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Abstract

As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase

(FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism

(SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme.

Accurate prediction of SOMs on drug molecules will assist the search for drug leads during

the optimization process. Here, some quantum mechanics features such as the condensed

Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and

classified using the support vector machine (SVM) for predicting some potential SOMs on a

series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function

fA
− representing the nucleophilicity of central atom A and the attributes from circular finger-

prints accounting the influence of neighbors on the central atom. The total number of FMO

substrates and non-substrates collected in the study is 85 and they are equally divided into

the training and test sets with each carrying roughly the same number of potential SOMs.

However, only N-oxidation and S-oxidation features were considered in the prediction since

the available C-oxidation data was scarce. In the training process, the LibSVM package of

WEKA package and the option of 10-fold cross validation are employed. The prediction per-

formance on the test set evaluated by accuracy, Matthews correlation coefficient and area

under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals

that the SVM model built can accurately predict the potential SOMs for drug molecules that

are metabolizable by the FMO enzymes.

Introduction

The flavin-containing monooxygenase (FMO) is a flavoprotein which carries a flavin adenine

dinucleotide (FAD) and utilizes NADPH and oxygen to catalyze the metabolism of many

xenobiotics such as compounds containing nitrogen, sulfur, selenium, phosphorous and other
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nucleophilic heteroatoms [1–4]. The family of mammalian FMO genes is comprised with five

similar genes from FMO1 to FMO5 and all of them are important Phase I metabolic enzymes

as being capable of metabolizing xenobiotics. FMO1 and FMO3 are the two major isoforms

expressed in liver microsomes and other tissues. While FMO1 is highly expressed in fetal liver,

FMO3 is predominantly found in adult human. However, FMO2 is expressed overwhelmingly

in lung and fewer FMO4 and FMO5 isoforms are found in human body [3, 5]. People may suf-

fer the so called "fish odor syndrome" when their FMOs are mutated or defected and failing to

metabolize trimethylamine such as trimethylamine N-oxide to its oxygenated form for con-

verting it into urine and sweat [6].

Both FMOs and cytochrome P450 (CYP450) are Phase I metabolic enzymes involving in

the metabolism of xenobiotics in human. The main function of these microsomal enzymes is

to add oxygen to the foreign compounds and render these foreign compounds to soluble form

so that they can be excreted out of human body. Although both FMOs and CYP450 sometimes

metabolize the same type of chemical compounds, the metabolic mechanisms exerted by these

two enzymes are fundamentally different. While the CYP450 enzymes oxidize compounds

through some electrophilic reactions and create some radical intermediates, the FMO enzymes

oxidize compounds through the nucleophilic addition reactions [5, 7]. The substrates of the

two enzymes are also quite different. The FMO enzymes tend to metabolize molecules with

soft nucleophilic atoms such as N, S, P, and Se, whereas the CYP450 systems not only oxidize

molecules with these types of atoms but also directly metabolize the C atom and few of this

type is found by FMO enzymes.

Though the substrate range of FMO appear to be somewhat narrower than that of CYP450,

the enzyme system still plays a crucial role in Phase I metabolism of xenobiotics [7, 8]. For

examples, some therapeutic agents such as benzydamine, itopride, and arbidol are primarily

metabolized by FMO but not by CYP450 enzymes [9–11]. However, some are both metabo-

lized by FMO and CYP450 enzymes like diphenhydramine and ziprasidone [12–14]. More-

over, some metabolites of FMO enzymes are also known to be the substrates of CYP450 such

as TG100435, a Src kinase inhibitor [15]. The paramount difference between FMO and

CYP450 is that unlike the latter, the former is not easily induced nor readily inhibited thereby

the potential adverse drug-drug interaction may be prevented for drugs predominantly metab-

olized by the former [7, 8]. These properties may offer advantages in drug design and discov-

ery. By taking the FMO detoxication pathways into account in designing new drugs, more

meaningful drug-like materials may be found.

The site of metabolism (SOM) in a molecule is defined as the place where the reaction of

metabolism can take place. Identification of SOMs is important in the drug optimization pro-

cess for searching the drug leads. The information of SOM identified may guide developers to

optimize the drug structure through changing the specific sites to avoid the unwanted meta-

bolic reactions. However, identifying SOM through experimental procedures is not an easy

task since each metabolite of synthesized compound has to be isolated and then characterized

through some specific techniques such as LC-MS-MS [16]. Thus, acquiring information of

SOM through experimental works is a highly cost and time consuming process. Therefore,

developing accurate in silico methods for predicting SOM may be worthwhile and important.

There are several in silico methods for predicting SOM for drugs that can be metabolized

by CYP450 have been developed. These approaches can be roughly divided into the following

two categories namely, the ligand (substrate) based and the structure (enzyme) based ones. For

examples, SMARTCyp [17] is a method that using a database of activation energies computed

from quantum mechanics for a variety of ligand fragments and an accessibility descriptor com-

puted to rank all the possible SOMs. IMPACTS [18] combines the docking result given by the

molecular docking program GOLD, a reactivity index with computed hydrogen bond order
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descriptors and the local ionization energy to refine the prediction for SOMs [19, 20]. Metasite

combines the ligand and structure modeling together to predict SOM and the FMO enzymes

are recruited into their package recently [21]. There are also machine learning techniques

being developed for predicting SOM. MetaPrint2D [22] is a online tool that is based on train-

ing the Accelrys Metabolite Database [23] and then predicting SOM through counting occur-

rences of atomic fingerprints exhibiting as SOM or non-SOM in the database. Another

example is RegioSelectivity (RS)-predictor [24, 25] which uses a Support Vector Machine

(SVM) to predict SOM through training on 148 topological and 392 quantum mechanics

atomic descriptors including contributions from neighbouring atoms.

There are other machine learning approaches using different descriptors to predict SOM

such as Xenosite [26] using the Daylight fingerprint descriptors [27]. A SVM method [28]

using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [29] and

other various descriptors has been published. FAME [30] is a broad metabolism predictor

using the Random Forest model and the atomic descriptors calculated from CDK [31]. A

method using the decision trees on the activation energies and solvent accessible surface area

calculated from MOE [32–35] has been developed. Recently, the PASS algorithm using some

2D fingerprint descriptors [36] or the RASCAL (Random Attribute Subsampling Classifica-

tion) algorithm [37] using some circular fingerprints has been employed to predict SOM by

CYP450 enzymes [38, 39].

In this study, we predict SOM by FMO enzymes through using SVM on some quantum

mechanics and a circular fingerprints method Molprint2D. Only the substrates-based infor-

mation is used here to predict SOMs by FMO enzymes. The potential SOMs on some FMO

substrates are marked first. These are usually atom N and S which account for over 90% pres-

ence in FMO metabolites. An example of a marked FMO substrate is shown in Fig 1. Next, the

local reactivity of these potential SOMs is characterized through the quantum mechanics cal-

culation. These quantum mechanics plus attributes from Molprint2D fingerprints computed

are then classified by SVM to predict whether a site could be a SOM or not. The prediction

Fig 1. An example of FMO substrate and its SOMs. The potential SOMs identified for Tozasertib which is

one of the FMO substrates studied. The potential SOMs are marked with red circles while the actual SOM is

highlighted by a red arrow.

doi:10.1371/journal.pone.0169910.g001
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accuracy of our SVM models are also validated using both internal and external data sets.

While SVM has been successfully used for predicting SOMs for some substrates of CY450

enzymes, it has not been implemented for predicting SOMs for substrates of only FMO

enzymes like the work presented herein.

Materials and Methods

Datasets

Unlike the CYP450 system, the available FMO substrates are far less. For example, only eight

substrates of FMO3 in the Human Metabolome Database (HMDB) are listed [40]. However,

we have collected a total of 85 compounds from literatures [11, 13, 15, 21, 41–86] for making a

dataset of 228 potential SOMs. The 85 compounds collected including 73 FMO substrates and

12 non FMO substrates. These 228 instances were randomly divided into a training and a test

set using the Research Randomizer serve. The number of compounds allocated in the training

and the test set were respectively 42 and 43 (Table 1). Moreover, the number of SOMs and

non-SOMs instances identified in each set was shown in Table 2. Only two major FMO-cata-

lyzed reactions namely N-oxidation and S-oxidation were considered in this study since the

data for C-oxidation was scarce. The actual SOMs or non-SOMs on each compound were visu-

ally defined and marked. After dividing the dataset into the training and the test sets, the num-

ber of instances counted for the former and the latter were 111 and 117, respectively.

Table 1. Dividing the 85 compounds collected into the training and the test sets.

Number compound name reaction Potential som som or nonsom

1 (S)-nicotine N OX (S)-nicotine 3 N nonsom

(S)-nicotine 7 N som

2 clozapine N OX clozapine 3 N nonsom

clozapine 4 N nonsom

clozapine 10 N nonsom

clozapine 18 N som

3 cysteamine S OX cysteamine 3 N nonsom

cysteamine 4 S som

4 disulfoton S OX disulfoton 2 S nonsom

disulfoton 5 S nonsom

disulfoton 12 S som

. . . . . . . . . . . . . . .

#Assigned by Research Randomizer

Compound 2, 3, 9, 13, 14, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 37, 39, 40, 41, 46, 47, 49, 50, 52, 54, 57, 59, 60, 61, 64, 66, 68, 70, 72, 74, 75, 77,

79, 82, 85 were assigned as the test set

First, the total collected compounds was arranged and numbered in order of collection time. Then, 42 out of 85 compounds were assigned as the test set by

the web server Research Randomizer and the rest were treated as the training set.

doi:10.1371/journal.pone.0169910.t001

Table 2. The total instances assigned for the training and the test sets were shown.

Dataset Number of

compounds

Substrates of

FMO

Non substrates of

FMO

Number of instances

(Potential SOMs)

Number of actual

SOMs

Number of non-

SOMs

The data for training

with 10 CV

43 40 3 111 44 67

Test set 42 33 9 117 36 81

doi:10.1371/journal.pone.0169910.t002
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Quantum mechanics features

We employed the condensed Fukui reactivity indices as the main quantum mechanics features

to represent the local reactivity of atoms within a molecule since molecules with larger values

of Fukui function computed may show higher reactivity [87–92]. The Fukui function was

defined as follows:

f ð r*Þ ¼
@rðr*Þ
@N

� �

v

ð1Þ

Where rðr*Þ was electronic density, N was number of electrons and ν was external potential

exerted by the nuclei. The concept was first described by Fukui in 1952 [93] and a correspond-

ing definition with the Density functional theory (DFT) was given in 1984 [89, 91]. However,

the condensed Fukui function was restricted to an atom within a molecule rather than a point

in 3D space [94–98]. The condensed Fukui function or the Fukui reactivity indices of atom A

in a molecule M were defined as follows:

f A
þ ¼ PAðNþ 1Þ � PAðNÞ ð2Þ

f A
� ¼ PAðNÞ � PAðN � 1Þ ð3Þ

f A
0 ¼ 1

2½PAðNþ 1Þ � PAðN � 1Þ� ð4Þ=

where fA
+ was the electrophilicity of atom A, fA

− was the nucleophilicity of atom A, fA
0 was the

radical attack susceptibility of atom A, PA(N) was the population on atom A with N electrons,

PA(N+1) was the population on atom A with N+1 electrons, and PA(N-1) was the population

on atom A with N-1 electrons. While PA(N) was computed from the Mulliken charges, PA(N)

was computed as atomic number of atom A—qA(N), where qA(N) was the charge on atom A

with N electrons. The structures of all the 85 compounds were optimized in gas phase using

the hybrid B3LYP functional and the 6-31G(d,p) basis set [99–103]. Then, the three population

states with N, N+1 and N-1 electrons were calculated using the optimized structures with the

same basis set. The PCM solvation model was subsequently employed to calculate the surface

area for each atom. The charges, parameters of condensed Fukui function, and surface area of

atoms computed were used in the training process. All the aforementioned calculations were

performed using the Gaussian 09 package [104].

Attributes from circular fingerprints

The Fukui reactivity indices described above represented the local reactivity of a specific atom

in a molecule and was insufficient to account the influence from neighbor atoms. To include

the neighbor influence, we used Molprint2D [105] to evaluate the effect of neighbor atoms

around each potential SOM. Molprint2D recognized the SYBYL atom type and counted the

occurrence times of a neighbor atom of a particular atom type. The occurrence times counted

for different neighbor atoms of different atom types were treated as the molecular descriptors.

For a specific atom, all its neighbor atoms were generated iteratively by chemical bond lengths

defined as follows:

[atomtype];

[1st-layer]-[frequency]-[neighbour_type]; [2nd-layer]-[frequency]-[neighbour_type]; [3rd-

layer]-[frequency]-[neighbour_type]; . . .;

where [atomtype] was the atom type of a center atom designated by a number representing

the atom type identified from all the 53 SYBYL atom types namely from C.3, C.2, C.ar,. . ., to
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Co.oh, [1st-layer]-[frequency]-[neighbour_type] represented its neighbor atom types within

one bond, [2nd-layer]-[frequency]-[neighbour_type] represented its neighbor atom types

within two bonds and so on. An example of attributes from Molprint2D fingerprints was

depicted in Fig 2. The Molprint2D fingerprints computed for each drug molecule were con-

verted to a series of numeric attributes for being readable by a machine learning package.

Here, we restricted the scope of each Molprint2D fingerprint computed to two chemical bond

lengths. Further, the Molprint2D fingerprint for each drug molecule was generated using the

Open Babel package [106].

SVM classifier

The Support Vector Machine (SVM) classifier was used to predict whether an atom within a

molecule could be a SOM of FMO enzymes or not. SVM can classify complex, non linear and

high dimensional data into two classes. The merit of SVMs is to classify data by mapping input

vectors into a high- or infinite- dimensional space with some kernel functions and then con-

structing a hyperplane or set of hyperplanes to separate them into two classes with a possible

maximal margin computed. The margin is defined as the distance from the separating hyper-

plane to the nearest training-data point. The trained model of a SVM classifier can be used to

predict to which class an unknown sample is belonging. Details on the basic SVM theory can

be found elsewhere [107–109]. Here, we used the free SVM program LibSVM in the WEKA

package [110] to perform all the classification tasks. Much of the running parameters used

were default settings except C and γ values. We have selected the AUC based settings for train-

ing and then the best parameters obtained after training were used for predicting for the test

set. Parameter optimization was performed by the package automatically using a grid-based

search procedure.

Performance measures

There were several model validation methods such as independent data test, n-fold cross-vali-

dation, jackknife (leave-one-out) cross-validation could be used to estimate the predictability

of our SVM models built [111–114]. Due to fewer features (42 features) and samples (85 com-

pounds) used, we have employed both the 10-fold cross-validation and jackknife (leave-one-

Fig 2. An example of attributes generated by Molprint2D and its definition. The original format of

Molprint2D has been transformed by us into some numerical values for being readable by libSVM in the

WEKA package.

doi:10.1371/journal.pone.0169910.g002
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out) methods for validating our SVM models built. A web available method, the Research Ran-

domizer was used to rationally divided our samples into a training and a test set. To avoid arbi-

trariness or bias, the SVM models built by the training set were validated not only by the

10-fold cross validation but also by the jackknife methods.

The prediction performance of the SVM models constructed was assessed through comput-

ing the following parameters: sensitivity (SE), specificity (SP), accuracy (ACC), and Matthews

correlation coefficient (MCC) on the test set. These parameters were defined as follows:

SensitivityðSEÞ ¼
TP

TP þ FN
ð5Þ

SpecificityðSPÞ ¼
TN

TN þ FP
ð6Þ

AccuracyðACCÞ ¼
TP þ TN

TP þ FP þ TN þ FN
ð7Þ

MCC ¼
ðTPÞðTNÞ � ðFPÞðFNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TP þ FP�½TP þ FN�½TN þ FP�½TN þ FN�

p ð8Þ

where TP, FN, TN, and FP stood for true positive, false negative, true negative and false posi-

tive, respectively. In addition to ACC and MCC, a receiver operating characteristic (ROC)

analysis was also performed to evaluate the models. The ROC curves were constructed by plot-

ting the false positive (1−SP) against the true positive rate (SE) computed and the area under a

ROC curve (AUC) revealed whether a model constructed was a random model with an area of

0.5 or an ideal one with an area of 1.0 computed.

Results and Discussion

Condensed Fukui function

The total number of compounds studied was 85 and which were divided into a training and

test set with each carrying roughly the same number of potential SOMs (Table 1). Both the sin-

glet and triplet spin types of each optimized structure were considered in the calculation. The

populations PA(N), PA(N+1), and PA(N-1) computed from Mulliken charges via DFT method

were used to calculate the condensed Fukui Function. The values of fA
+, fA

–, and fA
0 computed

represent the electrophilicity of atom A, nucleophilicity of atom A, and radical attack suscepti-

bility of atom A, respectively. The FMO enzymes are capable of metabolizing the xenobiotics

carrying nucleophilic heteroatoms such as nitrogen and sulfur so that the corresponding fA
−

computed could be used to predict SOMs straightforwardly. In Fig 3, we present the values of

condensed Fukui Function computed for 4 out of 85 compounds in the dataset. Among these

4 substrates, 3 carrying some N-oxidation SOMs and the last one carrying no SOM since it is a

non-substrate of FMO enzymes (Fig 3).

The first drug shown in Fig 3 is benzydamine which is a nonsteroidal anti-inflammatory

drug and usually used for pain relief and anti-inflammatory treatment of mouth and throat.

There were three nitrogen atoms N3, N7, and N21 on benzydamine being predicted to be

three potential SOMs and the corresponding fA
− computed were 0.051, 0.045, and 0.050,

respectively (Fig 3). However, N21 was the actual SOM of the drug though both its fA
− and

charge were not among the highest computed for the three potential SOMs. The actual SOM

did not occur at the atom with the highest fA
− computed which could be due to the substruc-

ture preference by FMO enzymes.
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There were five potential SOMs including both sulfur and nitrogen atoms S1, N6, N7, N8,

and N9 on drug K11777 or k777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl)

which is an irreversible cysteine protease inhibitor (Fig 3). The corresponding fA
− computed

were 0.006, 0.007, 0.048, 0.011 and 0.006, respectively (Fig 3). The actual SOM of K11777 was

on N7, a tertiary amine atom which also had the highest fA
− computed among all the potential

SOMs identified. However, the charge on N7 was among the second highest as opposite to the

highest computed on S1 located in substructure R2SO2.

Voriconazole is a triazole antifungal drug usually used to treat the serious and invasive fun-

gal infections. Apparently, voriconazole had five potential SOMs and they were on N5, N7,

N14, N16 and N18, respectively (Fig 3). While N5 and N7 were located in substructure

Fig 3. The values of condensed Fukui functions computed for the four selected examples in the training set. qA(N), qA(N+1)

and qA(N-1) represent respectively the atomic charge in the molecule with N electrons, the atomic charge in the molecule with N+1

electrons, and the atomic charge in the molecule with N-1 electrons. PA(N) is equal to the atomic number of atom A—qA(N) and so on.

fA
+, fA

− and fA
0 are the values of condensed Fukui function computed. The values of fA

+, fA
− and fA

0 represent the electrophilicity of atom

A, nucleophilicity of atom A, and radical attack susceptibility of atom A, respectively.

doi:10.1371/journal.pone.0169910.g003
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pyrimidine, a six-members ring; N14, N16, and N18 were located in substructure triazole

which was a five-members ring. The fA
− values of N5, N7, N14, N16 and N18 computed were

0.023, 0.042, -0.002, 0.040 and 0.067, respectively. Note that the actual SOM in voriconazole

occurred on N7 and its corresponding fA
− was the second whereas its charge was the third

highest computed among the five potential SOMs identified.

The fourth drug listed in Fig 3 was alvameline which was a M1 receptor agonist and M2/M3

receptor antagonist still under investigation for treating the Alzheimer’s disease. The drug was

a non-substrate of FMO enzymes and research attempt for the drug was currently ceased due

to its poor clinical outcome. Although the drug was a non-substrate of FMO enzymes and no

actual SOMs was given, there were five potential SOMs could be seen on N1, N2, N3, N4 and

N5 (Fig 3). While N2, N3, N4 and N5 were in substructure tetrazole, a five-members ring, N1

was belonging to the tertiary amine of a six-members ring. The corresponding fA
− computed

for N1, N2, N3, N4 and N5 were 0.133, 0.015, 0.045, 0.031 and 0.058, respectively (Fig 3).

In general, the values of fA
− computed representing the nucleophilicity of atom A in a drug

molecule. We have found that the intramolecular ranking of fA
− computed was highly correlated

with the actual SOMs identified for each drug molecule. All these actual SOMs identified were

either having the first or second ranked fA
− computed. For examples, the fA

− computed for the

actual SOM of K11777 was ranked the highest, while those computed for benzydamine and vori-

conazole were both ranked the second highest among all the potential SOMs (Fig 3). This would

indicate that all these identified actual SOMs had higher nucleophilicity for being recognizable

by FMO enzymes. However, as shown in Fig 3, the intramolecular ranking of charge was not as

effective as the aforementioned ranking of fA
− in reflecting the actual SOMs identified. For

examples, though the charges for the actual SOMs identified for benzydamine and K11777 were

both secondly but not first ranked (Fig 3). In general, more negative charge would mean more

nucleophilicity computed. However, unlike fA
− computed, the charges computed were less effec-

tive or could not be used to correctly predict the actual SOMs. Here, both substrates and non-

substrates of FMO enzymes were recruited into the training set for building a SVM model. We

have found that some higher fA
− values were computed within the non-substrate molecules.

This would imply that simply using the condensed Fukui function computed was insufficient to

predict whether a drug could be a substrate or non-substrate of FMO enzymes.

Attributes from circular fingerprints

We employed the circular fingerprints of Molprint2D [105] to account the influence of sur-

rounding atoms on a particular potential SOM. The format of Molprint2D generated using the

53 SYBYL atomic types C.3, C.2, C.ar, C.1,. . ., Mo, Mn, and Co.oh was converted into some

53×3 numerical attributes where the first, second, and third column was used to describe the

center, first-layer and second-layer neighbors, respectively. For an example, a Molprint2D of

1; 1-1-2; 2-1-9; could be transformed into the first column represented by 53 attributes as 1 0 0

0 . . .. . . 0, the second column represented by 53 attributes as 0 1 0 0. . .. . . 0, and the third col-

umn represented by 53 attributes as 0 0 0 0 0 0 0 0 1 0 0 0. . .. . . 0. Fig 4 gave the conversion of

Molprint2D fingerprints generated into some numerical attributes for three selected drugs.

Note that the columns with all zero values assigned for the hydrogen, sodium,. . ., and dummy

atoms were removed.

Features and model selection

The initial features employed were consisted by two parts: (1) 10 quantum mechanics features

including charges, surface area, and condensed Fukui function computed; and (2) 53 × 3 attri-

butes from layer 0 (central atom) to layer 2 created.
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In the quantum features, qA(N+1), qA(N-1), PA(N), PA(N+1) and PA(N-1) were computed

as condensed Fukui functions and were removed for further model training. Because some

SYBYL atomic types were excluded from our dataset, the actual number of attributes used was

37 from layer 0 (central atom) to layer 2. Thus, the initial number of features created before

feature selection were 42 (5 quantum mechanics features plus 37 attributes from circular

fingerprints).

Performance measurement

We used the grid search provided in the WEKA package to obtain the optimized parameters.

The optimized SVM parameters C, γ and W (weight) after the training process were 15, 1/

instances (default), and 1 (default), respectively. Normalization and the probability estimates

were used and the other parameters employed were default settings. As shown in Table 3, the

non-SOM set was designated as the class I while the SOM set was designated as the class II set.

The performance of our training model was measured by sensitivity (SE), specificity (SP),

accuracy (ACC), and Matthews correlation coefficient (MCC) computed which were 0.851,

0.864, 0.856, and 0.705, respectively (Table 3).

This would indicate that our model was well-balanced and could accurately differentiate

the actual SOMs from the non-SOMs set since both SE and SP computed were high. The

Fig 4. Converting the original Molprint2D text format into numerical values. The original Molprint2D text format are converted to numerical values so

that they are readable by the WEKA package. Such a converting for three selected training set compounds are shown in the figure. Label "I-" represents the

neighbor type of the first layer while label "II-" represents the neighbor type of the second layer.

doi:10.1371/journal.pone.0169910.g004
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Area Under Curve (AUC) of a ROC curve constructed could also reveal the effectiveness of a

classification algorithm. A random model would give rise only a point along the diagonal

line, while a good model would yield a point in the upper left corner of the ROC curve.

Therefore, the AUC for a random and ideal model obtained would be 0.5 and 1.0, respec-

tively. The ROC curve constructed for the test set using parameters obtained from the train-

ing set was presented in Fig 5. The AUC of the ROC curve constructed for the test set was

0.887, indicating again the high predicting accuracy of the model constructed. Some other

classification methods such as Naive Bayes and Random Forest available from the WEKA

[110] package were also employed to build the training models using the aforementioned

Table 3. The performance of the training and the test set given by the model built.

Method instances Features Parameters SE SP ACC MCC AUC

SVM Training set 111 5+37 C 15 γ 1/111 W 1 0.851 0.864 0.856 0.705 0.887

Test set 117 5+37 - - - 0.790 0.917 0.829 0.659 0.877

Naive Bayes Training set 111 5+37 Default setting 0.821 0.864 0.838 0.673 0.869

Test set 117 5+37 Default setting 0.790 0.889 0.821 0.635 0.867

Random Forest Training set 111 5+37 Default setting 0.910 0.864 0.892 0.774 0.927

Test set 117 5+37 Default setting 0.840 0.861 0.846 0.668 0.868

In the model training process, class I set was designated as the non-SOM while class II set was designated as the SOM set. Instances represent the

number of potential SOMs identified. There were 5 quantum features and 37 attributes from circular fingerprints used for building the model. Parameters C,

γ and W were obtained from the SVM training. The sensitivity (SE), specificity (SP), accuracy (ACC), Matthews correlation coefficient (MCC), and area

under the ROC curve (AUC) were used to characterize the performance of the SVM model built. Symbol "-" was used to represent the same numbers used

in the test set.

doi:10.1371/journal.pone.0169910.t003

Fig 5. The ROC curves of models. The ROC curves constructed for (A) the training set by the SVM, (B) the

test set by the SVM, (C) the training set by the Naive Bayes method, (D) the test set by the Naive Bayes

method, (E) the training set by the Random Forest method, and (F) the test set by the Random Forest

method.

doi:10.1371/journal.pone.0169910.g005

Metabolic Sites Prediction for Several Drugs That Can Be Metabolized by FMO Enzymes by SVM

PLOS ONE | DOI:10.1371/journal.pone.0169910 January 10, 2017 11 / 20



features. The trained SVM model were also applied to the test set for constructing the ROC

curves. As shown in Fig 5, the AUC under the ROC curves obtained from the training by

Naive Bayes and Random Forest method with the default settings were respectively 0.869

and 0.927, which would reflect the number of features used was sufficient to represent the

datasets. We also employed a test set to test the prediction accuracy of our SVM model con-

structed. This test set was composed of 117 instances including 40 SOMs and 65 non-SOMs

which were collected from some substrates and non-substrates of FMO enzymes. The values

of SE, SP, ACC, and MCC computed for the test set were 0.790, 0.917, 0.829, and 0.659,

respectively (Table 3), since 33 out of 36 SOMs and 64 out of 81 non-SOMs were correctly

predicted. As shown in Fig 5B, the AUC of the ROC curve computed for the test set was

0.877, indicating again both the features used and the SVM model constructed were adequate

in predicting the SOMs of FMO enzymes. The prediction models built by both the Naive-

Bayes and RandomForest methods were also cross-validated using the jackknife (leave-one-

out) method. The corresponding AUC computed were 0.8911, 0.8667 and 0.9095 for SVM,

NaiveBayes, and RandomForest, respectively (S1 Fig), indicating that all the three models

built can accurately predict the SOMs.

As shown in Table 3, lower SE values in the test set obtained might be caused by bulky size

or unfitted conformation of the ligands that were expelled from the enzyme active sites. For

examples, no activity is observed for the phenothiazine derivative with an alkyl side chain of 3

carbon length (3PTZ in our data set), though Km measured for carbons 5 and 8 derivatives

(5PTZ and 8PTZ) were 18 and 10 μM, respectively. The SVM model constructed was unable

to lower the prediction error of non-SOM caused by these problems. The other factors which

might affect the prediction accuracy of the test set would be the total number of instances

used. At present, increasing the data size is still an impractical approach since there are not

many human FMO substrates around and those identified for other species such as pig, rabbit,

or rat are also scarce as well. The prediction probability of each potential SOM for two selected

substrates voriconazole and albendazole was shown in Fig 6, while the total prediction proba-

bilities for the test set were listed in S3 Table.

Compare with the prediction results given by MetaPrint2D

MetaPrint2D [22] and Metasite [21] are the two known packages that can be also used to pre-

dict SOMs by Phase I enzymes. The former was a free online tool and was employed here on

the same test set for comparing with our prediction results by the SVM models built. Meta-

Print2D encodes each SOM and its corresponding substructure with circular fingerprints.

Then, it screens a specific metabolic reaction and calculates the occurrence ratio (likelihood)

of each SOM involved in the metabolic reaction. The number of exact levels and similarity

threshold chosen were 3.0 and 0.5 which were both default settings. The weights of the six

fingerprint levels used were 1.0, 1.0, 1.0, 0.75, 0.5, and 0.25, respectively. On output, each

atom in a molecule was color coded by its normalized occurrence ratio (NOR) computed.

Higher NOR computed means higher reported rate of being a metabolism site in the data-

base. An atom was colored in red, orange, green, white, and grey to represent the corre-

sponding NOR computed as 1.00~0.66, 0.66~0.33, 0.33~0.15, 0.15~0.00 and no data,

respectively. Note that the substrates of all the phase I metabolic including FMOs enzymes

were accounted in the training base by MetaPrint2D. We intended only to compare the true

negative rate or SP (Eq 6) computed by MetaPrint2D with our SVM models since those pre-

dicted by the former would be much broader than those by the latter. Apparently, there were

22 out of 36 SOMs being correctly predicted by MetaPrint2D as shown in Table 4, If we

defined atoms coded with red or orange color as being a potential SOM predicted by the
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method. However, the corresponding SP computed for the prediction result was 0.611 which

was worse than that (0.917) given by our SVM model. This might be ascribed to the fact that

fewer human FMO substrates was collected in MetaPrint2D than in our SVM model in the

training procedure.

Fig 6. The prediction probability of each potential SOM computed for two selected FMO substrates

voriconazole and albendazole. The actual SOMs of each compound determined are highlighted with red

arrows. Each predicted SOM is marked with a red circle where the prediction probability computed is shown

alongside. Each predicted non-SOM is marked by a green circle and the prediction probability computed is

also shown alongside. Symbol "+" is used to denote a false prediction.

doi:10.1371/journal.pone.0169910.g006

Table 4. Comparison between the prediction results for the test set by the SVM model built and Metaprint2D.

Numbers of instances Enzyme for SOM TP FN SP

FP TN

Test set 117 FMO 64 17 0.917

3 33

Metaprint2D 117 Phase I enzymes 63 18 0.611

14 22

Class I set is designated as the non-SOM while class II set is designated as the SOM set in the SVM model built. The number of substrates used in both

sets is the same. The performance of the method is characterized by TP (True Positive), FP (False Positive), FN (False Negative), TN (True Negative), and

specificity (SP) computed.

doi:10.1371/journal.pone.0169910.t004
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Conclusion

In this report, we have developed a SOM prediction method for some FMO enzymes using

SVM with some quantum mechanics and circular fingerprints attributes. The total number of

molecular descriptors used in building the SOM prediction model was 42, including 5 quan-

tum mechanics features such as Mulliken charges, condensed FuKui Functions fA
+, fA

–, fA
0,

and vdw surface area and 37 circular fingerprints attributes. The prediction ability for SOM by

the SVM model constructed was validated by both the training and the test sets and was found

to be accurate. We have also compared the prediction result on the test set by our SVM model

with that by a free online method MetaPrint2D. Unlike our SVM model which only focusing

on FMO enzymes, all the phase I metabolic including FMO enzymes were considered by

MetaPrint2D. There are some drugs that are actually not metabolized by CYP450 but rather

by FMO enzymes such as benzydamine, itopride, and arbidol. Though FMO are also impor-

tant phase I metabolic enzymes, it appears that far less attention has been paid to the enzymes

than the CYP450 systems. Moreover, a major difference between FMO and CYP450 is that the

adverse drug-drug interaction problem may be avoided for drugs that are solely metabolized

by the former [7, 8]. Though the SVM prediction models constructed by us for only FMO

enzymes may deserve merit, there are still rooms for improvement for our current models

constructed especially in generating a correct bound conformation for a substrate. The current

SVM methodology may be also extended for constructing the prediction models for the

CYP450 substrates only.
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