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Biomass-derived carbon materials (B-d-CMs) are considered as a group of very promising electrode materials for electrochemical
energy storage (EES) by virtue of their naturally diverse and intricate microarchitectures, extensive and low-cost source,
environmental friendliness, and feasibility to be produced in a large scale. However, the practical application of raw B-d-CMs in
EES is limited by their relatively rare storage sites and low diffusion kinetics. In recent years, various strategies from structural
design to material composite manipulation have been explored to overcome these problems. In this review, a controllable design of
B-d-CM structures boosting their storage sites and diffusion kinetics for EES devices including SIBs, Li-S batteries, and
supercapacitors is systematically summarized from the aspects of effects of pseudographic structure, hierarchical pore structure,
surface functional groups, and heteroatom doping of B-d-CMs, as well as the composite structure of B-d-CMs, aiming to provide
guidance for further rational design of the B-d-CMs for high-performance EES devices. Besides, the contemporary challenges and
perspectives on B-d-CMs and their composites are also proposed for further practical application of B-d-CMs for EES devices.

1. Introduction

With the explosive growth of global economy and population,
the energy consumption worldwide has attracted more and
more attention [1]. The extensive use of fossil fuels has not only
led to its depletion but also brought about severe environmen-
tal problems such as global warming, forest damage, air pollu-
tion, and acid rain [2, 3]. As such, the exploration of green and
sustainable energy including hydropower, tidal energy, and
solar energy is stringent. However, these renewable energy
sources suffer from intermittence, where highly efficient energy
storage technique is very desirable to achieve a continuous and
more reliable supply in practical applications [4].

Among various energy storage systems, electrochemical
energy storage (EES) devices, such as sodium-ion batteries
(SIBs) [5], lithium-sulfur (Li-S) batteries [6], and supercapaci-
tors [7], have shown large potential and attracted extensive
research interests. Specifically, SIBs are viewed as an appealing
counterpart for lithium-ion batteries due to the abundance,
democratic distribution, and low cost of sodium resource, as
well as the similarity of sodium to lithium in physiochemical
properties [8]. Li-S batteries have high energy density
(2600Whkg-1) and theoretical capacity (1675mAhg-1) [9],
while supercapacitors are well known for their excellent revers-
ibility and high power density [10]. The performances of EES
devices including cost-effectiveness, gravimetric/volumetric

AAAS
Research
Volume 2020, Article ID 8685436, 27 pages
https://doi.org/10.34133/2020/8685436

https://orcid.org/0000-0002-9215-7894
https://orcid.org/0000-0001-8749-8937
https://orcid.org/0000-0001-7004-6408
https://doi.org/10.34133/2020/8685436


energy density, cycling stability, and rate response all rely
severely on features of electrode materials.

Up to now, numerous electrode materials have been
explored for EES, primarily including carbonaceous mate-
rials [11], Si/Ge/Sn [12], transition metal oxides/sulfides
[13, 14], and MXene [15]. Among them, carbonaceous
materials become a group of very promising electrode mate-
rials by virtue of their high electric conductivity, large specific
surface area, outstanding structural and chemical stability,
controllable pore size distribution, and good mechanical
strength [16, 17]. However, the wide practical usages of
high-quality carbonaceous materials (e.g., graphene, fuller-
ene, and carbon nanotube) are greatly hindered by high
requirement of equipment and low production yield [18].
Sometimes, the preparation processes inevitably utilize toxic
and dangerous reagents as well as pollutants [19]. Carbon
materials derived from renewable biomass are highly desir-
able, because of their naturally diverse and intricate micro-
architectures, extensive and low-cost source, environmental
friendliness, and feasibility to be produced in a large scale
[20–22]. More importantly, their large interlayer distances,
disordered structures, and abundant active functional groups
can provide more potential charge storage sites [23–25]. In
addition, various facile and green methods have been pro-
posed to convert biomass into value-added carbon materials
without using any expensive chemical reagents and complex
installations, including one-step pyrolysis, hydrothermal car-
bonization, physical and chemical activations, molten salt
carbonization, and template method [26–31]. As such,
biomass-derived carbon materials (B-d-CMs) have been
regarded as promising candidates for EES devices [32–54].

Energy storage mechanisms of B-d-CMs are highly
dependent on their EES devices. Specifically, B-d-CMs
usually show two kinds of Na+ storage mechanisms: (1) the
insertion/extraction in the interlayer of the graphitic crystal-
lites at low potentials (below 0.1V), relating to the plateau
region of charge/discharge curves, and (2) the electroadsorp-
tion/desorption at active functional groups, structural defect
sites, and pore surfaces at high potentials (above 0.1V), cor-
responding to the sloping region of charge/discharge curves
[55]. Firstly, the hard carbon feature of B-d-CMs presents
larger interlayer spacing than graphite, which is conducive
to the insertion/extraction of Na+. Moreover, the abundant
pore structure and large specific surface area of B-d-CMs
are in favor of Na+ storage by electroadsorption/desorption.
However, the lower electronic conductivity caused by the less
graphitized region and unstable surface functional groups of
raw B-d-CMs, coupled with larger radius of Na+ (0.102 nm)
than Li+ (0.076 nm), gives rise to fewer storage sites and
slower diffusion kinetics for Na+ insertion/desertion reaction
and adsorption/desorption process. This largely limits the
further development of raw B-d-CMs in SIBs [8]. In the
lithium-sulfur battery system, the mainly electrochemical
reaction is S + 2Li+ + 2e− ⟷ Li2S. The insulating nature of
S and the shuttling of intermediate polysulfides lead to poor
charge/electron transfer, loss of active material, passivation
of Li anode, increasing electrolyte viscosity, etc. It will conse-
quently induce fast capacity decay and poor cycling life and
rate performance [56]. B-d-CMs could modulate the elec-

tronic property of the S-containing cathode, enhance the
affinity for polysulfides to the cathode through additional
chemisorption, and thus improve their performance. How-
ever, the ability of raw B-d-CMs to enhance the Li-S battery
performance is unsatisfactory due to their low content of het-
eroatoms and functional groups, as well as poor storage sites
and diffusion kinetics. Supercapacitors are divided into two
families: pseudocapacitor and electric double-layer capacitor
(EDLC). In EDLC, B-d-CMs act as active material by charg-
ing of the double-layer capacitance via the reversible ion
adsorption/desorption on the carbon surface [57]. Although
the raw B-d-CMs have fast charge-storage capacity in EDLC,
the less charge-storage sites result in low capacity and largely
restrict their practical application [58]. Consequently, the
practical application of raw B-d-CMs in EES devices is
mainly hindered by their limited number of efficient storage
sites and diffusion kinetics as electrodes in SIBs, Li-S batte-
ries, and supercapacitors.

In recent years, great efforts have been devoted to
enhancing the electrochemical energy storage performance
of B-d-CMs. Based on them, the structural diversities (i.e.,
1D, 2D, and 3D), synthetic methods, and specific application
of B-d-CMs in one type of EES device have been summarized
in some previous reviews [24, 25, 59–71]. The controllable
storage sites and diffusion kinetics to boost B-d-CMs for
EES devices have not been well reviewed. So, it is very neces-
sary and timely to comprehensively review the structure
design of B-d-CMs affecting EES performances when pro-
moting the storage sites and diffusion kinetics in energy stor-
age devices. In this review, a controllable design of B-d-CM
structures boosting its storage sites and diffusion kinetics
for EES devices, including SIBs, Li-S batteries, and superca-
pacitors, is reviewed from the aspects of effects of pseudo-
graphic structure [28, 72–74], hierarchical pore structure
[75–80], surface functional groups [81–84], and heteroatom
doping [85–95], as well as the composite structure of B-d-
CMs [96–99] as shown in Figure 1, aiming to promote con-
trollable design of effective B-d-CMs for EES devices. Besides,
the contemporary challenges and perspectives in B-d-CMs
and their composites are also proposed for further rational
design of B-d-CMs for EES devices.

2. Controllable Design of B-d-CM Structure
Boosting Its Storage Sites and
Diffusion Kinetics

2.1. Pseudographitic Structure. The pseudographitic structure
of B-d-CMs usually refers to the disordered turbostratic
nanodomains with graphitic layers and a few uniformly
and randomly arranged defects. It can largely affect the
storage sites and diffusion kinetics of B-d-CMs [74]. The
disordered turbostratic nanodomains can not only provide
abundant ion-storage sites between the graphitic layers but
also afford the pathway for electron transport and ion dif-
fusion, contributing to the storage of more ions and the
reduction of the energy barrier for ion insertion/extraction.
Thus, enlarging the graphitic interlayer spacing and increas-
ing the order and number of turbostratic nanodomains can
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collectively promote ion-storage sites and diffusion kinetics
and enhance the specific capacity, cycling, and rate perfor-
mance [100, 101].

Ding and coworkers [72] synthesized carbon nanosheet
frameworks from peat moss with a highly ordered pseudo-
graphic structure (Figures 2(a)–2(f)) via a pyrolysis process
followed an air activation step and investigated their Na+

storage properties (Figure 2(g)). Benefitting from the highly
ordered pseudographite arrays and substantially large inter-
layer spacing of 0.388 nm, the carbon nanosheet frameworks
exhibited significantly excellent Na+ storage kinetics and
intercalation capacity in SIBs. Lotfabad et al. [28] fabricated
the banana peel derived hard carbon with ordered pseudo-
graphitic structure though a pyrolysis procedure followed
by air activation. Owing to the pseudographitic structure
with a larger interlayer spacing of 0.392 nm that could facili-
tate more Na+ insertion/extraction, the as-obtained banana
peel-derived hard carbon showed excellent electrochemical
performance, delivering a stable cycling capacity of
336mAhg-1 after 300 cycles at 50mAg-1. Wang et al. [102]
prepared graphitic carbon nanosheets from cornstalk bio-
mass through an in situ self-generating template method.
Due to the ordered pseudographitic structure, the sample
showed excellent conductivity in supercapacitors, enabling
superior capacitance. Sun et al.’s group [103] reported the
facilely synthetic process of hard carbon from shaddock peels

for SIBs via one-step pyrolysis processes. Because the syner-
gistic effect of its honeycomb-like morphology and pseudo-
graphitic structure, the pyrolytic sample displayed a high
specific capacity of 430.5mAhg-1 at 30mAg-1.

Notably, the highly ordered pseudographitic structure
(more nanodomain) is usually obtained at high temperature,
which negatively decreases the interlayer spacing, specific
surface area, and amorphous carbon region, thus providing
poor storage sites [60]. Li et al.’s group [104] achieved a
balance between the pseudographitic structure (disordered
turbostratic nanodomains) and amorphous carbon structure
by controlling the reaction temperature to obtain the pseudo-
graphitic structure with different thicknesses. Figure 3(a)
exhibited the hard carbon from shaddock peel developed at
500°C, 600°C, and 700°C (designated as SPA, SPAG, and
SPG, respectively), with the disordered turbostratic nanodo-
mains (TD) thickness of 0, 7.3, and 32.6 nm, respectively. SPA
was almost entirely amorphous carbon structure with
numerous defect sites, leading to a poor conductivity and
slow Na+ diffusion rate. SPG with a high TD value displayed
a small amount of amorphous structure, resulting in fewer
electroactive sites, less Na+ adsorption, and lower capacity
than the other two samples. SPAG presented a suitable TD
value to keep the high diffusivity of Na+ and electron trans-
mission, consequently balancing the charge conductivity,
Na+ diffusion kinetics, and the number of adsorption sites

Sodium−ion batteries Lithium−sulfur batteries Supercapacitors

Figure 1: Schematic illustration of the structure optimization strategies of B-d-CMs and their application in various EES devices.
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and then showing a high electrochemical performance.
Besides, Wang et al.’s group [105] also optimized the pseudo-
graphitic domain dimension from dandelion, as shown in
Figure 3(b). The as-obtained sample synthesized at 1000°C
had a bigger length of average width (La), number of graphite
layers (N), and thickness (Lc) than that obtained at 800°C,
thus exhibiting a higher degree of graphitization and higher
diffusion kinetics. When the reaction temperature rose to

1200°C, La continued to grow but Lc and N values no longer
changed. The enlarged width of the pseudographitic struc-
ture provided enhanced diffusion kinetics and more active
sites for Na+ storage in insertion process. Moreover, the
values ofN and La were significantly increased with the rising
of temperature to 1400°C, which resulted in a low capacity
because of the deceased interlayer spacing. The sample pre-
pared at 1200°C balanced the interlayer distance and
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Figure 2: (a–d) HRTEM images. (e) XRD patterns. (f) Raman spectra of peat moss-derived carbon materials. (g) Rate performance of peat
moss-derived carbon as anode in SIBs [72] (copyright 2013, American Chemical Society).
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pseudographitic domain dimension to increase the Na+ stor-
age sites, hence delivering a high capacity of 364.3mAhg-1

after 10 cycles at 50mAg-1.

2.2. Hierarchical Pore Structure. Hierarchical pore structure,
containing micropores (below 2nm), mesopores (2~50nm),
and macropores (above 50 nm), is conducive to improv-
ing the diffusion kinetics and increasing the storage sites
of electrode materials in practical application of EES
devices [106]. Specifically, macropores are equivalent to
an ion-buffering reservoir that can minimize the distance
for ion diffusion to the interior surfaces of B-d-CMs.
Mesopores and micropores could supply a large surface

area for electrolyte-electrode material interaction and pro-
vide a low-resistant transfer pathway for electrolyte ions
[107, 108]. Thus, constructing a well-defined hierarchi-
cally porous structure can not only contribute to a high
specific surface area with abundant storage sites leading
to high energy density and great capacitance but also
shorten the distance for ion diffusion with enhanced diffu-
sion kinetics enabling improved rate capability and power
density [109]. Although there are intrinsic pores in raw
B-d-CMs, the development of a well-defined pore structure
for the design of high-performance EES devices with numer-
ous storage sites and high diffusion kinetics is urgently
needed [26].
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Recently, various pore-creating techniques have been
developed, which could control and design a well-defined
hierarchically porous structure from various biomass sources
[75–80]. Generally, the synthetic methods of the hierarchi-
cally porous structure can be classified into two categories:
physical activation and chemical activation. In physical
activation, CO2, H2O steam, ozone, or air are usually used
to activate B-d-CMs at high temperature usually above
700°C [110]. In chemical activation, B-d-CMs are pre-
mixed with a chemical agent (KOH, KHCO3, K2CO3,
NaOH, NaHCO3, FeCl3, ZnCl2, or H3PO4 [111]) and sub-
sequently thermally treated usually in the range of
500~1000°C. Compared with physical activation, chemical
activation is more widely applied due to the lager specific
surface area, lower reaction temperature, higher yields, and
lower cost of the products. Using biomass as a precursor,
the electrode materials with a well-defined hierarchical

porous structure formed by chemical activation can signif-
icantly enhance the storage sites and diffusion kinetics in
SIBs, Li-S batteries, and supercapacitors.

In SIBs, B-d-CMs with hierarchical pore structures have
been well designed to enhance the storage sites and diffusion
kinetics by supplying numerous channels in the carbon to
shorten the Na+ diffusion path in insertion/extraction pro-
cess, providing efficient active pores for Na+ accommodation
and promoting charge across the electrode/electrolyte inter-
face. For instance, the carbon material derived from peanut
skin as shown in Figures 4(a)–4(e) was synthesized [29]
through pyrolysis followed by chemical activation (KOH).
The as-prepared material showed sheet-like morphology
with interconnected hierarchical pore structures and a large
surface area (2500m2 g−1). Tested against sodium, it exhib-
ited good rate capability and cycling stability. Prawn shell
was selected as another ideal biomass candidate [44]. The
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Figure 4: (a–d) TEM micrographs and (e) graphic illustration of the formation of hierarchical porous carbon from peanut skin. (f–h) TEM
and (i–k) HRTEM images of prawn shell-derived carbon materials [29] (copyright 2015, Elsevier). (l) Mechanism of Li/Na insertion in prawn
shell-derived carbon materials as electrodes [44] (copyright 2016, Elsevier).

6 Research



prawn shell-derived carbon possessed a distinct porous
structure with macro-, meso-, and micropores, which could
generate quick Na+ storage and diffusion in SIBs, as shown
in Figures 4(f)–4(l).

As for supercapacitors, the hierarchically porous archi-
tecture could improve the pseudocapacitors, because the
hierarchical pore structure offers quick ion/e- transmission
and alleviates structural degradation induced by volume
expansion [114]. For example, hierarchically porous carbon
nanosheet [115] had been obtained through synchronous
activation (by FeCl3 and ZnCl2) and graphitization of natural
silk. It exhibited a high volume of hierarchical pores
(2:28 cm3 g−1) and high specific surface area (2494m2 g−1)
and delivered a high capacitance and excellent cycling stabil-
ity (9% loss after 10000 cycles). Chen and coworkers [116]
prepared an activated carbon from cotton stalk with H3PO4
as the chemical activation reagent. The as-obtained carbon
with a surface area of 1481 cm2 g−1 and pore volume of
0:0377 cm3 g−1 displayed a capacitance value as high as 114
F g−1 at 0:5A g−1 owing to its unique structure features.

Trapping the polysulfides, improving the electrical con-
ductivity, increasing efficient reaction sites, and elevating dif-
fusion kinetics of the sulfur electrode in the conductive
matrix are vitally important to enhance the electrochemical
performance for Li-S batteries. By the help of the hierarchi-
cally porous structure, large surface area, and low cost, B-d-
CMs are appropriate for solving this problem. The soluble
polysulfide intermediates could be effectively trapped in the
porous carbon, which could guarantee the sufficient storage
sites for electrochemical reaction and effectively improve
the quality of electrolyte for Li+ diffusion. Meanwhile, the
carbonmaterials can supply a useful electron conducting net-
work and elevate the utilization efficiency of sulfur in the
electrode. Soybean-derived hierarchically porous carbon
[112] as shown in Figures 5(a)–5(g) had been prepared for
Li-S batteries. The obtained carbon displayed large capacity,
high Coulombic and energy efficiencies, and high cycling sta-
bility, which could be associated with its high specific surface
area (1500m2 g−1) and hierarchical microporous/mesopor-
ous structure. Chen et al.’s work [113] further revealed that
hierarchical pore structures were highly desirable for Li-S
batteries in Figure 5(h). Micro-/mesoporous coconut shell
carbon was favorable to repress the “shuttle effects.” The
sulfur-infiltrated materials showed a larger specific capacity
of 1599mAhg-1 at 0.5C.

In addition, the unique 3D-interconnected hierarchical
porous structure is also very significant, which could supply
3D paths for the electrolyte diffusion and structure stability,
highly improving the storage sites and diffusion kinetics
[117]. Zhang et al. [36] synthesized a 3D connected hierar-
chically porous carbon foam via the pyrolysis and KOH acti-
vation process of pomelo peel. The impregnation of sulfur
into the micro-/mesopores was considered to be a good
way for efficient sulfur utilization, providing enough storage
sites. When used in Li-S batteries, it delivered an initial dis-
charge capacity of 1258mAhg−1 at 0.2C. Table 1 presents
the comparison of the pseudographitic structure and hierar-
chically porous structure of B-d-CMs and their electrochem-
ical performance in various EES devices.

2.3. Surface Functional Groups. Except for the controllable
design of the pseudographic structure and hierarchically
porous structure, surface functional groups (surface chemis-
try and energy) of B-d-CMs are also essential to the improve-
ments of efficient storage sites and diffusion kinetics in EES
devices [81–84]. Surface functional groups could provide
numerous electrochemical active sites, playing an important
role in the surface-adsorption processes and reversible sur-
face redox reactions, which compared with the ion-
intercalation reaction could facilitate more storage sites
and faster ion diffusion, as well as smaller electrode struc-
ture damage. This will be greatly beneficial for high revers-
ible capacity and excellent rate performances [120–123].
Raw B-d-CMs usually contain certain amounts of oxygen,
nitrogen, or sulfur-related functional groups. However, not
all functional groups are favorable for electrochemical per-
formance. For example, while C=O could generate surface
reactions with Na+ by C =O +Na+ + e− ⟷ C −O −Na,
leading to the increase of reversible capacity, while C-O and
-COOH will result in a poor Coulombic efficiency (CE),
induced by the side reactions and the formation of a SEI film.
Therefore, it is necessary to control the type and content of
surface functional groups of B-d-CMs by selecting appropri-
ate biomass precursors, pyrolysis conditions, and activation
process.

Ou et al. [124] developed ox horn that is composed of
abundant C, N, and O elements as the precursor for prepar-
ing N- and O-enriched 3D carbon without any extra N
source as the electrode material for SIBs. Attributed to the
abundant nitrogen (5.5%) and oxygen (6.9%) functional
groups which could introduce fast surface adsorption (pseu-
docapacitive behavior) on electrode materials, the as-
obtained carbon materials showed a high initial reversible
capacity and long cycling durability. Li and coauthors [118]
reported a direct pyrolysis of kelp at 700°C in NH3 atmo-
sphere, forming the O- (8.76 at%) and N- (5.04 at%) enriched
B-d-CM with a three-dimensional structure as shown in
Figures 6(a)–6(c). These abundant functional groups con-
taining N and O on the surface of 3D carbon from kelp could
introduce fast surface adsorption (pseudocapacitive process)
on the surface of the electrode for EDLC (Figure 6(d)). Qu
et al.’s group [119] prepared nitrogen-rich (9.74%) mesopo-
rous carbons from gelatin through pyrolysis and subsequent
KOH activation process for Li-S batteries (Figure 6(e)). The
nitrogen functional groups could improve the efficient stor-
age sites and diffusion kinetics by immobilizing sulfur and
reduce the dissolution of polysulfide intermediates, deliver-
ing a high initial discharge capacity and long-term cycling
stability.

Researchers are facing a dilemma between obtaining high
content of surface functional groups and abundant pseudo-
graphitic structure, owing to the fact that low reaction tem-
perature is favorable for maintaining more functional
groups, while the enhanced graphitization degree of B-d-
CMs usually requires high temperature. Therefore, it is very
important to balance the content of surface functional groups
and pseudographic structure in B-d-CMs when designing
EES devices with enhanced storage sites and diffusion kinet-
ics. For example, in SIBs, C=O groups could induce more
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active sites and reversible redox reaction via C =O +Na+ +
e− ⟷ C −O −Na. The ordered pseudographitic structure
could provide Na+ storage sites via intercalation and also
accelerate the Na+ and electron transportation rate at the car-
bon electrode. As such, although some electrodes possessed a
high amount of surface C=O groups, the unfavorable syn-
thetic process for obtaining sufficient pseudographic struc-
tures enables it to display poor Na+ storage properties. Li
et al.’s group has reported the work on controlling C=O
and pseudographitic structure in hard carbon from the shad-
dock peel by a hydrothermal pretreatment and subsequent
KOH-assisted pyrolysis procedure to enhance sodium stor-
age properties (Figures 7(a)–7(f)) [125]. The obtained hard
carbon materials can be controlled with different C=O con-
tents of 51, 34, and 23% (labeled as SP51, SP34, and SP23,
respectively). Although the C=O content of SP34 was lower
than that of SP51, SP34 delivered a higher reversible capacity
of 380mAhg-1 at 50mAg-1 after 500 cycles owing to the syn-
ergistic effect of C=O and more ordered pseudographic
structure. Wang et al.’s work [126] also gave a constructive
suggestion, in which sheet-like carbon particles intercon-
nected into 3D micron-sized macropores were fabricated
from willow catkins. The sample prepared at 700°C con-
tained higher content of N (2.51wt%) and O (13.28wt%)
groups than that of the sample derived from 800°C, while
its degree of graphitization was higher than that prepared
from 600°C, resulting in numerous storage sites and fast
diffusion kinetics. When evaluated as an electrode for
supercapacitors, it demonstrated a superior electrochemical
performance.

Besides, surface functional groups can also improve the
electronic conductivity. For example, nanoporous carbon
nanosheets (NP-CNSs) [127] containing abundant active
functional groups (C/O: 5.5, C/N: 34.3) were synthesized
from citrus peels by Kim et al.’s group in Figures 7(g)–7(k).
N groups could improve the electron transfer of NP-CNSs
by n-type doping effects, exhibiting an electrical conductivity
of 2:6 × 101 S cm−1, which is approximately 50 times higher
than that of reduced graphene oxide. Gao and coworkers
[85] used chitin as precursor via the hydrothermal method
and then carbonized it into N-/O-enriched porous carbon
nanosheets. The percentage of nitrogen and oxygen in car-
bon nanosheets was 8.12 at% and 6.69 at%. The nitrogen
groups can enhance electronic conductivity (8:72 × 10−2
S cm-1), which favored electron transport during the charge/-
discharge process in SIBs.

2.4. Heteroatoms Doping Structure. Doping heteroatoms into
carbon lattice can significantly improve the number of effi-
cient storage sites and the level of diffusion kinetics. Firstly,
electrochemical activity of the doped carbon either as nucle-
ation/anchoring sites for electrolyte adsorption/desorption
or as redox-reaction sites is highly improved, leading to large
enhanced pseudocapacitance in EES devices [130]. Secondly,
the interlayer spacing would be enlarged by heteroatom dop-
ing, resulting in increased specific capacity with more ion
intercalation. Representative heteroatoms including N, S, B,
P, and F could be incorporated in either a single- or codoped
way to modify the B-d-CMs.

N is one of the most widely studied heteroatoms for B-d-
CMs. Specifically, N could be introduced into the carbon
frameworks in different configurations, including pyrrolic-
nitrogen (N-5), pyridinic-nitrogen (N-6), and quaternary-
nitrogen (N-Q) [3, 131]. Notably, the N configuration has
significant influence on the activity and structure of B-d-
CMs. N-5 exposes the planar edge or defect sites where they
are located. N-6 is formed by replacing C with N at the defect
sites or edges in the plane. The edge plane and defect sites can
promote the ion diffusivity and electrical conductivity, while
thus N-5 and N-6 can introduce highly chemical-active sites,
enhancing surface adsorption capacity [132]. The N-Q can
enhance electronic conductivity, which favors electron trans-
port and ion diffusion during the charge/discharge process
[85]. Typically, N could be incorporated into carbon frame-
works by direct pyrolysis of N-containing carbon precursors.
For example, N-rich mesoporous carbon materials (NMCs)
[128] were obtained by annealing shrimp skin under a N2
atmosphere followed by hydrochloric acid washing, as shown
in Figure 8(a). From the N 1s XPS spectra of the NMCs
(Figures 8(b)–8(e)), N was incorporated into the B-d-CMs
in four forms: the N-5, N-6, oxidized nitrogen (N-oxide),
and N-Q. Quantified results (Figures 8(f) and 8(g)) showed
that N-6 and N-5 were always the dominant configurations
in prepared samples. When used as anodes for SIBs, the
NMCs prepared at 700°C exhibited outstanding performance
(Figure 8(h)). The higher performance compared with the
other samples obtained at different pyrolysis temperatures
was due to the combination of high content of N-6 and N-5
and high content of total nitrogen doping (7.26 at%), which
was capable of enhancing the electronic conductivity of car-
bon, favoring adsorption process. Yan et al. [129] employed
oatmeal as biomass precursors to prepare N-doped carbon
microspheres (NCSs), as shown in Figure 8(i). Among the
samples prepared at different pyrolysis temperatures, the
NCSs prepared at 500°C had the highest content of nitrogen
doping (4.1%) with 93.7% in the form of N-5 and N-6 and
could afford more active sites and fast diffusion kinetics and
hence enhance the capacity and electrical conductivity, deliv-
ering a larger capacity of 336mAhg-1 after 50 cycles at
50mAg-1 and excellent cycling stability and rate capacity.

In Li-S batteries, N dopant can also enhance the storage
sites and diffusion kinetics by inhibiting the diffusion of sol-
uble polysulfides and delaying the shuttle effect [133]. Zhang
and coauthors [134] prepared N-doped carbon derived from
silk fibroin protein encapsulating S as a high-performance
cathode material for Li-S batteries. The high content of N
doping was demonstrated to be very helpful in adsorbing sul-
fur species to effectively improve the electrochemical perfor-
mance of sulfur cathodes. Geng et al.’s group [135] developed
a two-step method via HNO3 and NH3 to prepare corncob-
derived N-doped nanoporous carbon materials for Li-S bat-
teries. It demonstrated that efficient N species played more
crucial roles than total N content on the electrochemical per-
formance of C/S composite cathodes. Specifically, N-6 and
N-5 groups had positive roles in suppressing the diffusion
of polysulfides and improving the adsorption ability of the
carbon materials. Although the synthesized N-doped carbon
at 600°C had smaller N content (4.12wt%) than other
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samples at 400°C (4.19wt%) and 800°C (6.11wt%), it had a
higher content of N-5 (60.74 at%) and N-6 (32.8 at%) than
samples at 400°C (30.07, 23.53 at%) and 800°C (53.21, 30.85
at%), exhibiting the much improved cycling performance,
which was about 3.5 times as that of nitrogen-free carbon.

S is an electroactive element with higher capacity and
more reversible than O when reacting with ion, such as
C − S + Na+ + e− ⟷ C − S −Na, offering extra storage sites
for ions. Specifically, S would be doped into B-d-CMs in
two forms: the overwhelming thiophene-type S and the
oxidized-type S. The thiophene-type S could enlarge the
interlayer distances due to the larger electrostatic repulsion
force and elevate the conductivity of B-d-CMs, signifi-
cantly improving the ion-diffusion and electron-
transportation kinetics. It also offers more space to reduce
the volume expansion and lower the adsorption energy
[137]. As such, S doping is particularly promising in
increasing specific capacity and rate performance of EES
devices. For example, Wang et al. synthesized sulfur-
doped carbon microtubes (S-CMTs) [136] with a S con-
tent of 10.2wt% through a 700°C sulfurization of cotton
roll for SIBs, as shown in Figure 9(a). XRD patterns
(Figure 9(b)) indicated that S doping expanded the inter-
layer distances of the (002) planes of CMTs from 3.73 to
3.81Å, which could boost the Na+ insertion/extraction
process and improve the electrochemical activity. S 2p
XPS, Raman, and FTIR spectra (Figures 9(c)–9(e)) con-
firmed that S was covalently bonded into the carbon
framework of CMTs. The as-prepared S-CMTs showed a
large charge capacity, outstanding rate capability, and
exceptional cycling stability. Hao and coworkers [91] pre-
pared ginkgo leaf-derived S-doped carbon materials
(8.245wt%) via a combined procedure of hydrothermal
treatment in sulfuric acid solution and KOH activation.
When applied in supercapacitors, it showed a high specific
capacitance and only 2% of capacitance loss after 30000
cycles. In Li-S batteries, the C-S framework could also
enhance the affinity between polysulfides and B-d-CMs,
thus favorable for promoting immobilization of polysulfide
ions so as to enhance the efficient storage sites and diffu-
sion kinetics of Li-S batteries. Yang et al.’s group [90] syn-
thesized a free-standing S-doped microporous carbon
(SMPC) for Li-S batteries from luffa sponge. The in situ
S doping microporous carbon (2.72 at%) demonstrated a
high electrical conductivity of 1.89 S cm-1. Owing to its
rich S doping, the as-prepared SMPC not only was condu-
cive to the rapid transmission of electron and Li+ but also
contributed to the enhancement of the affinity and binding
energy of polar polysulfides with nonpolar carbon frame-
works, delivering a high initial reversible capacity, superior
rate capability, and excellent cycling stability.

Similar to N and S doping, B, P, and F doping also can
enhance the number of efficient storage sites and the level
of diffusion kinetics of B-d-CMs. B enters into carbon frame-
works in the form of trigonal coordination, offering as an
electron acceptor and modifying the electronic structure of
B-d-CMs because its three valence electrons can induce a
shift in the Fermi level to the conduction band [81]. The
change of electronic structure of B-d-CMs would affect the

storage sites and diffusion kinetics of EES devices. Notably,
even a low level of B doping showed the catalytic influence
on oxygen chemisorption process, resulting in enhanced
redox reactions associated with O-containing functional
groups on the surface of carbon [138]. As an example, B-
doped activated wood-derived carbon-supported polyaniline
particles were synthesized as electrode materials for high-
performance supercapacitors, as shown in Figures 9(f)–9(j)
[87]. P doping is also beneficial for stabilizing and modifying
the structure of B-d-CMs. Firstly, P doping produces some P-
functional groups on B-d-CMs, improving wettability of B-d-
CMs which is conducive to penetration of electrolyte into the
electrode materials [139]. Secondly, P=O is electrochemical
redox active and can supply electroactive sites to improve
its pseudocapacitance [140]. Thirdly, because the electroneg-
ativity of P is lower than that of carbon, C-P can change the
charge and spin densities of carbon materials, together with
the bigger size of P atom than carbon leading to structural
defects in the carbon framework. This could further act as
active sites in the electrochemical process [130]. For instance,
Huang et al.’s group [141] developed P-rich carbons (13.3
at%) by H3PO4 activation of coffee grounds. The as-
fabricated sample in supercapacitors showed a high energy
density of 15Whkg-1 at a power density of 75Wkg-1. F is
the element with the highest electronegativity, and F-doped
carbon is capable of forming F-C bond with high polarity
and stability, which would easily enrich the repulsive interac-
tion between the carbon layers, thus expanding the interlayer
spacing for more storage sites and excellent diffusion kinetics
[142]. Wang et al. [95] synthesized F-doped carbon particles
(1.1 at%) through direct pyrolysis and air activation of F-rich
lotus petioles as anode materials for SIBs. The as-obtained
electrode displayed an initial charge capacity of 230mAhg−1

at a current density of 50mAg−1. Although most B-d-CMs
are rich in natural heteroatoms, which can significantly
improve electrochemical performance, their content is low,
and additional introduction process is still necessary. In addi-
tion, some B-d-CMs contain a few heteroatoms (e.g., Ca, Si,
and Al) that affect performance and destroy the carbon struc-
ture, which needs to be removed.

Compared with a single heteroatom dopant that merely
improves one aspect of properties, codoping could obviously
improve the efficient storage sites and diffusion kinetics of
the B-d-CM electrodes to a larger extent based on the syner-
getic effects [68] of multiple heterogeneous elements. Since N
doping could greatly elevate the electronic conductivity and
diffusion kinetics of carbon, so, B, S, O, or P doping could
enhance the pseudocapacitance, expand the interlayer dis-
tance, and enrich storage sites, N, O codoping [118, 122,
146, 147]; N, S codoping [33, 38, 143, 148, 149]; N, B codop-
ing [31, 144, 150]; and N, P codoping [9, 145, 151–153] have
been applied to further enhance the electrochemical perfor-
mances of B-d-CMs. For example, Pangr and coworkers
[143] synthesized the N, S-doped nanoporous carbon for
advanced Li-S batteries via coating polydopamine and tetra-
ethyl orthosilicate and pyrolysis as well as mixed with sulfur
from biomaterial-derived cellulose nanocrystals, as presented
in Figure 10(a). The codoping with S (3.2 at%) and N (2.4
at%) atoms in carbon frameworks significantly improved
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the chemisorption of lithium polysulfides and greatly
enhanced the electric conductivity, favoring excellent revers-
ible storage sites and high-rate kinetics. Zhao et al. [144]
designed B and N codoped porous carbon materials by direct

pyrolysis of dandelion fluff (Figure 10(b)). The incorporation
of N (2.2 at%) and B (4.6 at%) heteroatoms into obtained car-
bon could induce double-layer capacitance and extra pseudo-
capacitance to improve the overall storage sites. Benefiting
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from the unique structure and N, B doping, the electrode
when applied in supercapacitors exhibited a superior volu-
metric energy density of 12.15WhL-1 at 699.84WL-1. Qin
et al. [145] prepared N, P codoped carbon sheets from
the rinds of corn stalks though a hydrothermal process
using the (NH4)2HPO4 as N and P source (Figure 10(c)).
It demonstrated that P (1.82 at%) and N (0.9 at%) atoms
were well introduced into the carbon framework, which
enlarged the interlayer distance and induced the improve-
ment of electron transport and surface wetting ability of

B-d-CMs with electrolytes. When applied to the Na+ stor-
age, the as-obtained carbon displayed a stable discharge
specific capacity. The comparison of surface functional
groups and heteroatom doping of B-D-CMs and their elec-
trochemical performance in various EES devices are pre-
sented in Table 2.

2.5. Composite Structure. Compositing B-d-CMs with high-
capacity materials is also an effective way to enhance the stor-
age sites [65]. Specifically, transitionmetal oxides are one group
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16 Research



T
a
bl
e
2:
C
om

pa
ri
so
n
of

su
rf
ac
e
fu
nc
ti
on

al
gr
ou

ps
an
d
he
te
ro
at
om

do
pi
ng

of
B
-d
-C

M
s
an
d
th
ei
r
el
ec
tr
oc
he
m
ic
al
pe
rf
or
m
an
ce

in
va
ri
ou

s
E
E
S
de
vi
ce
s.

B
io
m
as
s
m
at
er
ia
ls

Fu
nc
ti
on

al
gr
ou

ps
/h
et
er
oa
to
m

do
pi
ng

E
ne
rg
y
ap
pl
ic
at
io
ns

C
ap
ac
it
y
(l
ow

cu
rr
en
t
de
ns
it
y)

C
ap
ac
it
y
(h
ig
h
cu
rr
en
t
de
ns
it
y)

R
ef
.

C
he
rr
y
pe
ta
ls

O
(1
2.
0
at
%
)

N
(1
.4
at
%
)

SI
B
s

31
0.
2
m
A
h
g-
1
(2
0
m
A
g-
1 )

14
6.
5
m
A
h
g-
1
(0
.5
a
g-
1 )

[1
18
]

Lo
ng
an

sh
el
l

O
(6
.2
7
w
t%

)
N

(1
.3
6
w
t%

)
SI
B
s

34
5.
9
m
A
h
g-
1
(0
.1
a
g-
1 )

30
4.
2
m
A
h
g-
1
(5
A
g-
1 )

[1
19
]

O
x
ho

rn
O

(6
.9
0
at
%
)

N
(5
.5
0
at
%
)

SI
B
s

41
9
m
A
h
g-
1
(0
.1
a
g-
1 )

11
7
m
A
h
g-
1
(5
a
g-
1 )

[1
22
]

E
nt
er
om

or
ph

a
O

(1
1.
36

at
%
)

N
(0
.7
4
at
%
)

Su
pe
rc
ap
ac
it
or
s

20
1
F
g-
1
(1
a
g-
1 )

12
2.
6
F
g-
1
(1
00

A
g-
1 )

[1
20
]

K
el
p

O
(8
.7
6
at
%
)

N
(5
.0
4
at
%
)

Su
pe
rc
ap
ac
it
or
s

44
0
F
g-
1
(0
.5
a
g-
1 )

18
0
F
g-
1
(1
50

a
g-
1 )

[1
23
]

W
ill
ow

ca
tk
in
s

O
(1
3.
28

w
t%

)
N

(2
.5
1
w
t%

)
Su
pe
rc
ap
ac
it
or
s

34
0
F
g-

1
(0
.1
a
g-
1 )

23
1
F
g-
1
(1
0
a
g-
1 )

[1
26
]

G
el
at
in

N
(9
.7
4
at
%
)

Li
-S

ba
tt
er
ie
s

12
09

m
A
h
g-
1
(1
C
)

59
5
m
A
h
g-
1
(3
C
)

[1
24
]

Sh
ri
m
p
sk
in

N
(7
.2
6
at
%
)

SI
B
s

43
4.
6
m
A
h
g-
1
(3
0
m
A
g-
1 )

11
0
m
A
h
g-
1
(2
a
g-
1 )

[1
31
]

P
om

el
o
P
ee
l

N
(3
.9
0
at
%
)

Su
pe
rc
ap
ac
it
or
s

26
0
F
g-
1
(1
a
g-
1 )

44
F
g-
1
(1
0
a
g-
1 )

[1
29
]

C
ot
to
n

S
(1
0.
2
w
t%

)
SI
B
s

53
2
m
A
h
g-
1
(2
00

m
A
g-
1 )

23
4
m
A
h
g-
1
(2
a
g-
1 )

[1
37
]

G
in
kg
o
le
av
es

S
(8
.2
5
w
t%

)
Su
pe
rc
ap
ac
it
or
s

36
4
F
g-
1
(0
.5
a
g-
1 )

24
5
F
g-
1
(4
0
a
g-
1 )

[9
1]

Lu
ff
a
sp
on

ge
S
(2
.7
2
at
%
)

Li
-S

ba
tt
er
ie
s

15
44

m
A
h
g-
1
(0
.2
C
)

78
1.
2
m
A
h
g-
1
(5
C
)

[9
0]

P
op

la
r
w
oo
d

B
(3
.7
0
at
%
)

Su
pe
rc
ap
ac
it
or
s

37
2
F
g-
1
(2
a
g-
1 )

25
1
F
g-
1
(1
0
a
g-
1 )

[8
7]

C
off

ee
be
an

P
(1
3.
3
at
%
)

Su
pe
rc
ap
ac
it
or
s

18
0
F
g-
1
(0
.0
5
a
g-
1 )

15
7
F
g-
1
(1
a
g-
1 )

[1
41
]

Lo
tu
s
pe
ti
ol
es

F
(1
.1
at
%
)

SI
B
s

23
0
m
A
h
g-
1
(5
0
m
A
g-
1 )

22
8
m
A
h
g-
1
(2
00

m
A
g-
1 )

[9
5]

C
el
lu
lo
se

N
(2
.4
at
%
)

S
(3
.2
at
%
)

Li
-S

ba
tt
er
ie
s

13
70

m
A
h
g-
1
(C
/2
0)

83
0
m
A
h
g-
1
(2
C
)

[1
45
]

D
an
de
lio

n
fl
uff

N
(2
.2
at
%
)

B
(4
.6
at
%
)

Su
pe
rc
ap
ac
it
or
s

35
5
F
g-
1
(1
a
g-
1 )

29
2
F
g-
1
(2
0
a
g-
1 )

[1
49
]

C
or
n
st
al
ks

N
(0
.9
0
at
%
)

P
(1
.8
2
at
%
)

SI
B
s

23
3
m
A
h
g-
1
(0
.1
a
g-
1 )

14
3
m
A
h
g-
1
(1
A
g-
1 )

[1
53
]

17Research



of the most promising candidates [154–157]. On the one hand,
based on the alloy, insertion, and conversion reactions, transi-
tion metal oxides possess high capacities (e.g., above
1000mAhg-1 in SIBs) and could largely increase the storage
sites for composite electrode materials [65, 68]. On the other
hand, owing to the high specific surface area, hierarchically
porous structure and rich heteroatoms, the B-d-CMs have
abundant pathways for ion diffusion and electron
transportation, improving the diffusion kinetics of composite
electrode materials. Yang and Park [158] prepared MnO2/ba-
nana peel-derived porous carbon (BPC) composites for super-
capacitors. The charge storage process of MnO2 included H+

intercalation/deintercalation reaction and H+ surface adsorp-
tion/desorption in redox reaction, which greatly increased
the storage sites of composite materials. The 3D BPC sub-
strate with the hierarchically porous structure provided the
growth space for MnO2, as well as promoted the ion diffusion
of electrolyte and served as a conductive network for elec-
trons, showing a good cycling stability with a capacitance
retention ratio of 92.3% after 1000 cycles (at 1Ag-1). Shi
et al. [159] synthesized a hierarchical nanostructure of
Co3O4@biomass-derived carbon fiber@Co3O4 for high-
performance supercapacitors. The Co3O4 particles were well
coated onto both the inner and outer surface of the porous
fiber wall. The carbon framework could overcome the
kinetic limitations of both ions and electrons, while Co3O4
particles exposed on both surfaces maximized Faradaic pro-
cesses and redox reactions with uniformly dispersed active
materials.

Besides metal oxides, incorporation of metal sulfides into
B-d-CMs to form a composite electrode has also gained
much attention in EES devices, due to their enlarged layered
structure, redox variabilities, and high structure stabilities,
which could provide more storage sites [160]. For instance,
Xie and coworkers [161] designed and fabricated MoS2
nanosheets vertically aligned on paper towel-derived carbon
paper as a freestanding electrode for high-performance revers-
ible SIBs (Figures 11(a)–11(d)). MoS2 nanosheets vertically
aligned on the carbon paper substrate interwoven randomly
from 1D carbon fiber, constructing interconnected ionic and
continuous electronic transfer pathways without volume expan-
sion during charge/discharge process. The as-fabricated free-
standing electrodes showed a high reversible capacity, high
initial CE, high rate performance, and long cycling life. Li
et al.’s group [162] developed 1D porous FeS/carbon fiber
micro-/nanostructures as high-capacity and durable anodes
for SIBs via pyrolysis of double-helix-structured Fe-
carrageenan fibers. The FeS nanoparticles could provide more
Na+ storage sites, significantly enhancing the Na+ storage per-
formance. The 1D porous carbon fibrous matrix could effec-
tively improve the structural stability during charge/discharge
process and improve Na+ and electron transport kinetics,
guaranteeing an outstanding rate and cycling performance.

In addition to transition metal oxides and sulfides, B-d-
CMs have also been composited with other components to
create novel composite electrodes with more storage sites
and faster diffusion kinetics [163–168]. For example, Li
et al.’s group [167] reported an ultrathin (~1nm) Fe3C nano-
sheets growing on mesoporous carbon (Fe3C-MC), as shown

in Figures 11(e) and 11(f). Biomass waste corncob was used
as the carbon source, which was pretreated by H2SO4 and
then mixed with ferrous sulfate followed by annealing at
800°C. In the Li-S batteries, the Fe3C nanosheets of Fe3C-
MC composites played a significant role in the adsorption
and conversion of polysulfides, and electronic transmission.
Yu and coworkers [168] synthesized a graphene-wrapped
hair-derived carbon/S composite for high-performance Li-S
batteries, showing a high initial discharge capacity of
1113.2mAh g-1 at 0.2C. Such high performance was mainly
associated with the fact that introducing graphene effectively
speeded up the electron transportation and Li+ diffusion,
along with the hard carbon derived from hair with nitrogen
doping, further restrained the shuttle effect of lithium poly-
sulfides. The comparison of composite structures of B-d-
CMs and their electrochemical performance in various EES
devices are displayed in Table 3.

3. Conclusions and Outlook

This review reported B-d-CMs as a kind of sustainable
and green electrodes in EES devices and summarized var-
ious mechanisms for enhancing the number of efficient
storage sites and the level of diffusion kinetics from the
aspect of structural control ranging from pseudographic
structure and hierarchical pore structure to surface func-
tional groups, heteroatom doping, and composition of B-
d-CMs with other electrode materials, thus improving
their electrochemical performance in SIBs, Li-S batteries,
and supercapacitors.

Specifically, the pseudographitic structure in B-d-CMs
can not only provide the enlarged interlayer spacing for ion
insertion/extraction but also accelerate the ion diffusion
and electron transportation via high crystallinity. The hierar-
chical pore structure has different functions in various EES
devices. In SIBs, it could supply superior access of the electro-
lyte to the B-d-CM surface shortening the Na+ diffusion
pathway and increase the specific surface area improving
the efficient absorbing sites. For supercapacitors, it could
increase the pseudocapacitors by offering fast ion/electron
transfer kinetics and alleviating structural degradation dur-
ing the charge/discharge process. In Li-S batteries, it could
form an electron-conducting network to trap the soluble
polysulfide intermediates, which effectively elevates the utili-
zation efficiency of sulfur for Li+ reaction, as well as enhances
the diffusion kinetics of Li+ by reducing the viscosity of elec-
trolyte. The surface functional groups of B-d-CMs could pro-
vide numerous electrochemical storage sites for efficient ion
adsorption/desorption and participate in surface redox reac-
tion facilitating more storage sites, faster ion diffusion, and
smaller electrode structure being destroyed than intercala-
tion reaction. Doping heteroatoms into the carbon lattice of
B-d-CMs could introduce extra storage sites (electroactive
sites and defects), favoring electron transport and ion diffu-
sion and increasing the repulsive interaction between carbon
layers, which would improve the adsorption/desorption pro-
cess, promote electronic conductivity and diffusion kinetics,
and expand the interlayer distance. The composite structure
of B-d-CMs and other electrode materials could enhance
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storage sites and diffusion kinetics through the synergic
effect: due to the rich heteroatoms, hierarchical pores, and
high specific surface area, the B-d-CMs have abundant
pathways for ion diffusion and electron transfer, improving
the diffusion kinetics of composite electrodes; based on the
alloy, insertion, and conversion reaction, the metal com-
pound possesses high capacities above 1000mAhg-1, which
could largely increase the storage sites for composite
electrode materials.

From Tables 1–3, it could be concluded that controlling
the hierarchically porous structure and composite structure
has a more obvious effect on improving storage sites and dif-
fusion kinetics, compared with other structure control strat-
egies. The reason may be that the hierarchical pore structure
can significantly increase the adsorption capacity by increas-
ing the specific surface area and diffusion kinetics. And the
composite structure can significantly increase the capacity
through the introduction of high-capacity materials.
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performance of the MoS2 vertically aligned on carbon paper. (e) The schematic diagram for synthesis of mesoporous carbon (MC) and Fe3C-
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Although some progress about enhanced storage sites and
diffusion kinetics in B-d-CMs for the field of EES devices
have been made, there are still some challenges:

(1) The structure of B-d-CMs is determined by biomass
rawmaterials. The biomass precursor needs to be fur-
ther explored, such as using waste, easy accessibility,
and specially structured biomass, instead of costly
and rare biomass

(2) The synthesis condition enabling highly ordered
pseudographitic structures will result in a small spe-
cific surface area, a narrow interlayer spacing, and a
few amorphous carbon region and surface functional
groups, exhibiting less storage sites and poor diffu-
sion kinetics. Therefore, it is necessary to develop
strategies to obtain pseudographite structure under
the condition favorable for large specific surface area,
interlayer spacing, amorphous region, and sufficient
surface functional groups

(3) Hierarchically porous structure needs to be further
designed. Firstly, 3D-interconnected hierarchically
porous structured B-d-CMs should be paid more
attention, because 3D structure is very beneficial for
shortening the diffusion distance and improving dif-
fusion kinetics during charge/discharge process espe-
cially at high rate. Secondly, the hierarchically porous
structure is generally produced from the activation
process, leading to a high BET area. However, the
high surface area makes many irreversible reactions
easy to generate, resulting in a low initial CE. Thus,
this requires increasing the specific surface area with-
out destroying the initial CE

(4) Compared with single heteroatom doping that ele-
vates only one aspect of properties, co-/polyatomic
doping can improve the integral performance of the
B-d-CMs because of their synergic effects. However,
most of the studies are focused on N-doped and its
co-doped B-d-CMs, which should be extended to
other atoms codoping

(5) Currently, B-d-CMs as support skeletons could load
high-capacity materials with more storage sites, while
how to address the issue of interface combination is
significantly essential

(6) It is necessary to explore synthetic technologies for
large-scale production of B-d-CM electrodes to expand
their application into the actual industrial applications
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