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Lycium barbarum polysaccharide (LBP), an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects
on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced
insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated
phosphatidylinositol 3-kinase (PI3K)/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with
LBP for 12hrs in the presence of palmitate. C57BL/6] mice were fed a high-fat diet supplemented with LBP for 24 weeks. We
analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2), Jun N-terminal kinases (JNK), and glycogen synthase kinase
33 (GSK3p) involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2
through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced
reactive oxygen species (ROS) levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3 and JNK
through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation
of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet
via activation of PI3K/AKT/Nrf2 pathway.

1. Introduction

Chronic oxidative stress, characterized by the overproduction
of reactive oxygen species (ROS) [1-3], is associated with glu-
cose and lipid metabolic abnormalities [4-6]. High glucose
concentrations and fatty acid levels stimulate excessive accu-
mulation of ROS, which can cause the deleterious effects [7-
9] and insulin resistance in peripheral metabolic tissues [10,
11] in the absence or presence of antioxidants circumstance.
Overall, oxidative stress represents an imbalance between
production of ROS and the antioxidant defense system.

The mechanistic link between increased ROS and insulin
resistance is activation of several signaling pathways. Nuclear
factor E2-related factor 2 (Nrf2) is important to explore the
role of the endogenous antioxidant system in the prevention
of insulin insensitivity in vivo, which regulates the expression
of detoxifying and antioxidant genes, such as heme oxygenase
1 (HO-1), superoxide dismutase (SOD), and catalase (CAT)
[12, 13]. In response to oxidative stress or pharmacolog-
ical activation, Nrf2 is translocated into the nucleus and
induces the expression of antioxidant enzymes by binding
antioxidant response element (ARE) [14-16]. Jun N-terminal


http://dx.doi.org/10.1155/2014/145641

kinases (JNK) activation is a crucial mediator of ROS-
induced insulin resistance [17]. Suppression of JNK activation
prevents insulin receptor substrate-1 (IRS-1) degradation and
promotes insulin signaling and insulin-dependent glucose
uptake [18].

Long-term high-fat diet (HFD) aggravates the burden of
antioxidative and anti-inflammatory system in the liver [6].
Impairment of endogenous redox system of liver is important
in the development of insulin resistance in chronic HFD
feeding [19]. In our study, we detected Nrf2 signaling pathway
in vivo and in vitro. Administration of Lycium barbarum
polysaccharide (LBP), a new PI3K/AKT/Nrf2 axis activator,
prevented the development not only of oxidative stress but
also of insulin resistance, as well as of glucose metabolic
abnormalities [20-22]. Activated Nrf2 of LBP represents a
potential novel approach in the treatment and prevention of
insulin resistance induced by HFD.

2. Results

2.1. LBP Ameliorates Insulin Resistance Induced by HFD in
C57BL/6] Mice. To determine whether LBP reduces HFD-
induced insulin resistance, glucose, insulin, and pyruvate
tolerance tests were measured. Intraperitoneal glucose toler-
ance test (IPGTT) showed that LBP (100 mg/kg) significantly
reduced blood glucose 30 min after injection; area under the
curve (AUC) reflected the point (Figure 1(a), P < 0.05).
As shown in Figure 1(b), intraperitoneal insulin tolerance
test (IPITT) showed that LBP improved insulin-mediated
glucose-lowering 60 min after injection; AUC also reflected
the point (P < 0.05). In Figure 1(c), intraperitoneal pyruvate
tolerance test (IPPTT) showed that LBP lowered blood
glucose 60 min after injection; AUC also indicated the point
(P < 0.05). On 24 weeks, we, respectively, measured blood
glucose, insulin, and pyruvate concentrations in serum of
different groups. As shown in Table 1, LBP reduced blood
glucose and insulin concentrations (P < 0.05, P < 0.01)
and increased pyruvate concentration compared to HFD-fed
mice (P < 0.05).

2.2. LBP Modulates Glycolytic and Gluconeogenic Genes
Expression in Liver of HFD-Fed Mice. In order to get a first
insight into a potential interdependence between LBP and
glucose metabolism, we analyzed glycolytic and gluconeo-
genesis genes expression levels with qRT-PCR. As shown in
Figure 1(d), LBP increased GCK and PK mRNA levels and
also decreased PEPCK and G6Pase mRNA levels (P < 0.05).
LBP obviously elevated GCK and PK activities (Figures 1(e)
and 1(f), P < 0.05, P < 0.01).

2.3. LBP Activates PI3K/AKT Signaling Pathway In Vitro and
In Vivo. We examined the effects of LBP on PI3K/AKT
signaling pathway in vivo and in vitro. Treatment of LBP
significantly enhanced the phosphorylation expression of
IRS-1, PI3K, and AKT in liver (Figure 2(a)). HepG2 cells were
incubated for 12hrs with LBP in the presence of 200 yuM
palmitate. From 100 yg/mL to 600 pg/mL concentration, LBP

Oxidative Medicine and Cellular Longevity

significantly promoted an increase of phospho-IRS-1, -PI3K,
and -AKT levels (Figure 4(a)).

2.4. LBP Regulates Phosphorylation Levels of GSK33 and JNK
via PI3K/AKT Signaling Pathway. In in vivo experiment,
treatment of LBP effectively inhibited phospho-JNK level and
increased phospho-GSK3p level in liver of HFD-fed mice
(Figure 2(a)). The mRNA levels of inflammatory genes were
analyzed by qRT-PCR in liver. As shown in Figure 2(b), LBP
lowered expressions of MCP-1, IL-6, and TNF-a (P < 0.01).
In Figures 2(c) and 2(e), LBP significantly promoted glycogen
synthesis and glucose utilization (P < 0.01). In addition, LBP
significantly reduced hepatic glucose production (HGP) in
liver (Figure 2(d), P < 0.05). In in vitro experiment, cells were
pretreated with 100-600 pg/mL LBP for 12 hrs in the presence
of palmitate. LBP significantly increased phosphorylation
level of GSK3/3 and reduced phosphorylation level of JNK
depending on dose-concentration (Figure 4(a)). In Figures
4(c) and 4(d), LBP also increased glycogen contents and
decreased glucose production of palmitate-stimulated cells
(P < 0.05, P < 0.01). When cells were pretreated for 2 hrs
with 10 uM LY294002 and 2 yM Wortmannin of PI3K/AKT
inhibitor, respectively, and then treated for 12hrs with
300 ug/mL LBP, we found that inhibitor-induced phospho-
JNK level was suppressed by LBP, and inhibitor-suppressed
phospho-GSK3 level was reversed by LBP (Figure 4(b)).
Based on these findings, we conclude that LBP-supplement
boosts cellular glycogen metabolism through activation of
PI3K/AKT and JNK signaling pathway.

2.5. LBP Induces Nrf2 Phosphorylation Level In Vivo and In
Vitro. To test whether LBP activates Nrf2 expression in vivo,
we delivered LBP at 100 mg/kg by intragastric administra-
tion to C57BL/6] mice for one day, respectively. We found
that LBP could activate phospho-Nrf2 level, without any
change in total Nrf2 protein expression (Figures 3(a) and
3(b), P < 0.05). We also examined whether LBP directly
induced Nrf2 expression in vitro. Palmitate-stimulated cells
were incubated in LBP for 12 hrs. As shown in Figure 5(a),
LBP significantly increased phospho-Nrf2 expression in
a dose-dependent manner, without any change in total
Nrf2 expression. To investigate the detailed mechanisms
underlying the induction of Nrf2 expression by LBP, we
explored the nuclear translocation of Nrf2 with immunoflu-
orescence experiments. 200 yM palmitate obviously resulted
in phospho-Nrf2 migrating from nucleus to cytosol, while
300 pg/mL LBP caused the nuclear translocation of phospho-
Nrf2 (Figure 5(b)).

2.6. LBP Activates Nrf2/ARE Pathway via PI3K/AKT Signaling.
To further elucidate, the effects of LBP on Nrf2/ARE pathway
were examined. LBP induced HO-1, SOD2, and CAT protein
expression in liver of HFD-fed mice (Figure 3(a)). LBP also
increased SOD and CAT activities in liver (Tablel, P <
0.01). As shown in Figure 5(a), LBP significantly increased
the protein expression of HO-1, SOD2, and CAT in a dose-
dependent manner in the palmitate-stimulated environment.
In Tablel and Figure 3(c), LBP displayed an increase in
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FIGURE I: LBP prevents HFD-induced insulin resistance and modulates glucose metabolism in vivo. Injected intraperitoneal (a) glucose
tolerance test, (b) insulin tolerance test, and (c) pyruvate tolerance test. Down: area under the curve (AUC). All data were expressed as means
+ SEM (n = 6 per group), *P < 0.05. (d) The mRNA levels of GCK, PK, PEPCK, and G6Pase were analyzed by qRT-PCR. Data was expressed
as means + SEM (n = 3 per group), “P < 0.05. (¢) GCK and (f) PK activities were measured with enzymatic colorimetric activity kits. Data

was expressed as means + SEM (1 = 6 per group), P < 0.05. LBPH, 100 mg/kg LBP plus high-fat diet.

TABLE 1: Serum and liver characteristics.

Parameters ND HFD LBPH
Serum glucose (mmol) 51+13 10.2 + 1.6 6.7 +0.7%
Serum insulin (pmol/L) 50.8 + 1.8 1214 £5.2 70.3 +2.6°
Serum pyruvate (ng/mL) 25405 1.1+0.4 34+0.8°
Liver SOD (U/mg) 141 + 19 87+8 196 + 15°
Liver CAT (U/mg) 15+1.1 58+0.9 19.4 +1.2°
Liver GSH (umol/L) 495 + 36 352+ 27 630 + 58°
Liver GSSG (umol/L) 46.2 £6.5 67.0 £ 8.5 432 +6.9°

ND, normal diet group; HED, high-fat diet group; LBPH, (100 mg/kg) LBP plus high-fat diet group. Values are performed as means + SEM (n = 6-8 per group),

2P < 0.05,°P < 0.01, and °P < 0.001 versus HFD.
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FIGURE 2: LBP suppresses HFD-induced inflammation and regulates glucose metabolism in liver. (a) Western blot analyzed phospho-IRS-1,
-PI3K, -AKT, -JNK1/2, and -GSK3f3 levels. Representative western blots are shown. (b) qRT-PCR analysis of MCP-1, IL-6, and TNF-« in liver
of LBP-treated and untreated mice. Data was expressed as means + SEM (1 = 3 per group), “*P < 0.01. (c) Glycogen concentrations of
liver (mg/g liver). (d) Glucose production of liver (mmol/g protein). Data was expressed as means + SEM (n = 6-8 per group), P < 0.05,
*P < 0.01. (e) Representative periodic acid-schiff (PAS) staining on liver (400x).

liver GSH and GSH/GSSG levels, which was significantly
higher than HFD-fed mice by 24 weeks. However, GSSG
levels were higher in the HFD-fed group compared with
LBP-supplementation group (P < 0.05, P < 0.01). LBP
significantly decreased intracellular ROS level (Figure 3(d)).
Cells were pretreated with inhibitor and then treated with
LBP. These results showed that LBP significantly activated
Nrf2/ARE pathway in the presence of inhibitor (Figure 5(c)).
It was an important point that inhibitor-induced intracellular
ROS levels were reversed by 300 ug/mL LBP (Figure 5(d)).

Taken together, our data suggests that LBP induces phospho-
rylation level of Nrf2 and activates Nrf2/ARE pathway via
PI3K/AKT signaling.

3. Discussion

Oxidative stress is a major factor in the development of
various liver diseases, affects liver function and induces
hepatic insulin resistance, and is ultimately attributed to
liver injury [23, 24]. It is essential to control the progressive
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FIGURE 3: LBP induces Nrf2 phosphorylation and activates Nrf2/ARE pathway in vivo. (a) Inmunoblotting analysis of phospho-Nrf2, total
Nrf2, HO-1, SOD2, and CAT in liver. Representative western blots are shown. (b) The ratio of phospho-Nrf2/Nrf2. Data was normalized to
the control and expressed as means + SEM (n = 3), *P < 0.05. (c) The ratio of GSH/GSSG of liver. Data was expressed as means + SEM
(n = 6-8 per group), “P < 0.05. (d) Intracellular ROS levels of frozen liver sections (200x).

oxidative stress to upregulate cellular redox system [25]. The
previous study has already reported that plant drugs reduce
oxidative stress to maintain peripheral insulin sensitivity
through increasing antioxidant or anti-inflammation effects
[26-28]. Lycium barbarum (L. barbarum) (Gouqizi, Wolf-
berry), whose bioactive components are Lycium barbarum
polysaccharide (LBP), is well known in traditional Chinese
herbal medicine. Previous studies have shown that LBP can
protect liver function and reduce blood glucose levels [29-
31]. But the effect of LBP on Nrf2-mediated insulin resistance
is still not clear. We made a hypothesis in our study that
investigated molecular mechanism underlying the activation
of PI3K/AKT/Nrf2 signaling pathway by LBP treatment.

The discovery of Nrf2 as main factor in the expression
of endogenous antioxidant genes favored study exploiting
Nrf2 as target of drugs or nutritional supplements [27,
32, 33]. In the present study, we found that LBP supple-
mentation can affect status of Nrf2 expression in vivo and
in vitro. First, our data suggested that treatment of LBP
can increase the phosphorylation level of Nrf2 in liver
of HFD-fed mice. Second, our results showed that LBP
effectively increased the phospho-Nrf2 expression in dose-
dependent manner in palmitate-induced HepG2 cells. Third,

inhibitor-suppressed Nrf2 expression was activated by LBP.
Consistent with previous studies, it was shown that drugs
had a positively antioxidative effect on animal models via
activation of PI3K/AKT/Nrf2 pathway [34, 35]. In vitro and
in vivo results finally indicated that LBP as a new Nrf2
activator directly induced Nrf2 expression. Nrf2 is essential
for cellular protective mechanisms against oxidative stress
or inflammation through the transcriptional activation of
ARE-dependent expressions of genes encoding detoxification
enzymes and antioxidant enzymes such as HO-1, SOD2, CAT,
and GSH [12, 36-39]. A previous study revealed that Nrf2-
deficiency reduced the expression of detoxification enzymes
in liver, resulting in oxidative stress [40, 41]. Antioxidant
enzymes can improve insulin resistance in in vivo study [42].
Our results suggested that LBP effectively upregulated HO-
1, SOD2, and CAT expression and reduced intracellular ROS
levels through Nrf2 activity in vivo and in vitro. These results
indicated that activation of Nrf2 is central to the induction of
potent cellular antioxidant and detoxification systems.

JNK is a crucial mediator of insulin resistance, activated
by the accumulation of ROS [43, 44]. Our results suggested
that HFD-induced phospho-JNK was increased in liver.
In contrast, treatment of LBP significantly reduced JNK
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FIGURE 4: LBP improves the phosphorylation levels of JNK and GSK3p via regulation of PI3K/AKT signaling. (a) 200 uM palmitate-
stimulated HepG2 cells were treated with LBP for 12hrs in dose-dependent manner. Immunoblotting analysis of LBP-mediated
phosphorylation levels of IRS-1, PI3K, AKT, JNK1/2, and GSK3p. (b) Cells were treated with 10 4M LY294002 for 2 hrs and 2 yM Wortmannin
for 2 hrs and then incubated for 12 hrs with 300 #g/mL LBP. Immunoblotting analyzed phosphorylation of LBP-mediated AKT, JNK, and
GSK3p. Representative western blots are shown. (c) Glycogen concentrations (ug/5 x 10°cells) and (d) glucose production (umol/10° cells)
of LBP-treated cells in the presence of palmitate. Data was expressed as means + SEM (n = 5), “P < 0.05, P < 0.01.

phosphorylation level and expression of inflammatory genes,
such as MCP-1, IL-6, and TNF-a. We further confirmed that
LBP prevented expression of inflammatory factor by HFD-
induced via PI3K/AKT/JNK pathway. Taken together, LBP,
as an inhibitor of JNK, results in marked improvement of
insulin sensitivity in mouse models of HFD-induced insulin
resistance.

Activation of transcription factor Nrf2 is one of the
major cellular defense lines against oxidative stress but also
influences genes involved in glucose metabolism [32]. We
investigated the effects of LBP on glucose homeostasis in
HFD-fed mice for 24 weeks. We found that treatment with
LBP increased phospho-GSK3 3 level and glycolytic enzymes
expression but decreased gluconeogenic enzymes expression.
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FIGURE 5: LBP increases Nrf2 phosphorylation and induces Nrf2/ARE pathway via activation of PI3K/AKT signaling. (a) 200 4uM palmitate-
stimulated HepG2 cells were treated with LBP for 12 hrs in dose-dependent manner. Phospho-Nrf2, total Nrf2, HO-1, SOD2, and CAT were
detected by western blot analysis. (b) 300 pug/mL LBP-treated and untreated cells in the presence of 200 M palmitate. Representative images
of phospho-Nrf2 localization (400x). (c) Cells were treated with 10 #M LY294002 for 2 hrs and 2 yM Wortmannin for 2 hrs and then incubated
for 12 hrs with 300 yg/mL LBP. Immunoblotting analyzed LBP-mediated AKT, Nrf2 phosphorylation, HO-1, SOD2, and CAT. Representative
western blots are shown. (d) Cells were treated as following previous described and then incubated for 1h with 50 uM DHE. Representative

images of intracellular ROS level (200x).

In in vitro experiment, LBP also significantly increased
hepatic glucose uptake and export through Nrf2 and JNK
signaling. In summary, these studies demonstrate a critical
role for Nrf2 in protecting the liver from stress likely by
coordinately regulating expression of genes in cytoprotective
and metabolic pathways.

In conclusion, our results provide a link between Nrf2
activity, oxidative stress, and insulin resistance and demon-
strate in vivo and in vitro that high-fat induced-insulin
resistance could be ameliorated by LBP through upregulating
PI3K/AKT/Nrf2 signaling pathway. The current study sug-
gests that LBP may be a promising role for managing insulin



resistance-associated oxidative stress in acute or chronic liver
damage.

4. Materials and Methods

4.1. Preparation of Lycium barbarum Polysaccharide. LBP was
extracted from L. barbarum as previously described [45].
Briefly, the dried fruit of L. barbarum was put in boiling
deionized water. The water extract was filtered through a
filter paper to remove impurities. The crude extract was
concentrated to the volume under vacuum at 40°C and
diluted to deionized water. Then, the extract was precipitated
with 95% ethanol, followed by centrifugation to remove the
supernatant. Then, the precipitate was collected and ground
into powder. The powder of LBP was dissolved in normal
saline for mice experiment, filtered through a 0.22 ym filter,
and stored at —20°C.

4.2. Animal Care and Treatment. Male C57BL/6] mice from
Beijing Vital River Biological Co., Ltd., were housed in
standard cages placed in a room at 22 + 2°C temperature,
55 + 1% relative humidity, and a 12/12 light/dark cycle. All
mice consumed a commercial diet and tap water for 2 weeks
prior to their division into three groups (n = 10 per group):
ND (10% energy from fat, D12450B, USA), HED (60% energy
from fat, D12492, USA), and 100 mg/kg LBP-supplemented
diet. At the end of the animal experiments in 24 weeks,
liver tissue was isolated, one sample was prepared for RNA
isolation and analysis of gene expression, and another sample
was frozen in liquid nitrogen and stored at —80°C. The
animal experiments were approved by the Animal Research
Committee of Ningxia Medical University, China.

4.3. Cell Culture and Treatment. HepG2 cells were generously
provided from Peking University and cultured in DMEM
medium (Sigma) supplemented with 10% fetal bovine serum
(Gibco, USA) in 5% CO, at 37°C. The cells were incubated
in 200 uM palmitate (Sigma) for 12 hrs and then treated with
100-600 pg/mL LBP for 12 hrs. In addition, the cells were
pretreated with 10 uM LY294002 for 2hrs (Cell Signaling
Technology) and 2 yuM Wortmannin (Sigma) for 2hrs and
treated with 300 yg/mL LBP for 12 hrs.

4.4. Glucose, Insulin, and Pyruvate Tolerance Tests. Mice (n =
6 per group) were fasted overnight for tolerance tests prior
to testing. Following the fasting, glucose (2g/kg), insulin
(0.751U0/kg), or pyruvate (2g/kg) was injected intraperi-
toneally at 0 time. Blood samples were measured with
glucometer (Accu-Chek, Roche Diagnostics) from tail vein
at 0, 30, 60, and 120 min.

4.5. Biochemical Analysis. In collected blood and liver tissue
from mice for 24 weeks, serum was centrifuged at 3,000 r.p.m
for 15 min at 4°C. Serum insulin and pyruvate were measured
with mouse ELISA kit (CUSABIO). Liver GSH and GSSG
levels were measured using enzymatic colorimetric assay
(BIOXYTECH, Portland, OR) according to the manufac-
turer’s instructions.
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4.6. Enzyme Activity Assays. Liver superoxide dismutase
(SOD) and catalase (CAT) activities were determined by
enzymatic colorimetric activity kits (NanJing Jiancheng Bio-
engineering Institute, China) according to the manufacture’s
instruction. Liver glucokinase (GCK) and pyruvate kinase
(PK) activities were measured with the Assay Kit (NanJing
Jiancheng Bioengineering Institute, China) according to the
manufacture’s instruction.

4.7 Glycogen Content. Glycogen content of liver tissue was
measured with Glycogen Assay Kit (Biovision, USA) accord-
ing to the manual’s instructions.

4.8. Glucose Production Assay. Glucose production of liver
tissue was measured using a Glucose Oxidase Kit (Applygen
Technologies Inc.) according to the manual’s instructions.

4.9. Western Blot. Total protein of liver tissue was extracted
with Protein Extraction Kit (Applygen Technologies Inc).
HepG2 cell lysates were prepared using lysis buffer containing
50 mM Tris-HCI (pH 7.5), 1 mM EDTA, 1% Triton X-100, pro-
tease and phosphatase inhibitor, 0.l mM PMSF, and 1 ug/mL
leupeptin. Harvested lysates were centrifuged at 10,000 xg
for 10 min at 4°C. 50 ug protein was subjected to 10% SDS-
PAGE and then transferred to the PVDF membranes (Pall
Corporation, Pensacola). We used primary antibodies: Nrf2,
SOD2, CAT, GSK3p (pSer9), GSK3p, beta-actin (Santa Cruz
Biotechnology), IRS-1 (pSer307), IRS-1, PI3K (pTyr458/199),
PI3K, AKT (pSer473), AKT, JNK (pThrl83/Tyr), JNK, HO-
1 (Cell Signaling Technology), and Nrf2 (pS40) (Abcam).
We used secondary antibodies: anti-rabbit antibody, anti-
mouse antibody, and anti-goat antibody. Immunoblotting
was detected with enhanced chemiluminescence (Pierce
Biotechnology, USA). Densities of bands were determined
with scanner (Epson Perfection V33).

4.10. Immunofluorescence Staining. HepG2 cells were planted
on coverslips and incubated overnight. Cells were fixed in
4% paraformaldehyde for 10 min at room temperature and
washed with cold PBS. And cells were treated with 0.1%
Triton X-100 for 10 min. Cells were incubated for 1hr with
anti-pNrf2 (1:100) at room temperature and washed with
cold PBS. Cells were incubated for 1 hr with FITC-conjugated
goat anti-rabbit IgG (1:200) in the dark at room temperature
and washed twice with cold PBS. The nuclei were stained
with DAPI (5mg/mL) (Beyotime, China) for 5min in the
dark. Finally, coverslips were observed under a fluorescence
microscope (Olympus IX71).

4.11. Detection of Intracellular ROS Generation. For the
detection of hepatic superoxide production, an oxidative
fluorescent dye dihydroethidium (DHE) was used to evaluate
the in situ production of superoxides. The 10 ym thick liver
frozen sections were incubated for 1hr with 50 uyM DHE
(Beyotime, China). Fluorescent signals were scanned using
a fluorescence microscopy.
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4.12. RNA Isolation and Quantitative Real-Time PCR. Total
RNA was extracted from liver tissue using Trizol reagent
(Invitrogen). RNA concentrations were determined by
SmartSpecTM Plus (BIO-RAD, USA). 1ug of total RNA
was transcribed to cDNA using the superscript first-strand
synthesis kit (Thermo) following instructions. Real-time
PCR analysis was performed with a LightCycler instrument
(Roche Applied Science) and SYBR green detection of ampli-
fied products. Primers for GCK, PK, PEPCK, G6Pase, IL-
6, TNF-a, and MCP-1 [46] were previously described. PCR
reactions were performed in triplicate in 96-well plates and
normalized to house-keeping genes (GAPDH) using the
2744 method.

4.13. Statistical Analysis. All values were obtained as means
+ SEM. Statistical analysis was performed using the ANOVA
multiple comparison test. P value <0.05 was considered
statistically significant.

Abbreviations

LBP: Lycium barbarum polysaccharides
CAT:  Catalase

GCK:  Gluconokinase

G6Pase: Glucose-6-phosphatase

GSH:  Glutathione
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