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Glioblastoma multiforme (GBM) is clinically highly aggressive as a result of evolutionary

dynamics induced by cross-talk between cancer cells and a heterogeneous group

of immune cells in tumor microenvironment. The brain harbors limited numbers of

immune cells with few lymphocytes and macrophages; thus, innate-like lymphocytes,

such as γδ T cells, have important roles in antitumor immunity. Here, we characterized

GBM-infiltrating γδ T cells, which may have roles in regulating the GBM tumor

microenvironment and cancer cell gene expression. V(D)J repertoires of tumor-infiltrating

and blood-circulating γδ T cells from four patients were analyzed by next-generation

sequencing-based T-cell receptor (TCR) sequencing in addition to mutation and immune

profiles in four GBM cases. In all tumor tissues, abundant innate and effector/memory

lymphocytes were detected, accompanied by large numbers of tumor-associated

macrophages and closely located tumor-infiltrating γδ T cells, which appear to have

anti-tumor activity. The immune-related gene expression analysis using the TCGA

database showed that the signature gene expression extent of γδ T cells were more

associated with those of cytotoxic T and Th1 cells and M1 macrophages than those of

Th2 cells and M2 macrophages. Although the most abundant γδ T cells were Vγ9Vδ2T

cells in both tumor tissues and blood, the repertoire of intratumoral Vγ9Vδ2T cells was

distinct from that of peripheral blood Vγ9Vδ2T cells and was dominated by Vγ9Jγ2

sequences, not by canonical Vγ9JγP sequences that are mostly commonly found in

blood γδ T cells. Collectively, unique GBM-specific TCR clonotypes were identified by

comparing TCR repertoires of peripheral blood and intra-tumoral γδ T cells. These

findings will be helpful for the elucidation of tumor-specific antigens and development

of anticancer immunotherapies using tumor-infiltrating γδ T cells.
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INTRODUCTION

Glioblastoma multiforme (GBM) progresses by co-opting
stromal cells that reside in or are recruited to the tumor
microenvironment (TME), which is a complex ecosystem
composed of heterogeneous tumor cells associated with extensive
hypoxic zones, reactive astrocytes, and infiltrating distinct
immune components, including microglia, tumor-associated
macrophages (TAMs) derived from peripheral blood monocytes,
granulocytes, myeloid-derived suppressor cells (MDSCs), and T
cells (1–5). In particular, GBM tumor cells along with immune
factors create a complex milieu, which ultimately leads to
alteration of the tumor cell transcriptome and tumor evolution
(6, 7). TAMs, the predominant immune population infiltrating
GBMs (1, 8), orchestrates GBM evolution by facilitating the
mesenchymal transition, neoangiogenesis, extra-cellular matrix
remodeling, and immune modulation (6, 9–11). Furthermore,
accumulation of CD4+ T helper (Th) cells and CD4+CD25+

transcription factor forkhead box P3 (FoxP3)+ regulatory T
cells (Tregs) combined with the reduced presence of CD8+

cytotoxic T cells results in curtailment of immunotherapeutic
efficacy (9, 12).

However, the nature of GBM-infiltrating γδ T cells has not
been extensively investigated, although γδ T cells have the
potential to kill cancer cells and to change the pro-tumoral
TME to one favoring acute responses and potent anti-tumoral
activity. (13–19). The human TCR variable (V) regions of
TCR γ and δ genes contains 14 unique Vγ segments (TRGV),
three unique Vδ segments (TRDV1, TRDV2, and TRDV3),
and five Vδ segments that share a common nomenclature
with Vα segments (TRDV4/TRAV14, TRDV5/TRAV29,
TRDV6/TRAV23, TRDV7/TRAV36, and TRDV8/TRAV38-2)
(20). In healthy human adults, circulating T lymphocytes
include 1–3% γδ T cells, most of which are Vγ9Vδ2 T cells
(16). Vγ9Vδ2 T cells are activated by pyrophosphate-containing
metabolites, generically known as phosphoantigens (pAgs),
which are derived from microbes or metabolically active tumor
cells and bind to the intracellular domain of the butyrophilin-
related molecule BTN3A1 without major histocompatibility
complex (MHC)- or CD1-dependent antigen presentations
(18, 21). Especially, isopentenyl pyrophosphate (IPP) is a pAg
generated from the mevalonate pathway in mammalian cells
(22), and Vγ9Vδ2 T cells have additional sensor for detecting
cancer cells via recognition of IPP accumulated intracellularly
during dysregulated metabolism in cancer cells (16–18, 23).
GBM cancer cells also express several MHC-like stress-induced
self-antigens (MIC-A/B), heat shock protein-60, U16-binding
protein 4, human MutS homolog 2, and F1-ATP synthase,
which are recognized by TCRs, Toll-like receptors, or natural
killer (NK) receptors expressed on Vγ9Vδ2 T cells, triggering
cancer cell killing without any prior antigen exposure or priming
(15, 24–26). Although the γδ T cell proliferative function is
impaired in patients with GBM, ex vivo-expanded/activated γδ

T cells from healthy donors are highly cytotoxic to GBM tumor
cells (14), suggesting a therapeutic effects of the adoptive transfer
of Vγ9Vδ2 T-cells as an alternative immunotherapeutic strategy
GBMs (13, 19). For example, temozolomide (TMZ)-induced

DNA damage upregulates NKG2D ligands on cancer cells that
are vulnerable to Vγ9Vδ2 T cell-mediated lysis in GBM (27).

Immune repertoire sequencing (IR-SEQ) can offer a
comprehensive snapshot of the complexity and the diversity
of the TCR repertoire (28, 29). There are many advantages
of studying the TCRγδ repertoire compared with repertoires
of TCRαβ and B-cell receptors because of relatively limited
diversity of γδ T cells and their independence from different
MHC haplotypes (30). In the blood, the repertoire of Vγ9Vδ2 T
cells is skewed toward cells expressing a biased Vγ9 chain
with Vγ9-JγP-C1 rearrangement, which involves Vγ9 gene
segment, JγP (Jγ1.2) joining segment, and Cγ1 exon (31, 32).
The Vγ9-JγP-C1 chain is paired mainly with Vδ2 chains (31).
Despite using common V-(D)-J rearrangements, circulating
Vγ9Vδ2 cells are still diverse due to the existence of D fragments,
N-addition occurring during V-(D)-J recombination, and
alternative rearrangement with the Cγ2 segment (33, 34). In
this study, we analyzed GBM-infiltrating γδ T cells with unique
repertoire diversity although γδ T cells may be important innate
lymphocytes modulating GBM TME. To evaluate the identity of
central nervous system (CNS)-resident γδ T cells and determine
whether blood γδ T cells were recruited to the tumor or whether
local CNS-resident γδ T cells responded to the tumor, we
performed γδ TCR repertoire analyses using tumor tissue and
matched peripheral blood from four patients with GBM based
on IR-SEQ technology.

MATERIALS AND METHODS

Sample Collection and Preparation for
Repertoire Sequencing
We recruited four cohorts of patients diagnosed with GBM.
All patients signed informed consent for the use of patients’
samples for research purposes under protocols approved by the
Samsung Medical Center Institutional Review Board (IRB no.
2016-11-073). Tumor tissues were stored in liquid nitrogen,
and peripheral blood mononuclear cells (PBMCs) were isolated
from whole blood with a Ficoll Histoplaque gradient. PBMCs
were labeled with fluorescein isothiocyanate-conjugated anti-
CD45 antibodies (347463; BD Biosciences, San Jose, CA, USA),
and CD45+ cells were acquired using a BD FACS AriaIII flow
cytometer with FACSDiva software (BD Biosciences).

Panel Sequencing Data Analysis
Samples were profiled using GliomaSCAN, a sequencing
platform designed to target 312 genes specific for GBM, at the
Samsung Medical Center. These target genes were chosen by
literature mining or requested by the researchers and clinicians.
The paired-end reads were aligned to the human reference
genome (hg19) using Burrows-Wheeler Alignment tool (version
0.7.5). We converted sequence alignment and mapping (SAM)
files into binary alignment and mapping (BAM) files using
SAMtools (version 0.1.19) followed by reads sorting. Duplicated
reads were removed from BAM files with Picard (version
1.128; http://broadinstitute.github.io/picard). Local realignment
of reads around potential small indels and base quality score
recalibration was performed with the Genome Analysis Toolkit
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(GATK, version 3.5.0) using dbSNP (build ID 137). Single
nucleotide variants and indels were called using muTect2 (GATK
version 3.8.0) and Strelka2 (version 2.8.2) with default parameter
settings. The union of the variants identified by the two callers
was used as the candidate variants. Variants were annotated using
ANNOVAR. Variants located in exonic regions with a variant
allele frequency of ≥ 0.1 were chosen for further investigation.

Whole-Transcriptome Sequencing (WTS)
and Enumeration of Immune Cell Subsets
From WTS
Total RNA from human tissue was isolated with an RNeasy
mini kit (#74106; Qiagen, Hilden, Germany). The biospecimens
used for this study were provided by Samsung Medical Center
BioBank (IRB no. 2016-11-073). For all samples, RNA-Seq
libraries were prepared from 500 ng total RNA using an Illumina
TruSeq RNA Sample Prep kit. All libraries were sequenced to
a read depth of more than 75 million reads using an Illumina
HiSeq2000 instrument to generate paired reads ends with a
total read length of 100 bp. After trimming poor-quality reads
and adapter sequences from the FASTQ files for each sample,
we aligned the reads to the human reference genome (hg19)
using STAR (version 2.5.0i) with two pass default mapping
mode (35). With the same reference genome used for mapping,
gene annotation data obtained from Ensemble (v 74) were used
to quantify aligned reads. Transcripts per million normalized
values for each gene were calculated based on total gene read
counts and the lengths of merged exons using RSEM (version
1.2.17) (36). In silico deconvolution analysis was performed with
transcriptomic data using the CIBERSORT algorithm under the
default mode (37). The proportions of 22 immune cell types,
including seven T-cell types, naïve and memory B cells, plasma
cells, NK cells, and myeloid subsets were estimated using LM 22
datasets, which included the public gene signature matrix of 547
genes to distinguish 22 leukocyte subsets.

Immune Cell Signature Analysis
Using curated immune gene expression signature (as shown
in Supplementary Table 1) (38–41), gene set variation analysis
(GSVA) was implemented to calculate sample wise enrichment
scores for each immune related gene set using the Bioconductor
package ‘GSVA’ (42) based on the TMM normalized WTS data
from four GBM samples used in this study and TCGA-GBM
dataset. GSVA scores were scaled and plotted using heatmap.2
function from ggplot2 (43). RPKM normalized RNA-seq datasets
for 170 samples from TCGA were used for GSVA analysis.
Interrelations of all possible pairs of GSVA scores of Immune
signature and gene expression values of γδ T cell related
genes were estimated from Pearson’s correlation coefficient
(r). To infer significance of each correlation, P-values were
calculated based on asymptotic t approximation. Hierarchical
clustering of immune signature gene sets (column) and γδ T
cell related gene expressions (row) was performed via Pearson’s
correlation to measure distance with complete linkage algorithm
for clustering distances.

Library Preparation and Sequencing
The human TCRγ and TCRδ CDR3 regions were amplified using
the commercially available iRepertoire platform (iRepertoire Inc.,
Huntsville, AL, USA) in LAS Inc. (Kimpo, Gyeonggi-do, Korea).
Briefly, total RNA samples were subjected to reverse transcription
polymerase chain reaction (PCR) using iR-PCR1 Rxn Mix
(iRepertoire Inc.) and PCR1 Rxn Mix (iRepertoire Inc.). The
PCR product was purified using PCR1 Rescue Mix (iRepertoire
Inc.). A second PCR was then carried out using PCR2 Mix
again and the product was purified using PCR2 Clean-up Mix
(iRepertoire Inc.). Finally, quality and band size of libraries were
assessed using an Agilent 2100 bioanalyzer (Agilent, Santa Clara,
CA, USA). Libraries were quantified by quantitative PCR using
CFX96 Real Time System (Bio-Rad, Hercules, CA, USA). After
normalization, sequencing of the prepared library was conducted
on theMiseq system (Illumina, SanDiego, CA, USA) with 250-bp
paired-end reads.

Analysis of the TCR Repertoire With
High-Throughput Sequencing
Using an Illumina MiSeq system, we obtained 250-bp paired-end
reads files, and the raw paired-end fastq files were analyzed using
the Immune Repertoire High-throughput Sequence Analysis
(IRSA) workflow at the iRepertoire website (https://irweb.
irepertoire.com/nir/). The IRSA workflow included storing
and managing sequencing data, removing sequencing artifacts,
mapping reference sequences using the Smith-Waterman
algorithm, identifying CDR3 junctions, and generating various
distribution plots, such as domain usage, nucleotide nibbling,
addition at the junction sites, and CDR3 length. Contigs of
TCR constant genes were screened within quality control-filtered
RNA-Seq data using the K-mer search algorithm of BBDuk
program from the BBMap 35.74 suite (http://sourceforge.net/
projects/bbmap/) with the parameter “k = 25 edist = 2”.
Constant genes for α-, β-, γ-, and δ-type TCRs used for the
query were obtained from IMGT/LIGM-DB version 1.2.4 (44).
Accession code X02883 was used to retrieve the TRAC gene of
TCRα; M12887 and L36092 for exons 1 and 2 of TRBC1; M12888
and L36092 for two exons of the TRBC2 gene of TCRβ; M14996,
M14997, and M14998 for three exons of TRGC1; M14002 for
TRGC2 of TCRγ; and M22149, M22150, and M22151 for three
exons of TRDC1 of TCRδ. Additionally, TCR Repertoire Utilities
for Solid Tissue (45) was used to detect TCR sequences from
RNA-Seq data for individual samples.

Immunohistochemistry (IHC)
IHC staining was performed using OpalTM 7-color manual
kit (NEL81100KT, PerkinElmer, MA, USA) according to the
manufacturer’s protocol (2014;70:46-58). Briefly, the slides were
deparaffinized in xylene and rehydrated in ethanol. Antigen
retrieval was performed in tris-buffered saline buffer (pH 9.0)
using microwave treatment (MWT). Using two antibodies are
listed as follow: TCR gamma/delta antibody (2µg/mL, mouse
monoclonal, (5A6.E9), TCR1061, Thermofisher, MA, USA) and
CD204 (1µg/ml, rabbit polyclonal, ab64693, abcam, Cambridge,
UK). These two antibodies were incubated 30min in a humidified
chamber at room temperature, followed by detection using
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the mouse/rabbit SuperPicture Polymer Detection HRP kit.
Visualization of the primary antibody was accomplished using
each Opal Fluorophore Working Solution (TSA, 1:100), after
which the slide was placed in tris-buffered saline buffer (pH
9.0) and repeated using MWT. TCR gamma/delta and CD204
were visualized with opal 690 and 520, respectively. Nuclei
were subsequently visualized with DAPI and the slide was
coverslipped using the antifade mounting solution (ADI-950-
260-0025, Enzo, NY, USA). The slides were examined with Vectra
Polaris Automated Quantitative Pathology Imaging System
(PerkinElmer). InForm image analysis software (PerkinElmer)
was used to analyze the spectra for all fluorophores included from
420 to 720 nm.

Availability of Data and Material
Newly generated GliomaSCAN, WTS, and γδ TCR
repertoire-Seq data from this study can be accessed at
the European Genome-phenome Archive with accession
number EGAS00001002790.

RESULTS

Clinical Presentation of Four Patients With
Isocitrate Dehydrogenase (IDH) 1
Wild-Type GBM
The patients’ clinical course and therapeutic protocols
are summarized in Supplementary Figure 1 and Table 1.
Confirmation of IDH1 wild-type, O6-methylguanine-DNA-
methyltransferase (MGMT) promoter-unmethylated GBM was
made using R132 sequencing and methylation-specific PCR
according to the 2016 World Health Organization criteria (46)
after gross total resection (GTR). Four cases of GBM showed
different genetic mutations with no mutation in the IDH1
gene (Figure 1A). The first patient (case 1) was a 52-year-old
woman with a large abnormal enhanced mass on the right
temporal lobe on brain magnetic resonance imaging (MRI). She
received concurrent chemoradiotherapy with TMZ followed
by adjuvant TMZ (localized brain radiotherapy, total 60Gy
in 2Gy per daily fraction with daily 75 mg/m2 TMZ over 6
weeks followed by adjuvant cycles of TMZ 150 mg/m2/day for
5 days during each 28-day cycle) (47), and brain MRI during
four adjuvant TMZ courses revealed tumor recurrence around
the resection site. For chemotherapy against recurrent GBM,
she was treated with bevacizumab 10 mg/kg and irinotecan
125 mg/m2. The second patient (case 2) was a 70-year-old
man suffering from left temporo-occipital GBM with MGMT
promoter-unmethylation. The GTR of the primary tumor was
confirmed on the post-operative follow-up brain MRI. After
concurrent chemoradiation and two adjuvant TMZ courses,
newly developed multifocal nodular enhancing lesions at
the subependymal area of both lateral ventricles suggesting
leptomeningeal seeding were found. Bevacizumab 10 mg/kg
and irinotecan 125 mg/m were administered. The third patient
(case 3) was a 60-year-old woman with a right temporal
GBM with MGMT promoter-methylation. After GTR of the
primary tumor was performed, she was treated with concurrent

chemoradiotherapy with TMZ followed by adjuvant TMZ with
no obvious disease relapse during the follow-up period of 10
months. Final fourth patient (case 4) had a left temporo-parietal
GBMwith MGMT promoter-methylation. She received standard
concurrent chemoradiation plus adjuvant TMZ with no obvious
disease relapse during the follow-up period of 14 months.

Abundant Infiltration of Macrophages and
Innate and Effector/Memory Lymphocytes
in GBM Tumor Tissues
To estimate antitumor immunity in GBM pathogenesis, we
obtained gene expression profiles of four GBM tissues and
measured the relative proportions of various immune cells
through in silico deconvolution analysis (CIBERSORT; see
Supplementary Figure 2). In all four cases, heavy infiltration of
macrophages (32.0–80.3% of all immune cells), particularly M2
macrophages, and mast cells (6.7–34.6% of all immune cells)
was noted. T and NK cells constituted about 5.6–31.0% of all
immune cells, and most tumor-infiltrating lymphocytes (TILs)
were innate and effector/memory cells, whereas naïve T cells were
scarce. However, the enumeration of tumor-infiltrating γδ T cells
via the CIBERSORT algorithm was difficult since γδ T cells also
express most genes expressed in αβ T cells and NK cells (37, 48).
Alternatively, the ratios of γδ T to αβ T cells were calculated to be
around 0.8–1.1 by measuring the reads per kilobase of transcript
per million mapped reads (RPKM) values of the Tcrd and Tcrb
constant regions, suggesting that the ratios of γδ T cells were
equal to or even higher than those of αβ T cells in the tumor
tissues (Figure 1B). The case 3 showed the highest ratio of γδ T
cells than the other cases, whereas the case 4 showed a lower ratio
of γδ T cells than other cases.

To explore the effects of γδ T cell infiltration, the phenotype
of immune cells within the TME in four GBM samples was
then analyzed based on multiple gene sets curated from various
sources (summarized in Supplementary Table 1). In all four
cases, heterogeneous and complex activation status of specific
tumor-associated immune subsets modulating pro- or anti-
tumor activity was demonstrated in each case. Notably, a
relatively high abundance of cytotoxic T cell and Th1 genes
was detected in case 3, which showed the highest ratio of
γδ T cells over αβ T cells (Figure 1C). In contrast, case 4
tumor samples highly expressed Th17 and exhausted T cell
genes compared to other samples. In case 1, genes related to
M2 macrophage, Treg and exhausted T cells shaping immune-
suppressive TME were relatively upregulated (Figure 1C). In
further IHC study by using deparaffinized section slides, γδ T
cells and TAMs were abundantly distributed throughout the
tumor in all four cases and γδ T cells and macrophages were
closely associated (Figure 1D).

We presumed that the abundance of γδ T cells may be
correlated with TME, but we could not draw clear conclusion due
to small sample sizes. To overcome this limitation, we further
examined patient populations from the published dataset from
TCGA RNA-seq (N = 170) (Figure 2). Interestingly, the gene
signature score of γδ T cells more positively correlated with those
of M1 macrophages and Th1 cells than those of M2 macrophages
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TABLE 1 | Clinical characteristics of four glioblastoma patients.

Case Age Gender Tumor

location

MGMT promoter

methylation

status

Post-adjuvant treatment PFS (Days) OS (Days)

(all censored)

#1 52 Female Rt. T Un-methylated Radiotherapy plus

concomitant and adjuvant temozolomide

207

(progression during F/U)

270

#2 70 Male Lt. T-O Un-methylated Radiotherapy plus

concomitant and adjuvant temozolomide (#2)

144

(progression during F/U)

173

+ Bevacizumab plus

irinotecan after disease recurrence

#3 60 Female Rt. T Methylated Radiotherapy plus

concomitant and adjuvant temozolomide

198

(Censored, no progression during F/U)

198

#4 61 Female Lt. T-P Methylated Radiotherapy plus

concomitant and adjuvant temozolomide

249

(Censored, no progression during F/U)

249

Lt., left; Rt., right; T-P, temporo-parietal; T, temporal; T-O, temporo-occipital; GTR, gross total resection; IDH1, Isocitrate dehydrogenase 1; WT, wild type; MGMT, O6-methylguanine-

DNA-methyltransferase; RT, radiotherapy; TMZ, temozolomide; PFS, progression-free survival; OS, overall survival; F/U, follow-up.

FIGURE 1 | Tumor-infiltrating γδ T cells and immune profiles in four GBM cases. (A) Summary of mutational changes in 21 GBM-related genes across sequenced

samples. Red and blue denote single nucleotide variant events and indel events, respectively. (B) RPKM values (y-axis) of TCRB and TCRD captured reads from

RNA-seq data of four cases (x-axis) are shown as a column chart. (C) The heatmap illustrates the z-score of normalized Gene Set Variable Analysis (GSVA)

enrichment scores of a variety of curated immune gene signatures based on whole transcriptome sequencing data of four GBM samples analyzed in this study. The

z-scores are calculated based on average and standard deviation of GSVA enrichment scores of each patient, indicating relative enrichment scores of immune gene

sets within each patient. The scale of z-score is shown: red illustrates high enrichment and blue illustrates low enrichment. (D) The representative images of the

multiplex immunohistochemistry analysis of four GBM patient tissue samples stained for γδ TCR in red and CD204 in green. Scale bar, 50µm.

and Th2 cells, respectively. Notably, the γδ T cell activity was
strongly associated with cytotoxic T cell activity, suggesting that
GBM-infiltrating γδ T cells contribute to anti-tumoral immunity.

However, the γδ T cell activity was also associated with the
activities of exhausted and regulatory T cells. These findings are
consistent with previous findings demonstrating that γδ T cells
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FIGURE 2 | Correlation patterns of Gene Set Variable Analysis (GSVA) enrichment scores of a variety of curated immune gene signatures for 170 GBM patients from

TCGA database. (A) A clustered heatmap of Pearson’s correlation coefficient of GSVA scores over all immune signature gene sets. Hierarchical clustering was

performed based on Pearson’s correlation distance with ward linkage method. Dark orange denotes high correlation (r = 1) while dark blue denotes a lack of

correlation (r > 0). (B) The diagonal of the chart represent distribution of GSVA enrichment scores. The bivariate scatter plots of linear regression fits of each pairs with

the fitted lines are shown on the bottom of the diagonal. Pearson’s correlation coefficient values with the level of significance were shown on the top of the diagonal.

***P < 0.001.

show a high degree of plasticity and are able to assume different
phenotypes, including Th1-like, Th2-like, Th17-like, follicular
Th-like, or Treg-like characteristics, depending on the cytokine

milieu in surrounding microenvironment (49–55). Based on
the hypothesis that the γδ T cells could be responsible for
the polarization of TAMs, we performed repertoire analyses of
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γδ T cells since individual subsets of γδ T cells with specific
variable domains of γ or δ chains have unique functions in
local environments.

Predominant Infiltration of Vγ9Vδ2T Cells
in GBM Tumor Tissues
To compare γδ TCR repertoires between tumor-infiltrating and
blood γδ T cells and among γδ T cells from four patients, we
generated and amplified Tcrg and Tcrd cDNA libraries from
tumor tissues and sorted (2 × 105 to 8 × 106) blood CD3+ cells
from four patients. The libraries, which could be distinguished by
barcodes, were then pooled and sequenced (Illumina MiSeq). In
total, 159,138–2,483,772 total clean nucleotide sequences (CNTs)
and about 141–1,157 unique clean nucleotide sequences (CNUs)
from the tumor samples and 402,922–2,145,312 CNTs and 93–
2,709 unique CNUs from the sorted blood CD3+ cells were
analyzed in this study (Table 2). The TCRG and TCRD tree
maps for each γδ T cell population showed that intratumoral
γδ T cells expressed less diverse CDR3 nucleotide sequences
for the TCRG and TCRD genes than blood γδ T cells, except
in case 3 (Figures 3A,B). Case 3 showed oligoclonal γδ T cells
in both blood and tumor tissue. The calculation of Shannon
indices, which reflected both richness and evenness of the CDR3
clonotypes, showed that the repertoires of TCRG and TCRD
CDR3 sequences were very restricted in case 3 and that the
intratumoral γδ T cells were less diverse than blood γδ T cells
(Table 2). In all cases, the most abundant γδ T cells were of Vγ9
and Vδ2 cells.

Unique Vγ9Jγ2-Vδ2T Cells Were
Distinctively Found in GBM Tumor Tissues,
but Not in Blood
Vγ9Vδ2 T cells are known to be the most abundant type of adult
blood γδ T cells (56). These cells undergo rapid expansion within
the first year of life (57). Because Vγ9Vδ2 T cells are strongly

TABLE 2 | γδ T cell receptor repertoire diversity indices.

Case # TCR chain Cell origin Shannon index Janssen-

Shannon

divergence

#1 γ chain PBMCs 6.841 0.738

Cancer tissue 6.087

δ chain PBMCs 7.599 0.802

Cancer tissue 5.156

#2 γ chain PBMCs 5.665 0.543

Cancer tissue 4.736

δ chain PBMCs 6.069 0.560

Cancer tissue 4.467

#3 γ chain PBMCs 1.458 1

Cancer tissue 3.270

δ chain PBMCs 0.624 0.999

Cancer tissue 0.661

#4 γ chain PBMCs 5.301 0.795

Cancer tissue 4.609

δ chain PBMCs 3.612 0.771

Cancer tissue 2.905

activated by bacteria-derived pAgs (18, 21), these cells appear to
be expanded by commensal bacteria (18). A few previous TCR
repertoire analyses have revealed the predominance of canonical
Vγ9JγP sequences (58). Although intratumoral and blood
Vγ9Vδ2 T cells were apparently similar, the Jensen-Shannon
divergence (JSD) indices, a measure of repertoire comparison
(59), showed remarkable distinctness of intratumoral γδ T cells
from blood γδ T cells (Table 2). Notably, in case 3, intratumoral
γδ T cells were completely distinct from blood γδ T cells (JSD
= 1 indicates complete divergence of two repertoires). When we
plotted the clonotypes based on Vγ and Jγ segments, the absolute
or relative abundance of Vγ9Jγ2 sequences was prominent in
intratumoral γδ T cells, except in case 4 (Figure 4). The canonical
Vγ9JγP sequences were the most abundant sequences in blood
γδ T cells, except in case 4. Case 4 was unique in that many non-
canonical Vγ9Jγ1, Vγ9Jγ2, Vγ9JγP1, and Vγ9JγP2 sequences as
well as the canonical Vγ9JγP sequences were found in blood γδ

T cells, as was verified through repetitive sequencing analysis.
Paradoxically, the canonical Vγ9JγP sequences were the most
abundant in intratumoral γδ T cells from case 4. Collectively, the
non-canonical Vγ9Jγ2-Vδ2 T cells were distinctively observed in
intratumoral γδ T cells in three of four 4 GBM cases.

Unique CDR3 Vγ9Jγ2 and Vγ9JγP
Clonotypes From GBM Tumor Tissues
and Blood
To date, it is unclear whether there were variations in TCR
Vγ9 γ chains related to antigenic specificity. In this study, we
attempted to identify shared clonotypes that were found in
different samples, although the antigenic specificity could not
be deduced from the sequences. We reasoned that clonotypes of
tumor phospho-antigen-specific Vγ9Vδ2 T cells may be different
from blood bacterial phospho-antigen-specific Vγ9Vδ2 T cells.
We listed the top 10 CDR3 clonotypes of canonical Vγ9JγP or
non-canonical Vγ9Jγ2 sequences from four blood and tumor
samples (Table 3). We found that the Vγ9JγP CDR3 clonotype
ALWEVQELGKKIKV was the most frequent clonotype in blood
and tumor samples from three cases, suggesting that this was
the most representative clonotype of canonical Vγ9JγP γ chains.
However, other frequent Vγ9JγP γ chain CDR3 clonotypes were
also found, such as ALWEPPQELGKKIKV, in both blood and
tumor samples from only case 1, ALWEKQELGKKIKV in the
blood sample from case 2, and ALWEALRLGKKIKV in blood
and tumor samples from case 3. Notably, we found several
frequent Vγ9Jγ2 γ chain CDR3 clonotypes that were unique
to tumors and were not found in blood. The representative
Vγ9Jγ2 γ chain clonotypes included ALWEGLKKL in case
1, ALWEVQYKKL in case 2, ASKKTKKL in case 3, and
ALWEVRYYYKKL in case 4. In case 2, ALWESSNYYKKL
was a Vγ9Jγ2 γ chain clonotype found only in the blood.
Collectively, we could discern unique blood- and tumor-specific
Vγ9 γ chain CDR3 clonotypes and found that many tumor-
specific clonotypes were of Vγ9Jγ2 γ chains, and many blood-
specific clonotypes were of Vγ9JγP γ chains. In particular, the
Vγ9JγP CDR3 clonotype ALWEVQELGKKIKV appeared to be
the most representative Vγ9JγP γ chains. The γδ T cells with
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FIGURE 3 | T cell receptor γ and δ chain CDR3 tree map plots for blood and GBM tumor tissue γδ T cells and the relative proportions of individual TCR TCR Vγ or Vδ

gene segments. (A) for TCRγ (B) for TCRδ. CDR3 tree-map plots illustrate the unique TCRγ or TCRδ CDR3 nucleotide sequences obtained from given samples of

four GBM patients. Each rectangle in a given tree-map represents a unique CDR3 sequence, and the size of each rectangle indicates the relative frequency of an

individual sequence. The colors for the individual CDR3 sequences in each tree-map plot were chosen randomly. Bottom graphs in (A,B) show the percentages of use

of each TCR Vγ (A) or Vδ (B) domain in PBMCs (white) or cancer tissues (black) from each patient.
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FIGURE 4 | The relative proportion of each combination of Vγ and Jγ segments in γδ T cells in blood and GBM tumor tissue samples of four patients. 3D graphs

show the relative percentages of combinations of Vγ-Jγ usages in PBMCs or GBM tumor tissues from four patients.

this clonotype appeared to be recruited to the tumor tissues from
the blood.

DISCUSSION

In this study, we investigated the γδ TCR repertoires in
tumor tissues and matched blood from four patients with
IDH1 wild-type GBM. Except in one case, unique tumor-
infiltrating GBM-specific γδ T cells used Vγ9Jγ2 sequences
whereas blood γδ T cells were dominated by γδ T cells
with Vγ9JγP sequences. Based on the TCRγ gene structure,

Vγ9Vδ2 T cells with Vγ9Jγ2 sequences should use the Cγ2
segment, whereas canonical γδ T cells with Vγ9JγP sequences
found predominantly in the blood are presumed to be Cγ1
users as the JγP segment is much closer to the Cγ1 segment
than to the Cγ2 segment. Because γδ T cells developed
sequentially from Cγ1-dependent proximal rearrangement to
Cγ2-dependent distal rearrangement (32, 60), these two types
of Vγ9Vδ2 T cells appear to have developed in different
developmental stages.

Upon antigen stimulation, γδ T cells differentiate into two
major types of memory T cells: central memory cells, which
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TABLE 3 | TOP 10 CDR3 sequence by the usage proportion of Vγ9Jγ2 or Vγ9JγP in patient blood and tissue sample.

CASE #1 PBMCs Tissue

Vγ9

Jγ2

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

1 ALWARLYYKKL 17.86 1.96 ALWEVRYYYKKL 27.19 12.09

2 ALWEVQPPYYKKL 5.47 0.60 ALWARLYYKKL 12.03 5.35

3 ALWEVSLYKKL 5.32 0.58 ALWECHYYKKL 6.81 3.03

4 ALWEVAPLYKKL 4.82 0.53 ALWEGNYYKKL 3.92 1.74

5 ALWESPYYKKL 4.35 0.48 ALWEAPKNTL 3.61 1.60

6 ALARKKL 4.31 0.47 ALWEGVNYYKKL 3.51 1.56

7 ALWEVLRYKKL 4.29 0.47 ALWEVQF 3.43 1.52

8 ALWDKKL 4.25 0.47 ALWEVLLEKL 3.24 1.44

9 ALWNKKL 4.20 0.46 ALWEVPYYKKL 2.86 1.27

10 ALWEVRAWVYYKKL 4.17 0.46 ALWVYKKL 2.85 1.27

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

1 ALWEVQELGKKIKV 17.76 12.83 ALWEVQELGKKIKV 5.14 5.14

2 ALWEVRELGKKIKV 5.31 3.83 ALWEVRELGKKIKV 3.83 3.83

3 ALWEVQRELGKKIKV 3.04 2.20 ALWEDQELGKKIKV 2.16 2.16

4 ALWEPLGELGKKIKV 2.75 1.98 ALWDKQELGKKIKV 1.57 1.57

5 ALWEELGKKIKV 2.71 1.96 ALWVVELGKKIKV 1.43 1.43

6 ALWEAQELGKKIKV 2.68 1.93 ALWEVMELGKKIKV 1.36 1.36

7 ALWEVQGLGKKIKV 2.49 1.80 ALWEPPELGKKIKV 1.35 1.35

8 ALWEEKELGKKIKV 2.30 1.66 ALWAVELGKKIKV 1.25 1.25

9 ALWDKQELGKKIKV 2.26 1.63 ALLGKKIKV 1.18 1.18

10 ALWEVRRELGKKIKV 2.21 1.59 ALWEVNQELGKKIKV 1.09 1.09

CASE #2 PBMCs Tissue

Vγ9

Jγ2

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

1 ALWEAPVEKL 26.04 0.37 ALWEGLKKL 17.58 2.95

2 ALSMQSFGYKKL 16.47 0.23 AFENYYKKL 17.07 2.87

3 ALWEGPKKL 16.19 0.23 ALEDKL 15.50 2.60

4 ALWEEDPDYKKL 13.80 0.19 ALWEVYV 15.35 2.58

5 ALWEVPAGYKKL 12.40 0.17 ALWEVLYYKKL 13.62 2.29

6 ALWEVRDYYKKL 6.69 0.09 ALSNYKKL 13.32 2.24

7 ALWRIYYKKL 4.15 0.06 ALWEFLYWGKL 5.38 0.90

8 ALGGGKL 3.60 0.05 ALEDKF 0.66 0.11

9 ALWEASVEKL 0.15 0.00 ALGDKL 0.47 0.08

10 ALGGGKF 0.13 0.00 ALEDRL 0.15 0.03

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

1 ALWEPPQELGKKIKV 22.95 18.42 ALWEPPQELGKKIKV 31.41 20.52

2 ALWEYRQELGKKIKV 8.59 6.89 ALWERELGKKIKV 9.49 6.20

3 ALWEVQELGKKIKV 8.34 6.70 ALWEVEELGKKIKV 8.13 5.31

4 ALWEAQELGKKIKV 7.64 6.13 ALWEVQELGKKIKV 7.65 4.99

5 ALWEVEELGKKIKV 6.15 4.94 ALWEPQELGKKIKV 6.75 4.41

6 ALWEPQELGKKIKV 5.70 4.58 ALWEDNSPKLGKKIKV 4.50 2.94

7 ALWELLEQELGKKIKV 4.91 3.94 ALWERQELGKKIKV 4.25 2.78

(Continued)
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TABLE 3 | Continued

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

8 ALWEVPRELGKKIKV 3.68 2.95 ALWAQELGKKIKV 4.05 2.65

9 ALWEGEQELGKKIKV 2.88 2.32 ALWELLEQELGKKIKV 4.03 2.64

10 ALWEVQEELGKKIKV 2.50 2.01 ALWEGRELGKKIKV 4.03 2.63

CASE #3 PBMCs Tissue

Vγ9

Jγ2

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

1 ALWESSNYYKKL 98.22 42.79 ALWEVQYKKL 55.75 29.18

2 ALWEPSNYYKKL 0.44 0.19 ALWEHYYKKL 31.20 16.33

3 ALWGSSNYYKKL 0.33 0.14 ALWEVREKL 12.08 6.32

4 ALWESSSYYKKL 0.26 0.11 ALWGHYYKKL 0.21 0.11

5 ALWESPNYYKKL 0.21 0.09 ALWEVREEL 0.18 0.10

6 ALCESSNYYKKL 0.21 0.09 ALWEVQHKKL 0.10 0.05

7 ALWESSDYYKKL 0.15 0.07 ALWEYYYKKL 0.08 0.04

8 ALWKSSNYYKKL 0.07 0.03 ALWEHHYKKL 0.07 0.04

9 ALWVSSNYYKKL 0.04 0.02 ALWEVQCKKL 0.07 0.04

10 ALWESSYYYKKL 0.01 0.01 ALWEMQYKKL 0.04 0.02

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

1 ALWEKQELGKKIKV 98.65 49.31 ALWAQELGKKIKV 96.51 6.89

2 ALWEEQELGKKIKV 0.34 0.17 ALGAQELGKKIKV 2.17 0.15

3 ALWGKQELGKKIKV 0.26 0.13 ALWAQGLGKKIKV 0.37 0.03

4 ALWERQELGKKIKV 0.26 0.13 ALWARELGKKIKV 0.27 0.02

5 ALWEKRELGKKIKV 0.23 0.12 ALRAQELGKKIKV 0.24 0.02

6 ALWEKQKLGKKIKV 0.05 0.03 ALWTQELGKKIKV 0.21 0.02

7 ALWKKQELGKKIKV 0.05 0.03 ALWAQVLGKKIKV 0.08 0.01

8 ALWVKQELGKKIKV 0.03 0.01 ALWPQELGKKIKV 0.06 0.00

9 ALWEKHELGKKIKV 0.02 0.01 ALWAQKLGKKIKV 0.05 0.00

10 ALCEKQELGKKIKV 0.02 0.01 ALWAQEVGKKIKV 0.04 0.00

CASE #4 PBMCs Tissue

Vγ9

Jγ2

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9Jγ2

sequences

% of total

sequences

1 ALWEVQLPNYYKKL 24.75 2.56 ASKKTKKL 14.06 1.53

2 ALWEKSKNYYKKL 17.20 1.78 ALWEGENYYKKL 9.58 1.04

3 ALWEVLYKKL 7.02 0.73 ALWEVWRKL 6.03 0.66

4 ALWEVMDYKKL 4.23 0.44 ALWGRNYYKKL 5.07 0.55

5 ALWESEVISNYYKKL 4.10 0.42 ALWEVRFYYKKL 4.73 0.52

6 ALWEVMNKKL 3.92 0.40 ALWEVLLNYYKKL 4.63 0.50

7 ACYYKKL 3.71 0.38 ALWEVPDYYKKL 4.11 0.45

8 ALWEVPEKL 3.34 0.35 ALWEVDYKKL 4.09 0.44

9 ALWEAGNYYKKL 3.12 0.32 ALWETVKKL 4.07 0.44

10 ALWDVRL 2.81 0.29 ALWEDLGKL 3.79 0.41

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

1 ALWEALRLGKKIKV 31.84 3.81 ALWESQELGKKIKV 44.74 30.35

2 ALWEVQELGKKIKV 13.09 1.57 ALWDSYGLGKKIKV 15.55 10.55

3 ALWEQELGKKIKV 13.04 1.56 ALWEVQELGKKIKV 14.28 9.69

(Continued)
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TABLE 3 | Continued

Vγ9

JγP

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

CDR3 amino acid

sequence

% of Vγ9JγP

sequences

% of total

sequences

4 ALWGQELGKKIKV 5.92 0.71 ALWGQELGKKIKV 9.58 6.50

5 ALWGSELGKKIKV 5.12 0.61 ALWEVQGELGKKIKV 8.13 5.51

6 ALWESQELGKKIKV 4.92 0.59 ALWEQELGKKIKV 3.94 2.67

7 ALQELGKKIKV 4.81 0.58 ALWEIFQELGKKIKV 1.16 0.79

8 ALWEVQGELGKKIKV 4.45 0.53 ALWETQELGKKIKV 1.10 0.75

9 ALWEIFQELGKKIKV 4.28 0.51 ALWEVFELGKKIKV 0.58 0.40

10 ALWDSYGLGKKIKV 2.28 0.27 ALWEVGELGKKIKV 0.36 0.24

patrol the blood and secondary lymphoid organs, and effector
memory cells, which migrate to peripheral tissues (52). The
circulating Vγ9Vδ2 T cells preferentially express inflammatory
homing chemokine receptors including CC chemokine receptor
(CCR)1, CCR5, CCR8, CXCR3, and C-X-C chemokine receptor
type 4 (CXCR4), which are involved in cell migration from the
bloodstream to the tumor site, where they display broad and
potent antitumoral activity (61–64). Then, activated Vγ9Vδ2 T
cells are able to secrete chemokines, such as chemokine ligands
(CCL)3, CCL4, chemokine (C-X-C motif) ligand (CXCL)10,
and CXCL13, to recruit dendritic cells/macrophages, NK cells,
αβ T cells and B cells to the tumor site (53, 65). Vγ9Vδ2 T
cells can directly kill tumor cells through the secretion
of cytolytic molecules or antibody-dependent cell-mediated
cytotoxicity or indirectly prime and modulate immunological
functions of other innate and adaptive immune cells leading
to the establishment of profound antitumor immunity (53,
66, 67). For example, upon pAg stimulation, Vγ9Vδ2 T cells
preferentially differentiate into Th1-like cells with profound
interferon-γ and tumor necrosis factor-α responses (49, 54).
However, upon stimulation with IPP, Vγ9Vδ2 T cells can also
be polarized into Th2-like cells, which are characterized by
increased secretion of interleukin (IL)-4 upon stimulation with
IL-4 and anti-IL-12 antibodies (54) and Treg-like γδ-T cells
with regulatory/immunosuppressive functions in the presence
of IL-15 and transforming growth factor-β (55), displaying the
functions for promoting tumor development through direct or
indirect strategies. To date, it is not known whether these pro-
tumor Vγ9Vδ2 T cells have the same clonotypes as antitumor
Vγ9Vδ2 T cells. Classical immunotherapeutic approaches to
GBM have shown mixed results, and therapies focused on
innate lymphocyte activity against GBM have not been rigorously
evaluated. The adoption of Vγ9Vδ2 T cells with both canonical
and non-canonical Vγ9Vδ2 T cells needs to be evaluated in
GBM immunotherapy.

The binding between canonical Vγ9Vδ2 TCR and pAgs
presented by BTN3A1 leads to activation of Vγ9Vδ2 T
cells (18, 21). Microbe-derived hydroxymethyl-but-2-enyl-
pyrophosphate (HMBPP) is ∼10,000-fold more potent than
cancer cell-derived IPP in the activation of Vγ9Vδ2 T cells
(18), but it is not understood how HMBPP triggers stronger
signaling in Vγ9Vδ2 T cells than IPP. CDR3γ appeared to

be essential for recognition of pyrophosphate-containing
metabolites by BTN3A1. In particular, Lys109 in the CDR3γ
from the JγP segment was shown to be critical for the binding
(68). The CDR3γ sequences from Vγ9Jγ2-Vδ2 T cells showed
a shorter length than the CDR3γ sequences from canonical
Vγ9Vδ2 T cells with Vγ9JγP sequences, and some clonotypes
from Vγ9Vδ2 T cells with Vγ9Jγ2 sequences lacked the
critical Lys residue (Supplementary Figure 3). Therefore,
further studies are needed to determine whether intratumoral
Vγ9Jγ2-Vδ2 T cells recognize the same antigens that bind to
the canonical Vγ9Vδ2 T cells with Vγ9JγP sequences with
similar affinities.

Collectively, our data showed that the TCR repertoires of
intratumoral γδ T cells were clearly distinct from those of
blood γδ T cells when comparing TCR repertoires from four
patients with GBM. We also identified several GBM-specific
Vγ9Jγ2-Vδ2 T cells that were not found in the blood. In-depth
investigation of their antigenic specificities and anti- or protumor
differentiation potentials through interaction with tumor cells
and other stromal cells within GBM-specific TME should be
performed to improve our understanding of the roles of γδ

T cells in the establishment of the TME and to apply them
for the future immunotherapies against GBMs refractory to
conventional immunotherapies.
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