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Abstract: WO3-decorated TiO2 nanotube arrays were successfully synthesized using an in
situ anodization method in ethylene glycol electrolyte with dissolved H2O2 and ammonium
fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage
of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode
material instead of the conventionally used platinum electrode, tungsten will form dissolved
ions (W6+) in the electrolyte which will then move toward the titanium foil and form a
coherent deposit on the titanium foil. The fluoride ion content was controlled to determine
the optimum chemical dissolution rate of TiO2 during anodization to produce a uniform
nanotubular structure of TiO2 film. Nanotube arrays were then characterized using FESEM,
EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained,
nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were
produced. The tungsten element in the samples was confirmed by EDAX results which
showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed
the anatase phase of TiO2 after calcination at 400 ˝C for 4 h in air atmosphere. The mercury
removal efficiency of the nanotube arrays was investigated by photoirradiating samples
dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal
light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor
(92.0) exhibited the best mercury removal performance due to a larger active surface area,
which enables more Hg2+ to adsorb onto the catalyst surface to undergo reduction to Hg0.
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The incorporation of WO3 species onto TiO2 nanotubes also improved the mercury removal
performance due to improved charge separation and decreased charge carrier recombination
because of the charge transfer from the conduction band of TiO2 to the conduction band
of WO3.

Keywords: WO3 decorated TiO2 nanotubes; electrochemical anodization; mercury removal;
fluoride content; active surface area

1. Introduction

Mercury is one of the earliest known metals and has been used by humankind for more than
2300 years [1,2]. Due to its unique physio-chemical properties (liquid form at STP (standard temperature
and pressure), high surface tension, high specific gravity, low electrical resistance), mercury is widely
utilized in many industries such as metallurgy, manufacturing, medicine, and mining [1,3]. However,
mercury is highly toxic, even at very low concentrations, and its ability to bioaccumulate in the food
chain makes mercury pollution a huge threat to the environment and humankind [2,3]. Human exposure
to mercury is mainly due to consumption of mercury-contaminated food and occupational exposure [3,4].
Exposure to mercury is hazardous and can cause neurological damage as well as impairment of nerves,
muscles, and organs such as kidneys [3,5]. Hg(II) is the most common form of inorganic mercury
in the aquatic environment and can be converted into more toxic organic forms through biological
methylation [6]. Thus, it is important to develop technologies for the efficient removal of Hg(II) from
water. Mercury can be successfully removed from a high concentration solution by membrane filtration,
precipitation, ion exchange, and other methods. However, these methods are less efficient and are
expensive to use on mercury concentrations lower than 100 ppm. Therefore, for low concentrations
of mercury, adsorption techniques are preferred [2,7]. Activated carbon is the most effective adsorbent
for mercury removal but it is too expensive for large-scale treatment [7]. This has given rise to the need
for alternative adsorbents for mercury decontamination.

Titanium dioxide (TiO2) nanotubes have been proven to be a potential adsorbent for many
contaminants such as dyes and heavy metals [8,9]. The reason is mainly attributed to TiO2 nanotubes
having large a specific surface area which enables more pollutant particles to be adsorbed onto the
nanotubes. Furthermore, TiO2 is a transition metal oxide semiconductor (with a band gap of 3.20 eV)
which is active under UV light irradiation. Thus, TiO2 can also act as a photoreductor of heavy metal
ions when irradiated with UV light. Additionally, the unique features of TiO2, such as non-toxicity, cost
effectiveness, long-term stability, widespread availability, corrosion stability, and high photocatalytic
ability, will complement its effectiveness in this application. However, a major limitation of TiO2 is its
large band gap of 3.20 eV which only allows it to utilize about 2%–3% of the solar light that reaches the
earth [10].

In this present study, tungsten trioxide (WO3) was doped onto the TiO2 nanotubes using an in situ
anodization method in order to improve the photocatalytic ability of TiO2. WO3 with a smaller band
gap of 2.3–2.8 eV is active in the visible range. Furthermore, the upper edge of the valence band
and the lower edge of the conduction band are lower for WO3 than for TiO2, thus creating a potential
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gradient at the composite interface which allows electron transfer from the conduction band of TiO2

down to the conduction band of WO3. This will improve charge separation and inhibit charge carrier
recombination. The influence of fluoride ion content on the growth of WO3-TiO2 nanotubes was studied,
which is important in tailoring the desired length, pore size, and wall thickness of the nanotubes for a
high aspect ratio (length/pore size) to achieve effective mercury removal.

2. Results and Discussion

2.1. Morphological Studies and Elemental Analysis

The effect of fluoride ion content on the morphology of WO3-decorated TiO2 nanostructure was
investigated. Figure 1 shows the surface morphologies of WO3-decorated TiO2 layers formed using
different fluoride ion content from 0 to 0.5 wt %. Fluoride content of 0 wt % produced no nanostructures
as presented in Figure 1a, where only an oxide layer of TiO2 was observed from the FESEM micrograph.
The reason might be attributed to the absence of F´ ionic species during the electrochemical anodization
stage. As a matter of fact, the high etching power of F´ ions plays an important role in chemical
etching and dissolution of the TiO2 layer to form a porous structure [11–13]. Figure 1b shows the
FESEM micrograph of the sample prepared in ethylene glycol containing 0.1 wt % NH4F. The surface
contained irregular features and small oxide pits were observed. The inadequate F´ levels probably
caused incomplete chemical dissolution and oxidation at the interface between Ti and the barrier layer.
For the 0.3 wt % NH4F content, a hollow cylindrical oxide was observed, which indicates that the
amount of F´ present in the ethylene glycol was sufficient to increase the chemical dissolution. This led
to further acidification to develop a nanotubular structure, as shown in Figure 1c. The WO3-decorated
TiO2 nanotube arrays with a diameter of approximately 65 nm, length of 1.8 µm, and wall thickness of
24 nm were formed when the F´ concentration was increased to 0.3 wt%. When fluoride ion content
was increased to 0.5 wt %, the pore diameter increased to approximately 80 nm, but the length and wall
thickness decreased to approximately 1.5 µm and 17 nm, respectively. Thus, the optimization of fluoride
ion content in order to grow well-aligned WO3-decorated TiO2 nanotubes was identified to be 0.3 wt %
for 60 min of anodization duration at a potential of 40 V. The average diameter, length, and aspect ratio
of the nanotubes are summarized in Table 1. The average diameter, length, wall thickness, aspect ratio
(AR), and geometric surface area factor (G) of the nanotubes formed with varying fluoride ion content
are summarized in Table 1. The aspect ratio and geometric area factor were calculated as follows:

AR “ L{pD ` 2wq (1)

G “ r4πL pD ` wqs{r
‘

3 pD ` 2wqˆ 2s ` 1 (2)

where: L = nanotube length in nm; D = pore size; w = wall thickness.
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Figure 1. FESEM images of WO3-TiO2 nanostructures obtained with varying fluoride ion 
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dissolution of the oxide at local points of high energy. As further chemical and field-assisted 
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nanotube array continues to increase in length. The reaction that occurred is represented by the 

equation below: 
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Figure 1. FESEM images of WO3-TiO2 nanostructures obtained with varying fluoride ion
content: (a) 0 wt %, (b) 0.1 wt %, (c) 0.3 wt %, and (d) 0.5 wt %. Insets are the side views
of the samples.

Table 1. Pore diameter, length, wall thickness, aspect ratio, and geometric surface area factor
of WO3-TiO2 nanotubes formed with varying fluoride ion content.

NH4F (wt%) Diameter (nm) Length (µm) Wall Thickness (nm) AR G

0 – – – – –

0.1 – – – – –

0.3 65 1.8 24 15.9 92.0

0.5 80 1.5 17 13.2 82.2

As shown in Figure 2, during the initial stage of anodization, field-assisted oxidation occurs on the Ti
metal surface, which forms a compact oxide layer. The reaction is represented by the equation below:

Ti2+
` H2O2ÑTiO2 ` 2H+ (3)

Fine pits or cracks then form on the oxide surfaces which arise from chemical and field-assisted
dissolution of the oxide at local points of high energy. As further chemical and field-assisted dissolution
of the oxide layer occurs, the porous structures transition into nanotube structures and the nanotube array
continues to increase in length. The reaction that occurred is represented by the equation below:

TiO2 ` 4H+
` 6F-

ÑrTiF6s
2-
` 2H2O (4)
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The equation below represents the formation of WO3 species for the synthesis of the anodic
WO3-loaded TiO2 nanostructure:

W6+
` 3H2OÑWO3 ` 6H+ (5)
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Figure 2. Formation of WO3-loaded TiO2 nanotubes: (a) Ti foil, (b) oxide layer formation,
(c) chemical dissolution of oxide layer, and (d) WO3-loaded TiO2 nanotubes.

The quantitative elemental analysis of WO3-loaded TiO2 nanotubes was carried out by cross-sectional
FESEM-EDAX to confirm the presence of W throughout the length of the nanotubes and the average
elemental compositions (at %) were obtained by taking eight spots along the nanotubes. The percentage
of each element is shown in Table 2. The WO3-TiO2 nanotubes show the presence of Ti, O, W, and
C elements. The sample produced with 0.5 wt % NH4F shows the highest at% of W, which is 2.90 at
%. The samples produced with 0.3 wt % NH4F and 0.1 wt % NH4F showed 2.36 at % and 1.50 at %
of W, respectively. The sample produced with 0 wt % NH4F showed the lowest at % of W, which is
0.22 at %. The presence of W within the nanotube arrays was found to increase with increasing fluoride
ion content. This is because increasing fluoride ion content will increase the chemical dissolution rate
of W in the electrolyte solution due to the high etching power of F´ ions, thereby increasing the amount
of W6+ ions that migrate toward the titanium foil [14]. Therefore, with higher fluoride ion content,
more W will be incorporated into the TiO2 nanotubes. The presence of C species is attributed to the
ethylene glycol electrolyte, which is an organic electrolyte and can contribute to carbon doping onto
TiO2 nanotubes [15,16].

Table 2. Energy-dispersive X-ray elemental analysis of WO3-loaded TiO2 nanotubes.

NH4F (wt %)
Atomic %

Ti O W C

0 85.40 7.78 0.22 6.51

0.1 42.17 51.80 1.50 4.53

0.3 26.97 65.43 2.36 5.24

0.5 34.28 58.80 2.90 4.02

2.2. Phase Structure Analysis

Figure 3 shows the XRD profile of the WO3-decorated TiO2 after annealing at 400 ˝C in air
atmosphere for 4 h, which is the typical temperature and time for heat treatment to transform the
amorphous structure of TiO2 into the crystalline anatase phase [17]. The XRD spectrum indicates the
presence of the anatase phase of TiO2 (JCPDS No 21-1272). The diffraction peaks at 25.37˝, 38.67˝,
48.21˝, and 54.10˝ are correspond to (101), (112), (200), and (105) crystal planes for the anatase phase,
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respectively. Furthermore, small additional peaks at 23.62˝ and 29.16˝ correspond with the (020) and
(120) crystal planes of the monoclinic WO3 phase. We observed that the peaks corresponding to the
anatase phase were most intense for the sample produced with 0.3 wt % NH4F, followed by 0.5 wt %
NH4F and 0.1 wt % NH4F. Anatase peaks were not detected for the sample produced with 0 wt % NH4F.
This corresponds with the increased growth of TiO2 nanotubes which can be explained with the faster
movement of the Ti/TiO2 interface into the Ti metal due to the higher content of ionic species that move
through the barrier layer at the bottom of the nanotube [18]. The improved pore deepening process
results in longer nanotube length, which explains the increasing intensity of the anatase peaks. When
fluoride ion content was further increased to 0.5 wt % NH4F, the intensity of the anatase peaks decreased
slightly due to excessive chemical etching of the oxide layer during the chemical dissolution reactions
which caused a decrease in nanotube length [8]. However, only the XRD pattern of sample produced
with 0.3 and 0.5 wt % NH4F showed an obvious WO3 phase. A possible explanation would be that
the XRD analysis was not sensitive enough to detect very low WO3 content within the TiO2 lattice of
the samples produced using lower fluoride ion content due to the nearly similar ionic radius of W6+ and
Ti4+ [19].
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Figure 3. X-ray diffraction patterns of WO3-loaded TiO2 nanotubes produced with different
fluoride ion content.

2.3. Raman Analysis

Raman analysis was conducted to detect the presence of WO3 and to confirm the XRD inferences
of WO3-loaded TiO2 nanotubes. Figure 4 shows the Raman spectrum obtained and there are five
characteristic modes observed at 145, 198, 396, 518, and 639 cm´1. The mode at 145 cm´1 is strong and
assigned as the Eg phonon of the anatase structure and the B1g phonon of the rutile structure. The latter
four modes are assigned as Eg, B1g, B1g, and Eg modes of the anatase phase, respectively. The positions
and intensities of the five Raman active modes correspond well with the anatase phase of TiO2 [20,21].
The lower intensity of anatase peaks for the 0 wt % and 0.1 wt % NH4F samples correspond with the
short and small nanotubes produced. The sample produced with 0.3 wt % NH4F showed the highest
intensity of anatase peaks because the TiO2 layer formed is denser and thicker. However, when fluoride
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ion content is increased to 0.5 wt %, the intensity of the anatase peaks decreased. This showed that more
of the oxide layer had been dissoluted due to the higher chemical dissolution rate, leading to a thinner
TiO2 layer [22]. Raman bands for WO3 were not detected because typical characteristic modes for WO3

are similar to those for anatase (e.g., 327, 714, and 804 cm´1) and were overlapped by bands for the
anatase phase [17].
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Figure 4. Raman spectrum of WO3-loaded TiO2 produced with different fluoride
ion content.

2.4. Optical Properties Analysis

The PL (photoluminescence) emission spectra is a useful characterization tool that can be used to
determine the efficiency of charge carrier trapping and to understand the fate of electrons and holes
in the semiconductor because PL emission is the result of the recombination of free carriers [23,24].
Figure 5 shows the PL spectra of WO3-TiO2 nanotubes synthesized using different fluoride ion content.
It can be clearly seen that the PL emission intensity for WO3-TiO2 nanotubes synthesized with 0 wt %
NH4F is the highest. The sample produced using 0.3 wt % NH4F and 0.5 wt % NH4F showed the lowest
and most similar PL emission intensities followed by the sample produced using 0.1 wt % NH4F. Since
the PL emission mainly results from the recombination of excited electrons and holes, we can deduce
that the lower PL intensity indicates that the WO3-TiO2 nanotubes synthesized using 0.3 wt % NH4F
and 0.5 wt % NH4F have a lower recombination rate compared to the samples synthesized with 0 wt%
NH4F and 0.1 wt % NH4F. The variation of PL emission intensity may be due to the presence of more
WO3 species in the 0.3 wt % NH4F and 0.5 wt % NH4F samples, which suppressed the recombination
of the photogenerated carriers and increased the charge separation of TiO2 [25]. This is due more to
the cathodic valence and conduction band potentials of TiO2, which allows electron transfer from the
conduction band of TiO2 down to the conduction band of WO3, thus suppressing the recombination of
photogenerated carriers [26]. From the PL spectra, we are also able to determine the energy band gap
of the WO3-TiO2 nanotubes for application purposes. The PL emission spectrum is useful in estimating
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the band gap energy (Ebg) of the samples. The band gap energy (Ebg) of the sample is calculated as
follows: Ebg = hc/λ, where Ebg is the band gap energy, h is Planck’s constant (4.135667 ˆ 10–15 eV s),
c is the velocity of light (2.997924 ˆ 108 m/s), and λ is the wavelength (nm) of PL emission. In the
photoluminescence spectra, the wavelength corresponding to the highest PL emission intensity is the
light wavelength at which the sample is most active. By taking this wavelength value as λ, the energy
band gap of the sample can be estimated. From the PL spectra, the samples show the highest emission
intensity at wavelength of 580 nm, which corresponds with the energy band gap value of 2.14 eV. This
band gap value is significantly lower than that of WO3 (2.8 eV) and TiO2 (3.2 eV), attributed to the
presence of carbon species within the TiO2 nanotubes which significantly enhanced the visible light
responsiveness of the WO3-loaded TiO2 nanotubes. The band gap energy of TiO2 is narrowed down by
the mixing of the delocalized p state of the carbon species with the 2p orbital of the oxygen species in
the valence band of TiO2, which shifts the valence band edge of TiO2 upwards.
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2.5. Mercury Removal

The photocatalytic reduction of Hg2+ in aqueous solution by WO3-TiO2 nanotubes under UV
illumination was investigated. Before photocatalytic reactions, the adsorption of mercury on the catalyst
was allowed to be established in the dark in order to distinguish between photocatalytic Hg2+ uptake
and the removal of Hg2+ by adsorption. As shown in Figure 6, the nanotubes produced using 0.3 wt %
NH4F showed the best mercury removal performance where 76% of the mercury in the initial solution
was removed after two hours of UV irradiation. The sample produced using 0.5 wt % NH4F showed a
slightly lower performance where 71% of the mercury in the initial solution was successfully removed.
The samples produced with 0 and 0.1 wt % of NH4F showed the lowest performance of mercury removal
where only 9% and 43% of the initial mercury concentration were successfully removed, respectively.
The reason for the better performance of samples produced with 0.3 wt % NH4F is due to the larger
active surface area which enables more Hg2+ to adsorb onto the catalyst surface to undergo reduction to
Hg0 [27]. Furthermore, the larger active surface area generates more photo-induced electron-hole pairs
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which allow more Hg2+ to undergo reduction [28,29]. In order to compare the photocatalytic activity
of WO3-TiO2 nanotubes with pure TiO2 nanotubes, pure TiO2 nanotubes were produced using the same
parameters as the WO3-TiO2 nanotubes synthesized using 0.3 wt % NH4F except replacing the tungsten
cathode with a platinum cathode. As compared to WO3-TiO2 nanotubes, pure TiO2 nanotube arrays
showed a lower efficiency of mercury removal, where 57% of the mercury in the initial solution was
removed after two hours. This shows that the coupling of WO3 and TiO2 gives a significant improvement
in the photocatalytic activity of the nanotube arrays due to the suppression of the recombination of the
photogenerated carriers and the increased charge separation of TiO2. As illustrated in Figure 7, when a
photon with not enough energy to excite TiO2 but with enough energy to excite WO3 is incident, the hole
that is created in the WO3 valence band is excited to the conduction band of TiO2, while the electron
is transferred to the conduction band of TiO2. This electron transfer increases the charge separation,
thus leading to a lower recombination rate [25]. Furthermore, since the valence and conduction band
potentials of TiO2 are more cathodic than that of WO3, photogenerated electrons can transfer from the
conduction band of TiO2 down to the conduction band of WO3. This will suppress the recombination of
photogenerated carriers [26].
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3. Experimental Section

The experiments were carried out in a two-electrode electrochemical cell as shown in Figure 8, where
the two electrodes were placed 2 cm apart. Titanium (Ti) foil (0.127 mm, purity 99.6%, Sigma Aldrich,
St. Louis, MO, USA) (5 cm ˆ 1 cm dimension), over which WO3-loaded TiO2 nanotubes were grown,
was used as the anode while tungsten foil (0.127 mm, purity 99.9%, Sigma Aldrich, St. Louis, MO, USA)
was the counter electrode. The electrolytes were ethylene glycol (EG, Friendemann Schmidt, Germany)
with dissolved hydrogen peroxide (H2O2, Friendemann Schmidt, Germany) and ammonium fluoride
(NH4F, Merck, Kenilworth, NJ, USA) in amounts ranging from 0 wt % to 0.5 wt %. H2O2 functions as
oxygen provider for the higher oxidation rate of Ti to form TiO2 nanotubes at a rapid rate. Anodization
was carried out at voltage of 40 V for a duration of 60 min. As-anodized anodic WO3-loaded TiO2

samples were cleaned using deionized water followed by sonication in acetone (Friendemann Schmidt,
Germany) to remove the remaining occluded ions from the anodized solutions or barrier oxide layer. The
samples were then subjected to calcination at 400 ˝C for 4 h in air atmosphere.
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Figure 8. Schematic drawing of an electrochemical cell in which the Ti electrode
is anodized.

The morphologies of anodic WO3-loaded TiO2 nanostructures were observed by field emission
scanning electron microscopy (FESEM, FEI Quanta 200F Environmental SEM with EDAX, FEI,
Hillsboro, OR, USA) microanalysis at 5 kV. The structural variation measurements and phase
determinations were done using X-ray diffraction (XRD, Bruker D8 Advance diffractometer, Bruker
Corporation, Billerica, MA, USA) analysis conducted from 10 to 80˝ with Cu Kα radiation
(α = 1.5406 Å). The phase composition was determined using Raman Spectroscopy (Renishaw in Via,
Renishaw plc, Gloucestershire, UK) with a 514.5 nm Ar+ laser as an excitation source.

The performance of the WO3-decorated TiO2 nanotube arrays for mercury removal was studied by
dipping annealed samples in 100 ml of 100 ppb mercury chloride (HgCl2) solution in a photoreactor
consisting of quartz glass, as shown in Figure 9. After leaving the samples in the reactor for 30 min
in dark environment for dark adsorption, the samples were photoirradiated at room temperature by
using TUV 96W UV-B Germicidal light. Then, 5 mL solution was withdrawn from quartz tubes every
60 min. A mercury analyzer (NIC RA-3120, Nippon Instruments Corporation, Osaka, Japan) was used
to measure the concentration of the HgCl2 solution.
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4. Conclusions

In this study, the effect of fluoride ion content on the formation of WO3-TiO2 nanotubes was
investigated. WO3-TiO2 nanostructures were successfully produced using 0.3 and 0.5 wt % NH4F. In
order to grow well-aligned WO3-decorated TiO2 nanotubes, the fluoride ion content was optimized at
0.3 wt % NH4F for 60 min of anodization duration at a potential of 40 V. Lower fluoride ion content
(0.1 wt %) provides a low dissolution rate of the oxide layer due to insufficient fluoride ions whereas
excess fluoride ions (0.5 wt %) cause an increased pore diameter and reduced nanotube length due to
excessive chemical etching of the oxide layer. Furthermore, WO3-decorated TiO2 nanotubes synthesized
with 0.3 wt % NH4F showed the best mercury removal ability due to the larger active surface
area that generated more photo-induced electron-hole pairs, better charge separation, and less charge
carrier recombination.

Acknowledgments

The authors would like to thank the University of Malaya for funding this research work under
the High Impact Research Chancellory Grant UM.C/625/1/HIR/228 (J55001-73873) and Postgraduate
Research Grant (PPP), (PG052-2014B).

Author Contributions

W.H.L. and C.W.L. designed the experiments. W.H.L. carried out the anodization and sample
preparations. W.H.L., C.W.L., and S.B.A.H. carried out analysis of FESEM-EDAX, XRD, Raman,
photoluminescence, and mercury analyzer data. W.H.L., C.W.L., and S.B.A.H. prepared the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32,
809–822. [CrossRef]

http://dx.doi.org/10.1016/S1352-2310(97)00293-8


Materials 2015, 8 5713

2. Arshadi, M. Manganese chloride nanoparticles: A practical adsorbent for the sequestration of Hg
(II) ions from aqueous solution. Chem. Eng. J. 2015, 259, 170–182. [CrossRef]

3. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism
and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [CrossRef]
[PubMed]

4. Rafati-Rahimzadeh, M.; Rafati-Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Current
approaches of the management of mercury poisoning: Need of the hour. DARU J. Pharm. Sci.
2014, 22, 46. [CrossRef] [PubMed]
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