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Does vaccination with 4CMenB convey protection against meningococcal serogroup
B strains not predicted to be covered by MATS? A study of the UK clonal complex
cc269
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ABSTRACT
The Meningococcal Antigen Typing System (MATS) has been developed as an hSBA surrogate to
evaluate potential coverage afforded by the 4-component meningococcal serogroup B vaccine
(4CMenB: Bexsero, GSK). We investigated whether the lower value of MATS coverage among invasive
Meningococcus serogroup B clonal complex 269 strains from the United Kingdom (53% in 2014–2015
versus 73% in 2007–2008) reflected the lower bactericidal activity of the vaccine against these isolates.
A total of 34 MATS-negative strains (31 were cc269 or closely related) were tested against pooled sera
from 32 or 72 4CMenB-vaccinated infants in a serum bactericidal antibody assay in presence of human
complement (hSBA). All infants had received four 4CMenB doses in the first 2 y of life. Baseline sera
comprised 180 pooled samples from healthy-unvaccinated 2-month-old infants. Twenty of the 34 (59%)
MATS-negative strains were killed in hSBA with titers ≥4 by pooled sera from vaccinated infants. There
were 13/34 strains with hSBA titers ≥4 and at least a 4-fold rise in titer with respect to pooled baseline
sera, and 10/34 with hSBA titers ≥8 and at least a 4-fold rise in titer with respect to baseline. These data
confirm MATS as a conservative estimate for predicting strain coverage by 4CMenB.
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Vaccination is the primary strategy of protection against
invasive meningococcal disease (IMD), which is characterized
by a relatively high mortality rate even when treated appro-
priately. Among meningococcal serogroups, serogroup
B (MenB) predominates in Europe and in many industrialized
countries worldwide that employ national serogroup
C vaccination programs.1,2 4CMenB (Bexsero, GSK) is
a multi-component MenB vaccine containing three recombi-
nant proteins (variant 1.1 of factor H binding protein [fHbp],
peptide 8 variant 2/3 of Neisseria adhesin A [NadA], and
peptide 2 of Neisserial Heparin Binding Antigen [NHBA])
together with an outer membrane vesicle (OMV) derived
from an outbreak strain from New Zealand (OMV NZ) and
expressing Porin A (PorA) P1.4 as the major antigen.3

4CMenB is licensed in more than 40 countries for infants
from 2 months of age. The United Kingdom (UK) was the
first country to introduce 4CMenB into the National
Immunization Program in September 2015, from which the
first data on the population impact of 4CMenB vaccination
were obtained. The first estimate of the effectiveness of two
doses of 4CMenB in preventing MenB IMD in infants was
82.9% (95% confidence interval [CI] 24.1–95.2).4

The serum bactericidal antibody assay in the presence of
human complement (hSBA) is used to measure the immuno-
genicity of meningococcal vaccines. An hSBA titer ≥4 is
recognized as a surrogate marker of protection.5 hSBA cannot
be used on a large scale to evaluate strain panels, especially in

infants from whom blood sample volumes are minimal. The
Meningococcal Antigen Typing System (MATS) is a vaccine
antigen-specific sandwich ELISA which has been developed as
an hSBA surrogate and has been shown to be a conservative
method to evaluate potential coverage of 4CMenB. MATS
measures the expression levels and immunologic cross-
reactivity of vaccine antigens in a given MenB strain.6,7

We recently evaluated temporal trends in MATS coverage of
IMD strains from the UK in 2014–15 compared with 2007–08.8

The three most represented clonal complexes (cc) in the UK in
both time periods were cc269, cc41/44, and cc213.8 We observed
a decrease in MATS coverage for cc269 in 2014–2015 (53%)
compared to 2007–08 (73%), while cc41/44 retained very high
MATS coverage (94% in both time periods), and cc213 showed
an increase in coverage (17% in 2007–2008 and 23% in
2014–2015).8 In this work, we investigated whether the observed
lower MATS values result in an underestimation of coverage of
strains isolated in the UK in 2014–15, by designing a study in
which pooled sera from infants vaccinated with 4CMenB were
tested by hSBA against a subpanel of MATS-negative strains,
mainly belonging to, or closely related to, cc269. Isolates from
2007 to 2008 were not retested.

The characteristics of 251 isolates from all culture-confirmed
cases of MenB IMD from the UK between 2014 and 2015 have
been previously described.8 Of these 251 strains, 86 were nega-
tive in MATS (defined as having relative potency less than the
positive bacterial threshold for fHbp, NHBA orNadA; or lacking
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PorA P1.4) for all four vaccine antigens. Strains belonging to
cc269 mostly express NHBA peptide 17 in conjunction with
fHbp subvariant 2.19, or 1.13; or NHBA peptide 21 in conjunc-
tion with fHbp subvariant 1.15. A subpanel of 34 strains, nega-
tive in MATS for all vaccine antigens, harboring NHBA peptide
21 or 17, and harboring fHbp subvariant 2.19, 1.13 or 1.15 was
selected for additional testing in hSBA. Most of these 34 strains
belonged to cc269 (26/34), the others belonged to cc35 (3/34)
and unassigned cc (5/34). The five unassigned isolates belonged
to sequence types (ST-4713, ST-8061, ST-11306, ST-11307 and
ST-11469) that have >5 MLST loci in common with the sub-
group founder ST, ST-275 (cc269), but are officially excluded
from cc269 by virtue of having only three (i.e. less than the
minimum of four) loci in common with the founder ST, ST-
269 (Figure 1a, b, Supplement Table S1). Baseline pooled sera
comprised 180 samples from healthy-unvaccinated 2-month-old
infants who were enrolled in study V72P13 (NCT00657709)
conducted in Finland, the Czech Republic, Germany, Austria,
and Italy.9 4CMenB coverage of the 34 MATS-negative strains
was evaluated in hSBAusing pooled sera from randomly selected
4CMenB-vaccinated infants. Two pools of post-immunization
sera were obtained from 32 to 72 infants who received a 4-dose
series of 4CMenB in study V72P12_E1 (NCT00721396,
NCT00944034) conducted in Belgium, UK, the Czech
Republic, Germany, Italy, and Spain.10,11 All infants received
4CMenB in a 2, 4, 6 months schedule with booster during
the second year of life (12, 18 or 24 months of age). Pooled
sera comprised samples collected approximately 1 month after
the last 4CMenB dose.

hSBA assays were performed as described by Borrow et al.
with minor modifications.12 MenB bacteria were sub-cultured
overnight on Chocolate Agar, re-suspended in Mueller Hinton
Medium to an optical density (OD) of 0.05 and grown until OD
of 0.25 before use in the assay. hSBA titers were determined as
the last dilution that resulted in at least a 50% reduction in
colony forming units (CFU) relative to the number of CFU
present in the reaction without serum. Human plasma obtained
from volunteer donors under informed consent was selected for
use as complement source with a particularMenB strain only if it
did not significantly reduce CFU of that strain relative to T0
when added to the assay at a final concentration of 50%. The
final assay mixture contained 25% human plasma.

Twenty out of 34 MATS-negative strains were killed in
hSBA with titers ≥4 by pooled sera collected from infants
immunized with four doses of 4CMenB (Figure 2). There
were a further 13/34 strains with hSBA titers ≥4 and at least
a 4-fold rise in titer with respect to pooled baseline sera, and
10/34 with hSBA titers ≥8 and at least a 4-fold rise in titer
with respect to baseline.

Experiments with large panels of sera have established
a correlation between bactericidal titers achieved using pooled
sera and seroresponse rates in infants.13 In the panel of 34MATS-
negative invasive isolates tested, around two-thirds were killed by
pooled infant sera in hSBA. The results of our study provide
further evidence supporting the hypothesis that MATS is
a conservative estimate for predicting strain coverage by
4CMenB.14 In MATS, the positive bactericidal threshold used to
indicate susceptibility was established by the relationship between
MATS and hSBA in pooled sera obtained from infants who
received 4 doses of 4CMenB, using a conservative hSBA cutoff
of 8.6 While positive hSBA assay results are considered predictive
of protection against IMD, hSBA levels below the threshold are
not necessarily an indication of susceptibility to disease.15 Both
conditions likely contribute to the tendency for MATS to under-
estimate coverage. Additionally, MATS is unable to account for
the known synergies between antibodies induced by the individual
vaccine components.16,17

The MenB strains that cause invasive disease differ regionally
and evolve continually over time. Regular monitoring of coverage
after the implementation of vaccines into routine vaccination
schedules is needed to evaluate ongoing vaccine effectiveness.
Reductions in strain coverage over time could imply antigenic

Figure 1. Distribution of NHBA peptides and fHbp variants within clonal com-
plexes of the 34 MATS-negative strains tested in hSBA.
NHBA, Neisserial Heparin Binding Antigen; fHbp, factor H binding protein.
Tabulated data are provided in the Supplement Table S1.

Figure 2. 34 strains assessed for killing in hSBA using pooled sera from infants
one-month post-last 4CMenB vaccination (34 MenB strains negative in MATS for
all four vaccine antigens. hSBA categories are mutually exclusive).
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shift, potentially due to vaccine pressure, that could require
changes to the vaccine or the vaccination schedule to maintain
the effectiveness of the vaccination program overall. Continued
monitoring of MenB clinical isolates contributes to our under-
standing of the changing epidemiology of MenB disease and the
impact of vaccines in different populations.

In conclusion, MATS is a useful tool to analyze large
panels of strains and to predict the coverage of 4CMenB
against MenB strains causing IMD but is likely to be conser-
vative in its estimation. Apparent changes in MATS vaccine
coverage over time warrant ongoing investigation to monitor
the effectiveness of 4CMenB vaccination. Further investiga-
tion of antibody synergy could help to understand the rela-
tionship between the results observed using hSBA versus
those obtained in MATS.
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