excitatory neurons, inhibitory neurons, oligodendrocytes, astrocytes, endothelial and 

smooth muscle cells, pericytes, microglia and macrophages) and 33 subtypes.

Classification of the fine-grained cell types

For each of the 33 predicted cell types, we identified a list of enriched genes whose 

expression was 3-fold greater in that cell type compared to the average expression across all 

other cell types (Supplementary Table 2). These genes were used to assign names to the 33 

identified cell types as follows:

Excitatory neurons, marked by the expression of Vesicular Glutamate Transporter 1 

(Slc17a7) and Calcium/Calmodulin Dependent Protein Kinase II Beta (Camk2b) separated 

into layer-specific subtypes: Layer 2/3 (ExcL23), Layer 4(ExcL4), three types of Layer 5 

(ExcL5_1, ExcL5_2, ExcL5_3) and Layer 6 (ExcL6). Layer 6b cells co-clustered with Layer 

6 cells and were thus analyzed together. We also observed small populations of cells derived 

from surrounding brain regions including subiculum, hippocampus, and retrosplenial 

cortex33, which were removed from subsequent analyses, yielding a total of 30 final 

subtypes and a dataset of 47,209 cells (with an average of 3,234 transcripts per cell).

Inhibitory neurons, identified by the expression of Glutamate Decarboxylase 1, Gad1, 

separated into 6 subtypes based on the expression of previously described neuropeptides. 

Parvalbumin+ (Pvalb) interneurons (Int_Pv) have been previously described as fast spiking 

basket cells. Two types of Somatostatin (Sst)-expressing interneurons were identified, 

Int_Sst1 and Int_Sst2. Based on Allen Brain Institute in situ hybridization data, we observed 

that Int_Sst_2 cells are distributed throughout the cortex while Int_Sst_1 were restricted to 

layer 5 and layer 6. The remaining three interneuronal cell types were Neuropeptide Y 

(Npy)-expressing cells (Int_Npy), layer 2/3 bitufted and bipolar Vip-expressing cells 

(Int_Vip), and upper layer-enriched cholecystokinin-expressing interneurons (Int_Cck). 

Although smaller GABA-ergic subpopulations have previously been reported, we chose to 

focus our analysis on these 6 most abundant subtypes.

We identified one major class of astrocytes (Astro) that expressed aldolase dehydrogenase 

(Aldoc). Although the marker Gfap is commonly used as a marker for astrocytes, we 

observed, in agreement with previously published single cell data33 and in situ hybridization, 

that Gfap expression was restricted to a small subset of astrocytes.

Nine subtypes of Olig1-expressing cells were identified46. Two subsets, marked by Pdgfra, 

represent oligodendrocyte precursor cells (OPCs). A large, likely quiescent, population of 
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OPCs expresses C1ql1 (OPC_1), while a very small Pdgfra+ population (102 cells) 

expresses cell-cycle associated genes and is likely actively cycling (OPC_2)33. Seven 

additional populations of Olig1-expressing cells could be arranged in a continuous 

progression corresponding to different stages of differentiation: Bmp4+ immature cells 

(Olig_7), premyelinating Tmem2+ cells (Olig_6), and ending with 4 separate myelinated 

(Mag+, Mog+, Mbp+) populations (Olig_1, Olig_2, Olig_3, Olig_4). We also observed a 

separate population of mature oligodendrocytes marked by Kif5a that expresses lower levels 

of Mog and Mag but 5-fold higher levels of Mbp (Olig_5).

Consistent with previous reports we identified microglia and macrophages as the primary 

immune cell types in the brain33. Two subtypes of microglia were identified, a more 

abundant P2yr12 high (Micro_2) population and a less abundant P2yr12 low, Ccl3/4+ 

population (Micro_1). Since Ccl3 and Ccl4 are markers of macrophage activation, it is 

possible that this second population represents activated microglia. Macrophages were 

identified as Cd36+, Mrc1+ cells.

Finally, we identified 2 types of endothelial cells (Endo_1, Endo_2) and 2 types of smooth 

muscle cells (SM_1, SM_2) expressing the tight function protein claudin 5 (Cldn5), as well 

as a population of pericytes that were Cldn5− and vitronectin+ (Vtn). The less abundant of 

the two endothelial cell types (Endo_2) expressed high levels of hemoglobin alpha (Hb–a1, 
Hb-a2) and hemoglobin beta (Hb–bs, Hb-bt). Although these cells were not described in 

previous single cell RNA-Seq datasets, prior work has shown that arterial endothelial cells 

express hemoglobin alpha, which is enriched at the myoendothelial junction and regulates 

NO-mediated vascular reactivity68. It is therefore likely that our hemoglobin-positive cells 

represent arterial endothelial cells.

One population of smooth muscle cells (SM_2) expresses the ATP-binding cassette Abcc9 
and the inwardly rectifying voltage-gated potassium channel Kcnj8. These proteins form an 

ATP-sensitive potassium channel that directly links cellular ATP metabolism with membrane 

depolarization. The second population of smooth muscle cells (SM_1) expresses alpha 

smooth muscle actin (Acta2) and myosin heavy chain (Myh11) suggesting that different 

smooth muscle cell types may be subspecialized in their function.

Hierarchical clustering

Hierarchical clustering across all cell types was performed on the depth-normalized dataset 

(each cell containing 3,234 transcripts) using the top 4,000 most variable genes (from 

Approach 1). Mean expression for each gene was calculated across each cell type, the 

distance between cell types calculated using Euclidean distance and hierarchical clustering 

performed in R using the Ward2 algorithm.

Identification and classification of experience-regulated transcripts

To identify experience-regulated genes for each cell type, we carried out differential gene 

expression analysis using Monocle269 between cells isolated from the visual cortex of mice 

exposed to light for 0, 1, and 4 h. The data were modeled and normalized using a negative 

binomial distribution consistent with scRNA-seq experiments. The analysis was performed 

independently for each of the 30 cell types identified, comparing 1 h to 0 h and 4 h to 0 h 
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separately. In each analysis, a gene needed to be detected in a minimum of 5% of cells in 

order to be included in the differential gene expression test. Genes whose false discovery 

rate (FDR) was less than 0.05, and whose log2 fold change in expression was either greater 

than 1 or smaller than −1 were considered activity-regulated. Log2 fold change was 

calculated from the depth-normalized data (each cell normalized to contain 3,234 

transcripts) after adding 0.12 to the expression of each gene: 

FC=Log2(Mean1+0.12)−Log2(Mean2+0.12).

For each cell type, activity regulated genes were classified as either early or late response 

genes based on their pattern of expression. If the maximum expression of an induced gene 

was at 1h, it was classified as early, whereas if the maximum expression was at 4h, it was 

classified as a late response gene. Genes whose expression decreased in response to stimulus 

were similarly classified based on the time point of minimum expression. If a gene was 

classified as early response in some cell types and late response in others, its final 

classification was based on the most frequent pattern of induction. If the number of cell 

types in which a gene was an early response and a late response was the same, that gene was 

classified as a late response gene. All induced genes and their classifications are listed in 

Supplementary Table 3. These classifications are denoted by a and b (early increase and 

decrease respectively), and c and d (late increase and late decrease).

Determination of induced cells within a population

The top 10 genes ranked by fold change between 0 and 1 h of light stimulation were 

collected for each cell type. For each gene, the 0 h sample was used to define a 90th 

percentile expression threshold, i.e. the 10% of cells expressing the gene would be 

considered positive for that gene. This threshold is meant to represent the expression level 

present in quiescent cells; we chose 90% to account for the likely possibility that some cells 

may not be silent even in the unstimulated condition. To classify a single cell as induced, we 

evaluated the expression of all ten of the most induced genes within that cell type and 

required that at least three of them have an expression level greater than the threshold set by 

the 90th percentile of cells from the 0h condition. To provide a range for our estimate of 

induction, we also plot the result of the same analysis using either two or four genes within 

each cell meeting this requirement as the lower and upper bounds of the box.

ERTF hierarchical clustering by expression patterns across cell types

19 ERTFs that were induced in at least three cell types were hierarchically clustered based 

on their log2 fold change between the 0 and 1 h conditions. The distance metric between 

genes was Euclidean and hierarchical clustering was performed using Ward2 algorithms.

Co-expression analysis

Depth normalized gene expression across single cells at the 1 h timepoint was correlated 

(Pearson correlation) between 14 neuronal-induced ERTFs. Expression-matched genes were 

used as a control and chosen from the list of all genes whose mean expression in excitatory 

neurons was between the lowest and highest of the 14 ERTFs. The 14 most closely 

expressed genes are shown in Fig. 3d. For Fig. 3e, the distribution of similarly expressed 

genes was generated by randomly sampling (100 times) 14 genes that are expression 
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matched to the 14 ERTFs. As an additional control, the expression of each ERTF was 

shuffled across all cells such that the expression value for that ERTF was randomly assigned 

to a different cell. Shuffling across cells retained the average expression and induction of 

each ERTF but significantly decreased the correlation of expression across ERTFs (see Fig. 

3e). Statistical differences between the distributions were computed using the Mann-

Whitney U-test.

Identification of excitatory layer 2/3 and 4 subtypes

Layer 2/3 and Layer 4 excitatory cells were processed independently using the Seurat 

algorithm. For each set the data was log normalized and scaled to 10,000 transcripts. 

Variable genes were identified using the following parameters: x.low.cutoff=0.0125, 

x.high.cutoff=3, y.cutoff=0.5. The top 30 PCs were chosen and the clustering resolution was 

set to 0.6. This analysis initially identified 6 clusters from ExcL23 cells. One cluster 

containing 22 cells was removed as it was below the 100 cell cutoff. 4 of the remaining 5 

clusters contained unbalanced numbers of cells from different time-points suggesting that 

they were separated by stimulus-regulated genes. Consequently, these clusters were merged 

into a single ExcL23_1 population. ExcL4 contained 4 clusters, two of which contained 

unbalanced numbers of cells from different time-points and were merged into the ExcL4_1 

population.

Correlation between excitatory L2/3, L4 and L5 cell types

Fig. 4i left: A union of all late response genes initially identified in ExcL23, ExcL4, 

ExcL5_1, ExcL5_2 and ExcL5_3 cell types was created (51 genes). Correlation (Pearson) 

between cell types was determined based on the mean expression of each of the LRGs in 

each cell type. Fig. 4i right: A random set of expression-matched non-LRGs was generated 

and a correlation was computed as was done for the LRGs. This analysis was repeated 100 

times and the mean pairwise correlation between cell types plotted.

Correlation between excitatory L2/3 and L4 marker genes and sequencing depth

We confirmed that the cell-type-specific expression of the marker genes shown in Fig. 4c 

and 4d, and in Supplementary Fig. 19 was not a function of sequencing depth across L2/3 

and L4 subtypes with the analysis described below (Supplementary Fig. 20).

The depth-normalized expression level (TPT) of each marker gene was calculated for each 

cell assigned to a given cell type. 200 cells with 5,000 ≤ total UMIFM counts/cell ≤ 10,000 

were sampled from each L2/3 or L4 subtype at random. The Pearson correlation between 

marker gene expression and cell sequencing depth (total UMIFM counts) was then 

calculated for each layer’s marker gene for all subtypes of that layer using these 200 depth-

matched cells.

Cross-study comparison of transcriptionally defined cell types

Expression levels from each of the two datasets were independently scaled (mean centered, 

unit variance) by gene within each transcriptionally defined cell type to mitigate batch 

effects due to different sequencing depths, cell capture approaches, normalization 

approaches, and library preparation across this work and Tasic et al.23. The Pearson 
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correlation was calculated across all pairwise combinations of cell types between the two 

studies using only genes expressed in both datasets (normalized expression>0) in at least one 

cell type. The cell types were hierarchically clustered (Ward’s method) and arranged such 

that the distance (1 − Pearson correlation) between proximal leaves was minimized. Cell 

types defined in either study with shared transcriptional identity cluster closely regardless of 

which study they were taken from (Supplementary Fig. 11), suggesting that our 

classification scheme is consistent with that used by Tasic et al.23.

Cross-study comparison between similar excitatory neuron subtypes

Using all genes expressed across both studies in at least cell type is sufficient to establish 

gross cross-study cell type correlations, but the subtle differences in gene expression across 

the particularly similar excitatory subtypes are washed out by this approach. We overcame 

this by further calculating cross-study correlations for the excitatory cell types alone, using 

excitatory marker genes identified in either this study (Fig. 3b) or in Ref.23. Hierarchical 

clustering was conducted as described in the previous section and the results are shown in 

Supplementary Fig. 16.

OPC-specific receptor and induced ligand identification

We used a human ligand-receptor database44 comprising 2,422 ligand-receptor pairs as the 

basis for our investigation into protein signaling between OPCs and other cell types.

To identify genes enriched in OPCs relative to other oligodendrocyte populations, we 

required that 1) the gene’s mean expression be higher in OPCs than in any one subtype of 

oligodendrocytes, 2) the average expression of the gene in OPCs be at least 3-fold greater 

than the mean in oligodendrocytes, and 3) the gene be in the top 50% most highly expressed 

genes in OPCs. Intersecting this list with all receptors in the ligand-receptor database 

yielded 52 OPC-enriched receptors, of which nine had corresponding ligands that were 

induced in at least one non-oligodendrocyte cell type.

Gene Ontology (GO) analysis

GO analysis was carried out using DAVID 6.870,71. All expressed genes for the cell type 

being analyzed were used background. Expressed genes were defined as genes that were 

detected in a minimum of 5% of cells. For the GO analysis conducted to generate 

Supplemental Table 1, all genes expressed with TMM-normalized CPM>1 in at least three 

samples were used as background.

Gene set enrichment analyses using Su et al. dataset

Two gene sets were derived directly from the differential expression analyses conducted in 

Ref.48 on RNA-seq data (rnaseq_1 and rnaseq_4 in Supplementary Fig. 24), with the 

additional requirement of a minimal 2-fold change in expression between the unstimulated 

and electroconvulsively stimulated conditions. The remaining two gene sets were obtained 

by identifying the transcriptional start sites most proximal to the stimulus-dependent, 

differentially accessible regions identified in Ref.48 (termed atac_1 and atac_4 in 

Supplementary Fig. 24) using the GRCh37.p11 annotation.
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A one-sided Fisher’s exact test (FET) was used to test the following null hypothesis: The 

fraction of induced genes identified in visual cortex in this study (611 total) that was also 

identified by Su et al. as being stimulus-dependent in dentate gyrus < the fraction of 

stimulus-independent genes identified in this study (12,458 total genes) that was also 

identified by Su et al. as being stimulus-dependent in dentate gyrus. The Benjamini-

Hochberg procedure was applied to correct for multiple hypothesis testing.

Statistical analysis

Fig. 1c: qRT-PCR for Fos expression divided by Gapdh expression, n=4 samples from 4 

different animals per condition was analyzed using a two tailed student t-test. Data 

distribution was assumed to be normal although this was not tested.

Supplementary Fig. 1 and Fig. 6a: qRT-PCR for Fos or Klf4 expression divided by Gapdh 

expression. n=3 samples (for Motor and Prefrontal cortex) and n=4 samples (for 

Somatosensory and Visual cortex). Each sample is taken from a different animal. Analysis 

was done using a two-tailed student t-test. Data distribution was assumed to be normal 

although this was not tested.

Fig. 2: To identify experience-regulated genes for each cell type, we carried out differential 

gene expression analysis using the software package Monocle2. Remaining details are 

reported in the Identification and classification of experience-regulated transcripts methods 

section.

Fig. 3a and 3d: Nonparametric Mann-Whitney U tests were used to test the difference in the 

distribution of values. Fig. 3a: n(ERTFs)=38, n(LRGs)=176 where n is the number of genes 

in each category and the values tested are the number of cell types that each gene was 

identified as activity-regulated. Fig. 3d: Genes were selected as indicated in: Co-expression 
analysis. n=176 where n is the number of pairwise correlations between two populations 

based on a defined set of genes.

Fig. 1b, 3c, 4g, 6f, and Supplementary Fig. 13: For quantification of FISH images, all 

distributions were first tested for normality via the Kolmogorov–Smirnov test. All tested 

distributions rejected the null hypothesis and were treated non-parametrically. 

Nonparametric Mann-Whitney U tests were then used to test the difference in the 

distribution of values.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications8,72,73. Mice were randomly assigned to 0h, 

1h and 4h time-points. No other sample randomization was performed. Experiments were 

not performed in a blinded fashion. More information on experimental design and reagents 

can be found in the Life Sciences Reporting Summary.

Data availability

The data that support the findings of this study are available from the corresponding author. 

Raw and processed RNA-seq data for both single-cell and bulk experiments are available at 

GEO accession GSE102827.
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To broadly share our data, we have also created an interactive website on which the gene 

expression of each of the genes in our dataset can be viewed. http://

greenberg.hms.harvard.edu/project/gene-database/

Code availability

Code is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow and identification of cell types
(a) 6–7-week-old animals were housed in dark for 7 days and exposed to light for 0 

(control), 1, or 4 h. V1 was dissociated into single cells and processed by inDrop 

sequencing.

(b) FISH of the immediate-early genes (IEGs) Fos and Npas4 from animals exposed to light 

for 0 and 1 h (left). Nuclei are pseudo-colored by expression level of Fos (magenta) or 

Npas4 (green) FISH probes (Online Methods). Scale bar=100 um. Quantification of FISH 

across time points, with mean and 95% confidence intervals denoted by gray lines (right). A 

random subset (10%) of the raw data was selected for visualization. For both Fos and Npas4, 

cells=2,667 for 0 h, cells=2,683 for 1 h. ***p<10−200, Mann-Whitney U-test, two-sided. 

Experiments repeated on 2 cortical slices per timepoint.

(c) qRT-PCR for Fos relative to Gapdh comparing a standard and an optimized cell 

dissociation protocol designed to limit IEG induction during dissociation. Mean denoted by 
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horizontal line. ***p=2.7×10−4 and 3×10−5, ns p=0.39, (standard vs optimized 0 h, 

optimized 0 vs 1 h, standard 0 vs 1h respectively), n=4 animals, unpaired t-test, two-sided.

(d) RNA-Seq analysis of cocktail-treated and control cells collected from n=4 animals per 

condition. 114 genes that were significantly differentially expressed are denoted in blue 

(FDR <0.01, |fold change|>2, limma). 45 of these genes were also differentially expressed 

between cocktail-treated light-stimulated and light-unstimulated samples (Supplementary 

Fig. 2), denoted in orange. Axes units are log10 [(TMM-normalized CPM)+0.1].

(e) t-SNE plot of 47,209 cells from V1 of 23 animals. Colors denote main cell types.

(f) Dendrogram and violin plots showing the distribution of expression of selected marker 

genes across all 30 analyzed cell types hierarchically clustered by variable gene expression.
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Figure 2. Identification of sensory stimulus-regulated genes
(a) Sample volcano plots for ExcL23 cells indicating genes identified as sensory stimulus-

regulated (|log2 fold change| >1 and FDR<0.05) for 1 vs 0 h (left) and 4 vs 0 h (right) 

comparisons. Colored dots represent sensory stimulus-regulated genes. The analysis was 

performed independently across thirty cell types (Supplementary Fig. 12).

(b) Heatmap of all 611 stimulus-regulated genes grouped into ERGs and LRGs by cell type. 

Each horizontal black line represents a stimulus-regulated gene.

(c) Estimation of the percentage of cells with stimulus-regulated transcriptional changes 

(Online Methods) at 1 h (colored bars) compared to 0 h (gray bars). We define induction as 
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requiring either two, three, or four induced genes within each cell from a cell-type-specific 

set to consider the cell induced. These are plotted as lower, central, and upper lines of the 

box (Online Methods).
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Figure 3. Diversity of experience-regulated ERGs
(a) Number of cell types in which each ERTF is sensory experience-regulated. Inset: 

Cumulative distribution of the number of cell types in which each gene is experience-

regulated. Stimulus-regulated LRGs were shared across fewer cell types than ERTFs 

(p=2×10−5, Mann–Whitney U-test, two-sided, nERTFs=38, nLRGs=176, nERnon-TF=205 

genes).

(b) Heatmap of log2 fold changes between 1 and 0 h of the 19 ERTFs shared across at least 

3 cell types. ERTFs are hierarchically clustered into 4 groups based on gene expression 

across all variable genes as in Fig. 1f.
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(c) Left: Representative FISH images of Fos indicates induction across several cell types. 

Right: Quantification of FISH for Fos expression over cell types. A random subset (25%) of 

the raw data is plotted to aid visualization. For Vglut1, n0h=1,616, n1h=2,324; for Gad1/2, 

n0h=156, n1h=497; for Aldh1l1, n0h=121, n1h=477; for Pecam1, n0h=542, n1h=510 cells. 

***p<10−39, Mann-Whitney U-test, two-sided. Mean and 95% confidence intervals denoted 

by gray lines. Experiments repeated on 2–8 cortical slices per timepoint.

(d) Mean pairwise Pearson correlations across individual excitatory neurons at 1 h 

calculated using ERTF expression (left, r=0.23±0.13, mean±s.d.), shuffled ERTF expression 

(middle, r=0.002±0.017), and expression-matched non-induced genes (right, 

r=0.002±0.029), n =91 pairwise comparisons. Correlations between ERTFs are significantly 

higher than between shuffled ERTFs or expression-matched non-induced genes (p=0, p=0, 

Mann-Whitney U-test, two-sided, respectively).

(e) Distributions of pairwise Pearson correlations of ERTFs (n=91 pairwise comparisons), 

ERTFs with shuffled expression, and of expression-matched non-induced genes across 

excitatory neuronal subtypes at 1 h. ERTFs are more highly correlated than either shuffled 

ERTFs or similarly expressed non-induced genes. ***p<1×10−24, Mann-Whitney U-test, 

two-sided.

(f) Left: 3-color FISH images of Fos, Egr1, and Nr4a1 expression at 1 h post-light 

stimulation in excitatory neurons (Vglut1+). Middle, Right: Quantification of FISH. Scatter 

plots between Egr1 and Fos, and Nr4a1 and Fos co-expression. Expression was highly 

correlated (Pearson r=0.74, 0.76 respectively; n=3162, 778 cells respectively). Scale bars=5 

um. Data collected from 4 cortical slices for Egr1 and Fos co-expression, and 1 cortical slice 

for Nr4a1 and Fos co-expression.
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Figure 4. Sensory experience-induced transcriptional responses in V1 excitatory neurons
(a) FISH of Cbln4 with Rorb, a layer 4-specific marker, at 0 (control) and 4 h post light 

stimulus. Nuclei are pseudo-colored by expression level of Cbln4 or Rorb (Online methods). 

Scale bars=150 um. Experiments repeated on 2 cortical slices per condition.

(b) Heatmap of log2 fold change in expression of LRGs across layer 5 subtypes between 4 

and 0 h.

(c) Left: t-SNE plot showing Layer 2/3 excitatory neuronal subtypes. Right: Overlay of 

Cdh13 expression. Scale bar indicates normalized expression per cell. n=2941 cells.
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(d) Left: t-SNE plot of Layer 4 excitatory neuronal subtypes. Right: Overlay of selected 

marker expression. Scale bar indicates normalized expression per cell. n=3198 cells.

(e) Estimation of the percentage of cells with stimulus-regulated transcriptional changes 

(Online Methods) at 1 h (colored bars), compared to 0 h (gray bars). We define induction as 

requiring either two, three, or four induced genes within each cell from a cell-type-specific 

set to consider the cell induced. These are plotted as lower, central, and upper lines of the 

box (Online Methods).

(f) Mean expression of Cbln4 across layer 4 subtypes (nExc4_1=732, 468, 783 cells; 

n Exc4_2=343, 214, 210 cells; n Exc4_3=136, 137, 175 cells; for 0, 1, 4 h timepoints 

respectively), S.E.M. denoted by bars.

(g) FISH quantification of Cbln4 across layer 4 subtypes (Calb1+/Rorb+ and Calb1−/Rorb
+). 0 h expression not significantly different between cell types, n=97, 209 cells respectively, 

p=0.062, Mann-Whitney U-test, two-sided. 4 h expression significantly higher in Calb1+/
Rorb+ than Calb1−/Rorb+ (n=127, 286 cells respectively), ***p<10−17, Mann-Whitney U-

test, two-sided. Mean and 95% confidence intervals denoted by gray lines.

(h) Left: Rorb (yellow), Calb1 (magenta), and Hsd11b1 (cyan) expression in layer 4 by 

FISH, scale bars=100 um. Right: Quantification of the anatomical distribution of FISH-

defined cell types across layer 4 from n=13 cortical slices. Negative/positive values on x-axis 

correspond to distance from the center of layer 4 towards the slice surface (negative) or 

towards deeper cortical layers (positive). Shaded area around lines indicates 95% confidence 

intervals around mean. Calb1+/Rorb+ (n=1626 cells) population is enriched superficially 

within layer 4 as defined by Rorb+ (n=4066 cells) and an increase in cell density (black). 

Hsd11b1+/Rorb+/Calb− (n=851 cells) population is enriched in ventral layer 4 and into 

superficial layer 5. For further analysis, see Supplementary Fig. 21.

(i) Top right: pairwise Pearson correlation between excitatory subtypes calculated using 

LRG expression (n=55 genes). Bottom left: Same analysis with expression-matched non-

stimulus-regulated genes (n=55 genes). Non-stimulus regulated genes are more correlated 

across excitatory subtypes than stimulus-regulated LRGs.
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Figure 5. Inhibitory neuronal LRGs
(a) Cell type enriched LRGs across inhibitory cell types. Transcripts per cell represent the 

mean depth-normalized expression across all cells. Fold change is calculated between 4 and 

0 h.

(b) Scaled mean expression of Crh, Crhbp, and Crhr1 across all cell types.
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Figure 6. Light-induced transcriptional changes in non-neuronal cells
(a) qRT-PCR of Klf4 across cortical regions in 0 and 1 h light-exposed animals, mean 

denoted by horizontal bar. Klf4 induction is only significant in V1, p=0.02, unpaired t-test, 

two-sided. n=4 animals for all 0 h samples, n=3 animals for 1 h motor and prefrontal cortex, 

n=4 for 1 h somatosensory and visual cortex.

(b) Total number of sensory-stimulus-regulated genes across cell types.

(c) Mean expression of the LRG Angpt2 across endothelial and smooth muscle cells across 

all three stimulus conditions (nENDO_1=1111, 1107, 1109; nENDO_2=33, 65, 25; nSM_1=115, 
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92, 116; nSM_2=104, 109, 85 cells; for 0, 1, 4 h respectively). *FDR<.05, fold change>2, 

Monocle2. S.E.M. denoted by bars.

(d) Induction at 1 h of ERTFs enriched in vasculature-associated cells.

(e) FISH of single Pecam1+ cells at 0 and 1 h co-labeled with Atf3 and Klf4, scale bars=5 

um. Experiments repeated on 2 cortical slices per timepoint.

(f) Quantification of FISH for Atf3 and Klf4 in Pecam1+ cells across 0 and 1 h (for Atf3, 

n0h=275, n1h=326; for Klf4, n0h=182, n1h=224 cells). p<10−22, Mann-Whitney U-test, two-

sided. Mean and 95% confidence intervals denoted by gray lines. Data from 2 cortical slices 

per timepoint.

(g) Fold-change in expression between 0 and 4 h samples of light-induced genes in 

oligodendrocytes and OPCs.

(h) Mean expression of Egr1 in ExcL23, Int_Sst_2, and OPCs across all stimulus conditions 

(nExcL23=150, 706, 1107; nInt_Sst_2=59, 52, 70; nOPC_1=645, 472, 608; nOPC_2=31, 27, 43 

cells; 0, 1, 4 h respectively). *FDR <.05, fold change>2, Monocle2. S.E.M. denoted by bars.

(i) Left: Heatmap of induction of ligands in non-oligodendrocyte cell types with receptors 

enriched in OPCs at both 1 and 4 h time points. Right: Scaled mean expression of OPC-

enriched receptors. Lines between heatmaps denote ligand-receptor pairs.
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