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Abstract
Enhanced prostaglandin production promotes the development and progression of cancer. Prostaglandins are generated
from arachidonic acid (AA) by the action of cyclooxygenase (COX) isoenzymes. However, how cancer cells are able to
maintain an elevated supply of AA for prostaglandin production remains unclear. Here, by using lung cancer cell lines
and clinically relevant KrasG12D-driven mouse models, we show that the long-chain acyl-CoA synthetase (ACSL3)
channels AA into phosphatidylinositols to provide the lysophosphatidylinositol-acyltransferase 1 (LPIAT1) with a pool
of AA to sustain high prostaglandin synthesis. LPIAT1 knockdown suppresses proliferation and anchorage-
independent growth of lung cancer cell lines, and hinders in vivo tumorigenesis. In primary human lung tumors, the
expression of LPIAT1 is elevated compared with healthy tissue, and predicts poor patient survival. This study uncovers
the ACSL3-LPIAT1 axis as a requirement for the sustained prostaglandin synthesis in lung cancer with potential
therapeutic value.

Introduction

Arachidonic acid (AA) is a polyunsaturated fatty acid that,
as arachidonate, is maintained at low concentrations, but it is
highly abundant in its esterified form in membrane phos-
pholipids. Therefore, the amount of AA is tightly controlled
by the membrane phospholipid reacylation/deacylation
cycle, known as the Lands cycle [1–3]. Depending on the
cellular demand, AA can be released through phospholipid
hydrolysis by phospholipase A2 (PLA2), phospholipase D,
or phospholipase C pathways [4], and is then converted to

prostaglandins by cyclooxygenases 1 and 2 (COX1 and
COX2). Whereas COX1 is constitutively expressed, COX2
is induced by proinflammatory cytokines, and plays a central
role in the insurgence of cancer inflammation and tumor
progression [5, 6]. Notably, prostaglandins promote tumor
growth both by directly activating signaling pathways,
which control cancer cell proliferation, anchorage-
independent growth, migration, and apoptosis, and by
orchestrating interactions between tumor cells and the sur-
rounding stromal cells, establishing an immunosuppressive
tumor microenvironment [7–10].

Non-small cell lung cancer (NSCLC) constitutes about
85% of all lung malignancies, out of which 30% harbor
KRAS mutations that are associated with aggressive,
therapy-resistant tumors [11]. KRAS upregulates COX2,
and the latter produces prostaglandins, including pros-
taglandin E2 (PGE2), in order to promote tumor growth and
metastasis [12]. The transcriptional regulation of COX2 has
been mainly attributed to MAPK signaling cascade, parti-
cularly to the ERK1/2, JNK/SAPK, and p38/RK/Mpk2
pathways [13–15]. However, it is unclear how KRAS is
able to maintain a continuous supply of AA to feed COX2
and drive prostaglandin synthesis.

Mutant KRAS drives aberrant lipid metabolism in
NSCLC by scavenging extracellular fatty acids [16, 17].
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Indeed, we previously found that enhanced activity of the
acyl-CoA synthetase long-chain 3 (ACSL3), an enzyme that
catalyzes the activation of long-chain fatty acids to CoA
thioesters, boosts extracellularly derived fatty acid activa-
tion in mutant KRAS NSCLC [17]. Knockdown of ACSL3
in NSCLC cell lines results in reduced cancer cell pro-
liferation, while its deletion in mice suppresses KrasG12D-
driven tumor initiation [17]. Thus, given the importance of
ACSL3 in KRAS-driven tumorigenesis, and due to the fact
that ACSL3 preferentially utilizes long-chain fatty acids,
including arachidonate as substrates [18], we set out to
investigate whether ACSL3 plays a role in mediating the
KRAS-dependent prostaglandin production in lung cancer.
To this aim, we combined mass spectrometry-based tar-
geted lipidomics, in vivo cell-based assays, targeted genetic
manipulations in cancer cells and in mouse models, as well
as analysis of patient NSCLC samples.

Results

ACSL3 promotes channeling of AA to
phosphatidylinositols in NSCLC cells

To understand whether ACSL3 is required to relay the
KRAS-mediated AA cascade, we examined the lipid
profile of the A549 NSCLC cell line upon ACSL3
knockdown by performing mass-spectrometry-based tar-
geted lipidomics. We quantified the most abundant lipid
species containing AA (20:4) in four phospholipid clas-
ses: phosphatidylcholine (PC), phosphatidylserine (PS),
phosphatidylethanolamine (PE), and phosphatidylinositol
(PI). We found that ACSL3 knockdown significantly
altered the quantity of phospholipids containing AA in
combination with 16:0 (palmitic), 16:1 (palmitoleate),
18:0 (stearate), and 18:1 (oleate) (Fig. 1a). Strikingly, the
knockdown of ACSL3 resulted in a strong decrease in the
AA content of PE and PI. Interestingly, we found a 40%
decrease in PI containing C18:0–20:4 fatty acids (PI
C18:0–20:4), the most abundant PI in mammalian cells
[19–21] (Fig. 1a and Supplementary Fig. 1A). Of note, the
knockdown of ACSL3 did not affect the protein levels of
ACSL4, another ACSL with substrate preference for AA,
underscoring the lack of compensatory effects (Supple-
mentary Fig. 1B). These results strongly suggest that in
mutant KRAS NSCLC cells, ACSL3 channels AA in
glycerophospholipids.

PIs are reversibly phosphorylated at the inositol headgroup
generating phosphoinositides, including phosphatidylinositol-
4 phosphate (PI4P) and the plasma membrane-localized
phosphatidylinositol-4, 5 biphosphate, PI(4,5)P2 [22, 23].
We hypothesized that a decrease in the most abundant PI,
C18:0–20:4, would also affect the production of

C18:0–20:4 PI4P and C18:0–20:4 PI(4,5)P2. Indeed, upon
ACSL3 knockdown, we observed a decrease in C38:4–PI4P
and C38:4–PI(4,5)P2 lipids presumably due to the reduction
of PI C18:0–C20:4 (Fig. 1b, c). This result additionally
confirms a role of ACSL3 in esterifying AA into PI in
mutant KRAS lung cancer cells.

ACSL3 drives prostaglandin synthesis in NSCLC

PI is the major source of AA, and in our lipidomic analysis,
the AA-containing PI was consistently downregulated upon
ACSL3 knockdown (Fig. 1a). Thus, we hypothesized that
reduced AA-containing PIs would result in reduced pros-
taglandin synthesis. To this aim, we quantified PGE2, a
prostaglandin produced by PGE2 synthase from COX-
derived prostaglandin H2 [24]. We found that PGE2 was
strongly reduced upon ACSL3 knockdown in a panel of
NSCLC cell lines harboring KRAS mutations, namely
A549, A427, H1264, and H358, and this coincided with
decreased cell proliferation (Fig. 1d, e and Supplementary
Fig. 1C). To investigate whether ACSL3 knockdown
impairs PGE2 production in lung cancer cells carrying wild-
type KRAS, we assessed four representative cancer cell
lines with known differential sensitivity to ACSL3 knock-
down, namely H596, H838, H125, and HCC95 (ref. [17]
and Supplementary Table 1). The proliferation of H596 and
H838 cell lines was unaffected by ACSL3 knockdown
(hereafter these cells are mentioned as ACSL3-indepen-
dent), while the proliferation of H125 and HCC95 is sig-
nificantly reduced (hereafter these cells are mentioned as
ACSL3-dependent) (Supplementary Figs. 1D and 1E). We
measured PGE2 upon ACSL3 knockdown with two dif-
ferent shRNAs, and found that the loss of ACSL3 caused
either a mild decrease (H596) or had no effect (H838) in
PGE2 production in the ACSL3-independent cancer cell
lines, while it highly suppressed PGE2 production in the
ACSL3-dependent cell lines H125 and HCC95 (Supple-
mentary Fig. 1F).

To confirm these results in vivo, we generated a mouse
model bearing a Cre-activatable mutant Kras allele (LSL-
KrasG12D/WT), homozygous for a Cre-conditional p53-
knockout allele (p53flox/flox) [25, 26] and either wild type
(LSL-KrasG12D/WT;p53flox/flox;Acsl3+/+) or knockout for
Acsl3 (LSL-KrasG12D/WT;p53flox/flox;Acsl3–/–). In the LSL-
KrasG12D/WT;p53flox/flox model, Cre-mediated loss of a stop
cassette permits expression of the oncogenic KrasG12D allele
from its endogenous promoter, and recapitulates key fea-
tures of the human disease, including histologic features and
response to conventional and targeted therapies [27]. Of
note, we have previously shown that the LSL-KrasG12D/WT;
Acsl3–/– mice display impaired lung tumor initiation and
progression compared with their wild-type littermates [17].
Therefore, we employed this mouse model to assess
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prostaglandin production in mouse lungs 10 weeks after
adenoviral-mediated Cre delivery to the lungs. In both
genotypes, the level of different prostaglandins (PGE2,
PGD2, and PGI2) was significantly increased in tumor
lesions compared with healthy lungs (Fig. 1f). However, we
found in both lung tumors and healthy lungs that Acsl3
knockout causes a striking reduction of the aforementioned

prostaglandins (Fig. 1f). Thus, our results suggest that
ACSL3 is important for prostaglandin synthesis regardless
of the oncogenic mutational status. Nevertheless, our data
indicate that ACSL3 significantly enhances prostaglandin
synthesis in tumors compared with healthy lung, suggesting
that this may fulfill the increased requirement for pros-
taglandin synthesis of lung cancer.
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LPIAT1 mediates prostaglandin production and
promotes the proliferation and anchorage-
independent growth of NSCLC cells

Glycerophospholipids are remodeled by the action of
phospholipases that hydrolyze them at the sn-2 position to
yield a lysophospholipid and a free fatty acid, while their
reacylation is catalyzed by lysophospholipid acyl-
transferases [28, 29]. Data from our lipidome profiling show
that ACSL3 knockdown in A549 cells led to a reduction in
C18:0–C20:4 PI, which could be caused by a decrease in
C18:0-lysophosphatidylinositol (LPI) to C18:0–C20:4 PI
production (Fig. 1a). Indeed, we found an accumulation of
C18:0-LPI, suggesting that ACSL3 knockdown causes a
block of LPI–PI conversion by reducing the supply of
arachidonoyl-CoA (Fig. 2a).

The enzyme responsible for the conversion of LPI–PIs with
specificity for arachidonyl-CoA is the lysophosphatidylinositol-
acyltransferase-1 (LPIAT1) (Fig. 2b) [30]. Thus, we hypo-
thesized that LPIAT1 may be an important mediator of
prostaglandin signaling downstream of ACSL3. Indeed,
RNA interference-mediated LPIAT1 knockdown led to a
significant decrease in PGE2 production in the mutant
KRAS NSCLC cell lines, A549, A427, H1264, and H358
(Fig. 2c and Supplementary Fig. 2A). Next, we investigated
whether LPIAT1 knockdown suppresses PGE2 production
in wild-type KRAS NSCLC cell lines. LPIAT1 knockdown

caused either a mild decrease (H596) or had no effect
(H838) in PGE2 production in ACSL3-independent cancer
cell lines, while significantly decreased PGE2 production in
the ACSL3-dependent cell lines, H125 and HCC95 (Sup-
plementary Figs. 2B and 2C). Moreover, in order to under-
stand the impact of LPIAT1 depletion on cancer cell
proliferation, we knocked down LPIAT1 in the aforemen-
tioned NSCLC cell lines. We found that LPIAT1 significantly
suppressed the proliferation of mutant KRAS NSCLC cell
lines A549, A427, H1264, and H358 (Fig. 2d) as well as that
of ACSL3-dependent wild-type KRAS NSCLC cell lines,
H125 and HCC95 but had no impact on the proliferation of
H596 and H838 cell lines (Supplementary Fig. 2D). These
results suggest that the ACSL3/LPIAT1 metabolic signaling
axis plays an important role in prostaglandin production and
cell proliferation of NSCLC cells.

To assess whether LPIAT1 requires ACSL3-derived
substrates to control cancer cell proliferation, we over-
expressed LPIAT1 with a lentiviral construct in A549 and
H358 cell lines and performed cell proliferation assays
upon ACSL3 knockdown. Interestingly, although the
overexpression of LPIAT1 enhanced cancer cell pro-
liferation, this effect was completely abolished upon
ACSL3 knockdown, thus strongly suggesting that LPIAT1
requires ACSL3-derived arachidonyl-CoA to promote
cancer cell proliferation (Fig. 2e and Supplementary Fig.
2E, 2F). Accordingly, measurement of PGE2 in A549 cells
evidenced that in the absence of ACSL3, PGE2 production
is compromised even when LPIAT1 is overexpressed (Fig.
2f). Next, we performed soft agar colony formation assays
and we found that LPIAT1 overexpression increased the
number and size of colonies, while the combination with
ACSL3 knockdown abolished this effect (Fig. 2g, h).
These data suggest that LPIAT1 requires ACSL3 to con-
trol cell proliferation and anchorage-independent growth
in NSCLC cells.

LPIAT1 knockdown suppresses tumorigenesis and
improves the survival of mice bearing human lung
cancer xenografts

Our results suggest that LPIAT1 may be essential for
KRAS-mediated prostaglandin production in lung cancer
cells. In order to expand the significance of our finding
in vivo, we injected the A549 (mutant KRAS) and HCC95
(wild-type KRAS, ACSL3-dependent) NSCLC cells into
immunocompromised NOD scid gamma (NSG) mice,
previously transduced with a control or shRNA against
LPIAT1. In this model, we found that knockdown of
LPIAT1 significantly suppressed tumorigenesis in mice
and improved their overall survival (Fig. 3a–d). These
results indicate that LPIAT1 plays a role in tumor
progression.

Fig. 1 ACSL3 drives prostaglandin synthesis in NSCLC. a PC, PS,
PE, and PI (mol%/sample) lipid alterations 72 h after ACSL3 knock-
down in A549 cells. Cells were transduced with either an empty vector
control (pLKO) or an shRNA against ACSL3 (shACSL3 #1), and 72 h
later lipids were extracted and analyzed by mass spectrometry-based
shotgun lipidomics. PC phosphatidylcholine, PS phosphatidylserine,
PE phosphatidylethanolamine, PI phosphatidylinositol. n= 4/group.
Data are presented as mean ± SD. C38:4-PI4P (b), C38:4-PI(4,5)P2 (c)
peak areas (normalized to internal standard and protein content) after
ACSL3 knockdown in A549 cells. Cells were transduced with either
an empty vector control (pLKO) or an shRNA against ACSL3
(shACSL3 #1), and 72 h later lipids were extracted and analyzed by
ultra-performance liquid chromatography-tandem mass spectrometry.
n= 4/group. Data are presented as mean ± SD. d Immunoblot analysis
of ACSL3 in A549 and A427, H1264, and H358 NSCLC cell lines
transduced with either an empty vector control (pLKO) or two dif-
ferent shRNAs against ACSL3 and extracted 72 h later. e PGE2
ELISA assay for the indicated cell lines. Cells were transduced with
either an empty vector control (pLKO) or two different shRNAs
against ACSL3. PGE2 production was analyzed 24 h later. n= 3/
group. Data are presented as mean ± SD. f Quantification of pros-
taglandin E2, D2, and I2 from p53flox/flox;Acsl3+/+ and p53flox/flox;
Acsl3–/– lungs, or from KrasG12D/WT;p53flox/flox;Acsl3+/+ and KrasG12D/
WT;p53flox/flox;Acsl3–/– macrodissected tumors, 10 weeks after tumor
onset. Samples were extracted and analyzed by ultra-high-performance
liquid chromatography with tandem mass spectrometry n= 3/group.
Data are presented as mean ± SEM. Statistical analyses were done
using two-tailed unpaired Student’s t test or one-way ANOVA. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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LPIAT1 is upregulated in human NSCLC and
positively correlates with poor patient survival

To explore the relevance of LPIAT1 in lung cancer, we
investigated a lung adenocarcinoma cohort (subset LUAD
that includes information on KRAS mutational status) from
the The Cancer Genome Atlas (TCGA) database, to com-
pare the gene expression of LPIAT1 between wild-type
KRAS tumors, mutant KRAS tumors and healthy lung tis-
sue [31]. Our analysis evidenced a higher LPIAT1 expres-
sion in lung tumors compared with healthy lung tissue
samples (Fig. 4a). However, the expression of LPIAT1 was
higher in tumors with KRAS mutations compared with
tumors carrying wild-type KRAS allele (Fig. 4a). Moreover,
high LPIAT1 expression highly correlated with high Pros-
taglandin E Synthase expression, an enzyme that catalyzes
the conversion of prostaglandin H2 to PGE2 (Fig. 4b).
These data suggest that high LPIAT1 expression is not

restricted to mutant KRAS tumors and underscore a broader
relevance of LPIAT1 in NSCLC.

To validate the database analysis, we performed immu-
noblot using human patient-derived NSCLC biopsies with
known KRAS mutations and the corresponding adjacent
healthy tissue. Our results indicated that the protein levels of
ACSL3, LPIAT1 and the cytosolic phospholipase A2
(cPLA2), an enzyme that catalyzes the hydrolysis of mem-
brane phospholipids to release AA for prostaglandin and
other eicosanoid production, are upregulated in patient-
derived mutant KRAS tumors compared with adjacent
healthy tissue (Fig. 4c). Thus, these data confirm that the
ACSL3-LPIAT1 metabolic pathway is enhanced in NSCLC.

To assess the relationship between ACSL3 and LPIAT1
expression, we employed a NSCLC cohort that includes
squamous lung carcinomas (LUSC) and lung adenocarci-
nomas (LUAD), stratified by ACSL3-high and ACSL3-low
expression, and we found a direct correlation between the
expression levels of LPIAT1 and ACSL3, suggesting a co-
regulation of these enzymes in NSCLC (Fig. 4d).

Next, we examined the relationship between patient
survival and ACSL3 or LPIAT1 expression. Kaplan–Meier
analysis of LUSC and LUAD patient cohorts stratified by
high versus low ACSL3 or LPIAT1, evidenced that patients
with either high ACSL3 or high LPIAT1 expression had
lower overall survival (Fig. 4e, f). These results suggest that
both ACSL3 and LPIAT1 overexpression are clinically
relevant and may have prognostic value for survival out-
comes in NSCLC patients.

Discussion

Elevated prostaglandin levels have been extensively asso-
ciated with enhancement of cancer cell survival and tumor
growth, migration, invasion, and immunosuppression [3]. In
several types of cancer, including mutant KRAS lung tumors,
an important part of this effect has been attributed to the
enhanced activity of COX1 and 2, the enzymes responsible
for the production of prostaglandins from AA [32–34].
However, how the metabolism of AA is remodeled in cancer
cells to cope with the high demand for prostaglandin synthesis
remains elusive. Here, we found that, in mutant KRAS and in
a subset of wild-type KRAS lung cancer cells, high pros-
taglandin levels are sustained by LPIAT1 activity and depend
on the ACSL3-activated AA substrate availability (Fig. 2 and
Supplementary Fig. 2). Importantly, the ACSL3-LPIAT1
metabolic axis drives prostaglandin synthesis to promote
tumorigenesis in NSCLC (Fig. 3). We found that a subset of
wild-type KRAS cancer cells show virtually no effect in
PGE2 suppression and cell proliferation upon ACSL3 or
LPIAT1 knockdown. These data suggest that alternative
signaling pathways may confer resistance to ACSL3 or

Fig. 2 LPIAT1 requires ACSL3-derived arachidonoyl-CoA for
prostaglandin synthesis. a Lysophosphatidylinositol (LPI) 72 h after
ACSL3 knockdown in A549 cells. Cells were transduced with either
an empty vector control (pLKO) or an shRNA against ACSL3 (#1),
72 h later lipids were extracted and analyzed by mass spectrometry-
based shotgun lipidomics n= 4/group. Data are presented as mean ±
SD. b Schematic model for LPIAT1 function in phospholipid remo-
deling. c PGE2 ELISA assay for A549, A427, H1264, and H358 cell
lines. Cells were transduced with either an empty vector control
(pLKO) or shRNA against LPIAT1 (shLPIAT1 #1). Cells were
transduced, selected with puromycin and plated for PGE2 measure-
ment. 24 h later the media was changed, incubated for additional 24 h
and PGE2 production was quantified from the supernatant n= 3/
group. Data are presented as mean ± SD. d Relative cell number of
A549, A427, H1264, and H358 cell lines transduced with an empty
vector control (pLKO) or three different shRNAs against LPIAT1.
n= 3/group. Data are presented as mean ± SD. e Relative cell number
of A549 cell line transduced with either pLKO.1 hygro+ pLenti-GIII-
CMV-GFP-2A-Puro (control) or pLKO.1 hygro-shACSL3 #2+
pLenti-GIII-CMV-GFP-2A-Puro (shACSL3) or pLKO.1 hygro+
pLenti-GIII-CMV-GFP-2A-Puro-LPIAT1 (LPIAT1 overexpression)
or pLKO.1 hygro-shACSL3 #2+ pLenti-GIII-CMV-GFP-2A-Puro-
LPIAT1 (shACSL3+ LPIAT1 overexpression) n= 3/group; o/e:
overexpression. Data are presented as mean ± SD. f PGE2 quantifi-
cation from A549 cell line supernatants. Cells were transduced with
either pLKO.1 hygro+ pLenti-GIII-CMV-GFP-2A-Puro (control) or
pLKO.1 hygro-shACSL3 #2+ pLenti-GIII-CMV-GFP-2A-Puro
(shACSL3) or pLKO.1 hygro+ pLenti-GIII-CMV-GFP-2A-Puro-
LPIAT1 (LPIAT1 overexpression) or pLKO.1 hygro-shACSL3 #2+
pLenti-GIII-CMV-GFP-2A-Puro-LPIAT1 (shACSL3+ LPIAT1
overexpression). Cells were transduced, selected with 2 μg/mL pur-
omycin or 150 ng/mL hygromycin and plated for PGE2 measurement.
24 h later the media was changed, incubated for additional 24 h and
Supernatants were analyzed by ultra-high performance liquid chro-
matography with tandem mass spectrometry n= 4/group. Data are
presented as mean ± SD. g Representative images of soft agar colony
formation assay in A549 cells transduced as in f. h Histograms
showing quantification of colony number and size of A549 cells grown
in soft agar treated as in f. n= 3/group. AU arbitrary units. Data are
presented as mean ± SD. Statistical analyses were done using two-
tailed unpaired Student’s t test or one-way ANOVA. *p < 0.05, **p <
0.01, ****p < 0.0001.
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LPIAT1 inhibition and future studies will be necessary to
identify these mechanisms. For instance, since the production
of free AA is highly regulated by a PLA2-dependent deacy-
lation reaction and a LPIAT1-dependent reacylation/transfer
into PI pools, PLA2 overexpression may result in increased
release of free AA available for prostaglandin synthesis
leading to resistance to LPIAT1 inhibition. Indeed, cPLA2
overexpression is common in NSCLC [35]. Moreover, PLA2
enzymes can also liberate free AA from other phospholipids
such as PC and PS [36]. Importantly, we found an upregu-
lation of some PC and PS species bound to AA (C14:0–C20:4
PC, C16:0–C20:4 PC, and C16:1–C20:4 PS) upon ACSL3
knockdown, suggesting that ACSL3 suppression results in a
remodeling of PC and PS membrane phospholipids that
PLA2 could, in principle, deacylate to provide free AA for
prostaglandin synthesis (Fig. 1a).

Our data show that cancer cell lines that are sensitive to
ACSL3 knockdown are also sensitive to LPIAT1 knock-
down, while others that are resistant to ACSL3 knockdown
are also resistant to LPIAT1 knockdown (Supplementary
Fig. 1D-1F and Supplementary Fig. 2B–2D). We also found
that overexpression of LPIAT1 causes enhanced cancer cell
proliferation and increased colony formation, an effect that
was rescued by knocking down ACSL3 (Fig. 2e, h). In this
context, knockdown of ACSL3 reduced the availability of

arachidonoyl-CoA, the substrate of LPIAT1, hence redu-
cing the most abundant PI species (C18:0–20:4 PI) and
prostaglandin synthesis (Figs. 1a, d and 2f). Thus, our data
indicate that ACSL3 and LPIAT1 regulate cancer cell
proliferation, at least in part, by acting on the same meta-
bolic axis. Whether the overexpression of ACSL3 is suffi-
cient to increase synthesis of prostaglandins and promote
cancer proliferation remains to be investigated.

We previously found that ACSL3 is required for fatty
acid β-oxidation in NSCLC cells [17]. Therefore, it is
plausible that LPIAT1 and ACSL3 can sustain lung cancer
proliferation by also serving other pathways. In this regard,
it has been recently shown that during human platelet
activation, prostaglandins and other eicosanoids are fed at
high rates into β-oxidation in a cPLA2-dependent manner.
Accordingly, cPLA2 blockade decreased β-oxidation and
impaired mitochondrial respiration [37]. Thus, it would be
of interest to investigate whether lung cancer cells rely on
prostaglandins as substrates to support β-oxidation.

Although nonsteroidal anti-inflammatory drugs, which
target COX enzymes and specific COX2 inhibitors, are
among the most promising drugs against cancer, the serious
cardiovascular and gastrointestinal side effects have reduced
the enthusiasm for their use [38]. Therefore, the identifica-
tion of novel tumor-specific targets related to AA

Fig. 3 LPIAT1 knockdown reduces tumorigenesis and extends
survival of mice. a, c Tumor burden of A549 (mut KRAS) and
HCC95 (wt KRAS) cells grown as xenografts in immunocompromised
(NSG) mice. A549 or HCC95 cells were transduced with either a
control (pLKO empty vector) or an shRNA against LPIAT1
(shLPIAT1 #3) and 1 × 106 A549 or 2.5 × 106 HCC95 cells were
injected subcutaneously in mice. Tumors were measured every

2–3 days with a caliper. Data in a are presented as mean ± SEM and in
c as ± SD. b, d Kaplan–Meier survival curve of mice from A549 (b) or
HCC95 (d) from the experiment shown in a and c, respectively. Sta-
tistical analyses were done using log-rank (Mantel-cox) test. A549
pLKO n= 4, A549 shLPIAT1 n= 5, HCC95 pLKO n= 4,
HCC95 shLPIAT1 n= 4.

2954 M. Saliakoura et al.



remodeling may help develop therapies with a greater
benefit and fewer side effects. Our results suggested that
prostaglandin synthesis is higher in lung tumors compared
with healthy tissue (Fig. 1f). Of note, mice with germline
deletion of Acsl3 are viable and do not show any overt
dysfunctions [17]. Thus, in principle, pharmacologic tar-
geting of the ACSL3-LPIAT1 axis may benefit patients to
selectively target tumor-derived prostaglandin synthesis
while sparing normal cellular functions. However, germline
deletion of LPIAT1 in mice results in defective brain
development and mortality [39]. It would therefore be of
interest to determine whether post-developmental knockout
or inhibition of LPIAT1 would lead to a similar or other
body dysfunctions, and whether it could be used for cancer
treatment in the future. Notably, we found that high LPIAT1
expression predicts poor survival in mouse xenografts and
human NSCLC patients (Figs. 3, 4). Hence, the status of
ACSL3-LPIAT1 axis in human lung tumors may serve as a
biomarker for personalized anti-cancer treatment.

Increased synthesis of prostaglandins is a negative prog-
nostic marker in lung cancer and several other malignancies
(e.g., gastric, colorectal, breast, hepatic, bladder, and renal
cancers) [10, 40, 41]. Thus, future experiments aimed at
assessing the role of LPIAT1 in prostaglandin synthesis and
tumorigenesis in other types of cancer are warranted.

In conclusion, we have unraveled the ACSL3-LPIAT1
metabolic axis as a requirement for prostaglandin produc-
tion and tumorigenesis in NSCLC that could be exploited
for therapeutic intervention.

Materials and methods

Resource sharing

Further information and requests for resources and reagents
should be directed to, and will be fulfilled by the Lead
Contact, Georgia Konstantinidou, Institute of Pharmacology,

Fig. 4 LPIAT1 is overexpressed in human lung cancer and predicts
poor patient survival. a Relative LPIAT1 mRNA expression in
healthy lungs (n= 59) or lung tumors from wild-type (n= 326) or
mutant KRAS (n= 148) human lung adenocarcinomas (LUAD
cohort). The box-plots span from the first to third quartile (depicting
the median as a line in the middle), the whiskers extend to 1.5 x IQR
(interquartile range). Outliers > 1.5 times the IQR are indicated with
circles. b Relative LPIAT1 mRNA expression in LUAD cohort stra-
tified by PTGES2-high (n= 258) versus PTGES2-low (n= 259) by
median separation. Outliers >1.5 times the IQR are indicated with
circles. c Immunoblot analysis of the indicated targets in primary
human patient-derived lung adenocarcinoma samples. N normal lung,

T lung tumor (lung adenocarcinomas). The mutational status of KRAS
is indicated. d Relative LPIAT1 mRNA expression in squamous lung
carcinoma (LUSC) and lung adenocarcinoma (LUAD) cohorts strati-
fied by ACSL3-high (n= 508) versus ACSL3-low (n= 509) by median
separation. Outliers > 1.5 times the IQR are indicated with circles.
Kaplan–Meier analysis showing the percent survival of ACSL3-low
versus ACSL3-high (e) or LPIAT1-low versus LPIAT1-high (f) in
squamous lung carcinoma (LUSC) and lung adenocarcinoma (LUAD)
cohorts. The number of patients is indicated. Statistical analyses were
done using two-tailed unpaired Student’s t test, one-way ANOVA or
log-rank (Mantel-cox) test. **p < 0.01, ****p < 0.0001.
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University of Bern, 3010 Bern, Switzerland (georgia.kon-
stantinidou@pki.unibe.ch). Requests will be handled
according to the University of Bern policies regarding MTA
and related matters.

Reagents and plasmids

pLKO.1 puro (Addgene plasmid #8453; http://n2t.net/a
ddgene:8453; RRID:Addgene_8453), pLKO.1 hygro
(Addgene plasmid #24150; http://n2t.net/addgene:24150;
RRID:Addgene_24150), pCMV-VSV-G (Addgene plasmid
#8454; http://n2t.net/addgene:8454; RRID:Addgene_8454),
and pCMV-dR8.2 dvpr (Addgene plasmid #8455; http://n2t.
net/addgene:8455; RRID:Addgene_8455) were a gift from
Prof. Bob Weinberg [42]. The human LPIAT1-containing
lentiviral vector (pLenti-GIII-CMV-GFP-2A-Puro) was pur-
chased from Applied Biological Materials Inc. The ACSL3
and LPIAT1 shRNAs were obtained as bacterial glycerol
stock from Sigma-Aldrich and the sequence of interest was
subcloned into the pLKO-puro backbone or into pLKO-
hygro (for the combination studies with LPIAT1 over-
expression) plasmids after digestion with AgeI/EcoRI. The
final shRNA constructs were confirmed with sequencing.

Cell lines

All human NSCLC cell lines used in this study (A549,
H358, H1264, A427, H838, H596, H125, and HCC95)
were derived from male patients, and were provided by Dr.
John Minna (UT Southwestern Medical Center) [43]. All
cell lines were DNA fingerprinted for provenance. Cell lines
were screened free for mycoplasma, and cultured in an
incubator at 37 oC and 5% CO2 in RPMI-1640 medium
(Gibco) containing 10% fetal bovine serum (Thermo
Fisher), 100 I.U./mL penicillin, 100 μg/mL streptomycin,
and 0.5 μg/mL puromycin (Gibco).

Animal studies

Mice were maintained under controlled humidity and tem-
perature conditions, with a standard 12-h light/dark cycle and
were fed ad libitum. Mixed background LSL-KrasG12D/WT;
p53flox/flox mice were generated by crossing stock B6.129SS4-
krastm4Tyj/J (from JaxLab, Stock number 008179) [25], with
B6.129P2-Trp53tm1Brn/J (from JaxLab, Stock number
008462) mouse [26]. The mixed background Cre-inducible
LSL-KrasG12D/WT;p53flox/flox;Acsl3–/– mouse model was
obtained by crossing LSL-KrasG12D/WT;p53flox/flox mice with
B6;129S5-Acsl3Gt(OST148301)Lex/Orl [44]. LSL-KrasG12D/WT;
p53flox/flox;Acsl3-/- mice were backcrossed for eight genera-
tions, before creating the experimental groups. The NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ NSG mice were from Jackson labs
(stock number: 005557). Only male littermates were used for

the experiments. Animal handling and experimental proce-
dures were performed in compliance with the federal
guidelines and were approved by the Veterinaerdienst de
Kantons Bern.

For intratracheal injections, 2.5 × 107 infectious particles
of VVC-U of Iowa-5 Ad5CMVCre (Viral Vector Core,
University of Iowa) were delivered to male mice at 8 weeks
of age, resulting in the concomitant lung specific KrasG12D/
WT induction, and p53 deletion. Mice were sacrificed
10 weeks post induction, and lungs were retrieved after
anesthesia and perfusion of the animal with 20 ml of PBS.
Healthy lung tissue and macrodissected tumors used for
measurement of prostaglandin levels were snap-frozen in
liquid nitrogen.

For the xenotransplantation study in vivo, 1 × 106 A549
cells (A549 pLKO or A549 shLPIAT1 #3) or 2.5 × 106

HCC95 cells (HCC95 pLKO or HCC95 shLPIAT1 #3)
resuspended in 100 μl of sterile PBS were injected sub-
cutaneously to male NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ NSG
mice at 7–8 weeks of age. The mice were closely monitored
on a daily basis, and the size of the tumors was measured
with a caliper every 2–3 days. Mice were sacrificed when
the tumor volume reached 1000 mm3.

Genomic DNA extraction and PCR assay were per-
formed using the KAPA HotStart Mouse Genotyping Kit
(Kapa Biosystems, KK7352) and KAPA2G Fast HotStart
Genotyping Mix (Kapa Biosystems, KK5621), respectively,
according to the manufacturer’s instructions. The mice
genotypes were confirmed following the corresponding
provider’s protocols. The full list of oligos used to genotype
the mice can be found in Supplementary Table 2.

Human studies

The patient-derived frozen lung adenocarcinoma samples
used for Fig. 4 were provided by the institute of pathology,
translational research unit. The sex of the patients is the
following: Patient #1: female, #2: female, #3: male, and #4:
female. The use of human samples was approved by the
ethics commission (swissethics), ID: 2017-01322. All
samples were provided upon patients' consent.

TCGA data analysis

TCGA LUSC and lung adenocarcinoma (datasets LUSC and
LUAD, respectively) datasets were retrieved from http://ca
ncergenome.nih.gov. The data were downloaded with the
help of the web graphic user interface Xenabrowser
(xenabrowser.net) [45] and analyzed with GraphPad Prism
version 7.0. Incomplete data, missing expression values and/
or survival were eliminated from the analysis and only pri-
mary tumors were considered. RSEM gene quantifications as
provided by TCGA were taken. The stratification in high-/
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low-expressing groups in Fig. 4b, d was performed by
median separation as indicated in the related figure legends.
For the patient survival analysis (Fig. 4e, f), patients were
classified into two groups, and association between prognosis
(survival) and gene expression (FPKM) was examined. The
best expression cut-off refers the FPKM value that yields
maximal difference with regards to survival between the two
groups at the lowest log-rank P value.

shRNAs, virus production, and transduction

Recombinant lentiviruses were produced by transfecting
HEK 293 T cells, using the TransIT®-293 Transfection
Reagent (Mirus; MIR2705), with pCMV-VSV-G (VSV-G
protein), pCMV-dR8.2 (lentivirus packaging vector), and
lentiviral constructs, according to the manufacturer’s
instructions.

Mass spectrometry-based shotgun lipidomics

Lipid extraction

Mass spectrometry-based lipid analysis was performed by
Lipotype GmbH (Dresden, Germany) as previously descri-
bed [46]. Lipids were extracted using a two-step chloroform/
methanol procedure [47]. Data analysis and post-processing.
Data were analyzed with in-house developed lipid identifi-
cation software based on LipidXplorer [48, 49]. Data post-
processing and normalization were performed using an in-
house developed data management system. Only lipid iden-
tifications with a signal-to-noise ratio >5, and a signal
intensity fivefold higher than that in the corresponding blank
samples, were considered for further data analysis. Experi-
menters were blinded during data analysis.

Ultra-performance liquid chromatography-tandem
mass spectrometry

Reagents

Methanol, chloroform, dichloromethane, and acetonitrile
(Fisher) were all of mass spectrometry grade. Sodium for-
mate and HCl were from Sigma, and TMS-diazomethane
(TMS-DM, 2.0M in hexanes) from Sigma-Aldrich and
Acros. Lipid standards were ammonium salts of 1-heptade-
canoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-
phospho-(1′-myo-inositol-4′,5′-bisphosphate) [17:0-20:4 PI
(4,5)P2] Avanti Polar Lipids, LM1904; 1-heptadecanoyl-2-
(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-(1′-
myo-inositol-4′-phosphate) [17:0-20:4 PI(4)P] Avanti Polar
Lipids, LM1901; and 1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-
eicosatetraenoyl)-sn-glycero-3-phospho-(1′-myo-inositol-
3′,4′,5′-trisphosphate) [17:0-20:4 PI(3,4,5)P3] Avanti Polar

Lipids, LM1906, Trimyristin (14:0, 14:0, 14:0), Tripalmitin
(16:0, 16:0, 16:0), Triolein (18:1, 18:1, 18:1) Trilinolein
(18:2,18:2,18:2), Tristearin (18:0,18:0,18:0), Triarachidin
(20:0,20:0,20:0), Triarachidonin (20:4,20:4,20:4) (NuChek-
Prep, Inc. Elysian, MN).

Sample processing

Cells (2 × 106) were washed twice with PBS and incubated
with 0.5 M trichloroacetic acid (TCA) for 5 min on ice.
Cells were then scraped from the dish, vortexed for 30 s and
further incubated on ice for 5 min. The TCA-treated sam-
ples were centrifuged at 20,000 × g for 3 min at 4 oC. After
discarding the supernatant, the pellet was resuspended in
1 mL of 5% (w/v) TCA+ 10 mM EDTA and centrifuged at
20,000 × g for 3 min at 4 oC. After repeating the same step
once, the pellet was used for the lipid extraction.

Lipid extraction

Prior to lipid extraction the following lipid analytical
internal standards were added to the TCA precipitates:
17:0–20:4 PI(4,5)P2, 17:0–20:4 PI(3,4,5)P3, 17:0–20:4 PIP.
Lipids were extracted using a modification of an acidified
chloroform-methanol extraction protocol [50, 51]. It was
initiated by adding 670 µL of chloroform:methanol:12 N
HCl (40:80:1) to the TCA precipitate followed by vigorous
vortexing for 5 min and incubation for 10 min at 4 °C. Then
650 µL of ice-cold chloroform was added and the samples
were vortexed for another 2 min and allowed to sit for 5 min
at 4 °C after which 300 µL of ice cold 1M HCl was added.
The samples were vortexed for 2 min, centrifuged at
10,000 × g for 2 min, and the lower phase was then col-
lected in a fresh 2-mL microcentrifuge tube. Ice cold the-
oretical lower phase (900 μl) generated by combining
chloroform:methanol:1.74M HCl mixture (86:14:1,v/v/v)
was added to the upper phase and the mixture was vortexed
and centrifuged. The lower phase was then combined with
the previously collected lower phase and dried under a
stream of N2 and subsequently methylated as previously
described [52].

Mass spectroscopy

LC/MS was carried out essentially as previously described
[52]. Aliquots of sample resuspended in 20–100 µL of
100% mass spectroscopy grade methanol were injected with
a Waters Acquity FTN autosampler into the UPLC/MS.
Chromatography over a Waters Acquity UPLC C4 column
(Waters Acquity UPLC Protein BEH C4, 1.7 μm 1.1 × 100;
300 A) was carried out with an acetonitrile formic acid
gradient monitored by a Waters XEVO TQ-S MS/MS in
multiple reaction monitoring mode using electrospray and
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positive ion mode. The gradient was initiated with 10 mM
formic acid in water/10 mM formic acid in acetonitrile
(33:67 v/v), held for 1 min, then increased to 15:85, v/v in
9 min following injection, held at 85% for 1 min, then
increased to 100% for an additional 3 min, and then re-
equilibrated to starting conditions for 3 min.

Quantification of PGE2, PGD2, and PGI2 by
LC–MS/MS

Sample preparation

Lung tissue samples were weighted while still frozen and
transferred into 2 mL XXTuff reinforced microvials (Bio
Spec Products Inc., OK, USA) with three chrome-steel
beads (diameter, 2.3 mm; Bio Spec Products Inc., OK,
USA) and the corresponding volume of 0.1 M formic acid
to reach 100 mg/mL. Samples were homogenized using a
Mini-Beadbeater-24 (Bio Spec Products Inc., OK, USA)
and the extraction of AA, PGE2, PGD2, and PGI2 (since
PGI2 is not metabolically stable, this analyte was quan-
tified using its stable hydrolysis product 6k-PGF1a) as
previously described [53]. LC–MS/MS conditions.
LC–MS/MS analysis was performed using our previously
described protocol [53] with some changes. We used a
Shimadzu UFLC coupled to a TripleQuad 5500 QTRAP
mass spectrometer (AB Sciex, Canada). The LC column
was a Reprosil-PUR C18 column (3 μm particle size; 2 ×
50 mm; Dr. A. Maisch HPLC GmbH, Germany) main-
tained at 40 °C with a mobile phase flow rate of 0.3 mL/
min. The mobile phase composition was a mixture of (A)
2 mM ammonium acetate plus 0.1% formic acid and (B)
acetonitrile plus 0.1% formic acid. A gradient elution was
used, starting with 95% of phase A and linear increase of
phase B reaching 40% at minute 3; then the linear
increase rate was decreased to reach 65% B at minute 9.
Finally, to flush the column, phase B was increased by
95% at minute 10 and kept for 4 min with a subsequent re-
equilibration by decreasing phase B down to 5%. The
total analysis time was 17 min. For quantification, an 11-
point calibration curve was analyzed, determining the
slope, intercept, and regression coefficient, and analytes
concentration in the samples was calculated applying the
model previously described [53]. The values were nor-
malized to total proteins. Protein quantification was done
with a BCA kit.

PGE2 ELISA assay

PGE2 levels were measured in culture medium of A549,
A427, H1264, H358, H596, H838, H125, and HCC95
human NSCLC cell lines using solid-phase sandwich
enzyme-linked immunosorbent assay (ELISA). Briefly, for

every cell line 3-3.5 × 105 cells were plated in six-well
plates in a standard volume of culture medium. The
supernatant was collected at 24 h, and the assay was per-
formed according to the manufacturer’s protocol (Cayman
Chemical, 514010). The assay had a range from 7.8 to
1000 pg/ml and its sensitivity was ~15 pg/ml. Proteins from
the adherent cells were then extracted in a standard volume
of RIPA buffer and the total protein content was used as
normalization factor for PGE2.

Immunoblotting

Cells were lysed in RIPA buffer (50 mM Tris-HCl pH 8.0,
150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate,
0.1% SDS) containing complete EDTA-free protease inhi-
bitors (Roche) and 1mM PMSF. Samples were resolved by
SDS-PAGE in Bio-Rad blotting chamber, transferred to
nitrocellulose membrane using a semi-dry chamber (Bio
Rad) and blocked in 5% BSA. Membranes were then incu-
bated overnight at 4 oC with primary antibody diluted in 5%
BSA in TBS containing 0.1% Tween. Secondary fluorescent-
tagged antibodies were from Li-Cor biosciences, and devel-
opment was done in Li-Cor fluorescence–chemiluminescence
detector. All antibodies and their dilutions are listed in
Supplementary Table 2.

RT-PCR

RNA was extracted using the RNAeasy kit (QIAGEN,
74104), and cDNA was synthesized with the RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific,
K1622). RT-PCR was performed in 96-well plates (Tref-
fLab) with FastSybr green (Thermo Scientific, 4367659).
The normalization was performed with the ΔΔCT method.
The full list of the oligonucleotides used can be found in
Supplementary Table 2.

Cell proliferation assay

Cells were plated at low confluency in 24-well plates (8000
cells/well for A549, 9000 cells/well for H358, H1264, and
A427) and allowed to proliferate for 48 or 96 h. Cell via-
bility was measured by crystal violet (Sigma-Aldrich)
staining (0.1% in 20% methanol) of adherent cells after
10 min fixation in 4% paraformaldehyde (Sigma-Aldrich).
After washing twice and air-drying, stained cells were de-
colored with 5% acetic acid, and OD600 was measured with
a spectrophotometer.

Soft agar colony formation assay

Cells (3 × 105/well) were seeded on semi-solid agar medium
(bottom layer 0.6% and top layer 0.4% mixed with cells) in
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a six-well plate. After 14–21 days cells were formalin-fixed
and stained with 0.005% Iodonitrotetrazolium. The colonies
were counted using a microscope.

Statistical analysis

All data sets were organized and analyzed in Microsoft
excel 2016 and GraphPad Prism version 7.0.0 (GraphPad
Software, San Diego, CA, USA, www.graphpad.com). All
data presented are expressed as mean ± SEM or ±SD of
three or more biological replicates/group (except for the
in vivo experiments and the human data analysis, the
number is indicated in the related figure legends). The mass
spectrometry-based lipidomics analyses and PGE2 mea-
surements were repeated twice. The significance of the
results was determined by employing two-tailed unpaired
Student’s t test and one- or two-way ANOVA (Tukey’s post
test) when more than two groups were compared, and sig-
nificance is indicated in the related figure legends. No
outliers were found in any data set and no animals or data
were excluded from statistical analysis.
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