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Abstract
Objectives  To investigate the value of conventional ultrasonography (US) combined with quantitative shear wave 
elastography (SWE) in evaluating and identifying target axillary lymph node (TALN) for fine needle aspiration biopsy 
(FNAB) of patients with early breast cancer.

Materials and methods  A total of 222 patients with 223 ALNs were prospectively recruited from January 2018 
to December 2021. All TALNs were evaluated by US, SWE and subsequently underwent FNAB. The diagnostic 
performances of US, SWE, UEor (either US or SWE was positive) and UEand (both US and SWE were positive), and FNAB 
guided by the above four methods for evaluating ALN status were assessed using receiver operator characteristic 
curve (ROC) analyses. Univariate and multivariate logistic regression analyses used to determine the independent 
predictors of axillary burden.

Results  The area under the ROC curve (AUC) for diagnosing ALNs using conventional US and SWE were 0.69 and 
0.66, respectively, with sensitivities of 78.00% and 65.00% and specificities of 60.98% and 66.67%. The combined 
method, UEor, demonstrated significantly improved sensitivity of 86.00% (p < 0.001 when compared with US and SWE 
alone). The AUC of the UEor-guided FNAB [0.85 (95% CI, 0.80–0.90)] was significantly higher than that of US-guided 
FNAB [0.83 (95% CI, 0.78–0.88), p = 0.042], SWE-guided FNAB [0.79 (95% CI, 0.72–0.84), p = 0.001], and UEand-guided 
FNAB [0.77 (95% CI, 0.71–0.82), p < 0.001]. Multivariate logistic regression showed that FNAB and number of suspicious 
ALNs were found independent predictors of axillary burden in patients with early breast cancer.
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Introduction
Breast cancer is the most common cancer and the leading 
cause of cancer death in women worldwide [1]. Preopera-
tive identification of axillary lymph node (ALN) involve-
ment plays a crucial role in determining the appropriate 
surgical approach and can potentially enhance the effec-
tiveness of breast cancer treatment [2, 3]. Conventional 
ultrasound (US) is non-radioactive, inexpensive, and 
capable of assessing the morphological features of the 
lymph nodes such as cortical thickness and hilar status 
in real-time, thus it is widely used to evaluate the axilla 
preoperatively for early breast cancer [4].

According to the National Comprehensive Cancer 
Network (NCCN) guidelines, patients who have clini-
cal node-negative axilla evaluated by conventional US 
were recommended to undergo axillary sentinel lymph 
node biopsy (SLNB), whereas patients with suspicious 
ALNs should undergo US-guided fine needle aspiration 
biopsy (FNAB) which is a popular and versatile method 
to diagnose ALNs before surgery [5]. Several studies have 
shown that patients with positive FNAB results would 
have a high axillary burden, which will further guide the 
selection of axillary surgical modality [6, 7]. However, 
the false-negative rate (FNR) of preoperative US-guided 
FNAB has been reported to be as high as 31% in early 
breast cancers, which caused unnecessary SLNBs and 
prolonged surgical time [8]. Therefore, improving the 
diagnostic efficacy of preoperative imaging to guide the 
choice of FNAB with the aim of reducing the false nega-
tive rate of FNAB was essential to optimize the manage-
ment of the axilla [9, 10].

Shear wave elastography (SWE) can quantitatively 
measure tissue stiffness associated with tumorigenesis 
and disease progression. It has been shown to be help-
ful in assessing sentinel lymph nodes for breast cancers 
[11, 12]. Previous studies have demonstrated that quali-
tative and quantitative SWE can differentiate between 
metastatic and non-metastatic ALNs in breast cancer, 
with an area under the receiver operating characteris-
tic curve (AUC) of 0.61–0.94 [13–15]. However, most of 
these studies focused on qualitative elastography analy-
sis rather than quantitative SWE [16, 17]. It is important 
to note that qualitative elastography exhibited poorer 
interobserver and intraobserver reproducibility com-
pared to quantitative SWE [18]. Some previous studies 
compared the performance of the combination of con-
ventional US and elastography with conventional US 

alone in evaluating the ALNs for breast cancer, and dem-
onstrated that measuring tissue stiffness by SWE could 
be utilized as a complementary tool to improve detection 
of ALN metastasis [11, 19, 20]. Based on these findings, 
it is hypothesized that combining conventional US and 
quantitative SWE could potentially achieve a favorable 
performance with higher sensitivity, thereby effectively 
identifying the target ALN (TALN) for fine-needle aspi-
ration biopsy (FNAB). However, there is a limited num-
ber of prospective studies that have investigated the use 
of SWE combined with conventional US to determine 
TALN for FNAB selection. Therefore, the objective of this 
study is to assess the value of combining conventional US 
and quantitative SWE in diagnosing ALNs and evaluate 
whether this combined approach can identify TALN for 
FNAB, and enhance the diagnostic performance of FNAB 
for ALN metastasis in early breast cancer patients.

Materials and methods
Patients
This prospective study was approved by the Institutional 
Review Board of Sun Yat-sen University Cancer Center. 
All patients signed informed consent for study participa-
tion and data collection. From January 2018 to December 
2021, patients who met the following inclusion criteria 
were included: (i) Women with an age range from 18 to 
80 years old; (ii) Patients with breast cancer newly diag-
nosed by core needle biopsy within 2 weeks; (iii) The 
size of the breast lesion is not more than 50 mm (cT1-2) 
(iv) The ipsilateral ALNs were not palpable. (v.) Without 
distant metastasis; (vi.) Patients who underwent axillary 
conventional US and SWE examinations. (vii) Patients 
who underwent FNAB for assessing ALN status. Exclu-
sion criteria include: (i) Multifocal breast cancer; (ii) 
Patients who had undergone breast-conserving therapy 
for ipsilateral breast cancer, or neoadjuvant chemother-
apy or radiotherapy; (iii)Patients refused surgical treat-
ment for breast cancer, or surgical pathology results for 
ALNs were not available; (iv) Unqualified SWE images 
(the whole quality map was coded red or yellow). The 
flowchart exhibiting the patient enrollment was shown in 
Fig. 1.

Conventional US and identifying TALN
Two board-certified radiologists (J.L and Y.N.H,) with 
at least 3 years of experience in breast ultrasound per-
formed the conventional US (grey-scale and color 

Conclusion  The UEor had superior sensitivity compared to US or SWE alone in ALN diagnosis. The UEor-guided FNAB 
achieved a lower false-negative rate compared to FNAB guided solely by US or SWE, which may be a promising tool 
for the preoperative diagnosis of ALNs in early breast cancer, and had the potential implication for the selection of 
axillary surgical modality.
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doppler) for axilla using a Siemens S2000 ultrasound 
machine (Siemens Healthcare, Mountain View, Califor-
nia) equipped with a 9L4 linear array transducer.

Axillary conventional US was performed firstly to 
screen the ALNs and obtained the images of all suspi-
cious ALNs. The ALNs that met any of the following 
criteria were considered suspicious [21]: (i) Diffuse or 
eccentric cortical thickening (> 3  mm), or focal corti-
cal bulge. (ii) Rounded hypoechoic node. (iii) Complete 
or partial effacement of the fatty hilum. (iv) Non-hilum 
Blood Flow (NHBF) on color Doppler images. (v) Com-
plete or partial replacement of the node with an ill-
defined or irregular mass. (vi) Microcalcifications in 
the node. Only one TALN was selected from the ipsi-
lateral axillary lymph nodes of each patient. The TALN 
was determined based on the morphological features 
observed on grey-scale US. The node that was completely 
or partially replaced by the ill-defined or irregular masses 
was prioritized as the target ALN. If no such masses were 
present, a rounded hypoechoic node was considered, fol-
lowed by the node with the thickest cortex. If the patient 
had no suspicious ALN, the ALN with a comparatively 
thick cortex was determined as TALN [22]. All suspi-
cious ipsilateral TALNs’ features for each patient were 
recorded for analysis, including long and short diameter, 
Long/Short diameter ratio, cortical thickness.

Quantitative shear wave elastography
After conventional US, the same radiologist obtained 
shear wave elastography images using a Siemens S2000 
ultrasound machine (Siemens Healthcare, Mountain 
View, California) equipped with a 9L4 linear array trans-
ducer for TALN before FNAB. The Virtual Touch Tissue 
Imaging and Quantification (VTIQ) with the high-qual-
ity control and perfect reproducibility is used to measure 
shear wave velocity (SWV) in ALNs [23].

The measurement depth of VTIQ was set to be less 
than 30 mm. This is because the shear wave signal mea-
sured at a depth exceeding 30  mm is prone to attenua-
tion and may result in unreliable measurements [24]. At 
the beginning of ARFI, the patients were told to hold the 
breath for 3–5  s. The quality map, which was displayed 
in green-yellow-red representing high-intermediate-low 
quality, respectively, was obtained to guide the SWV 
measurement. Intermediate- and low-quality areas were 
avoided for the measurement of SWV. For each node, 
at least five regions of interest (ROIs) (2 × 2  mm) were 
placed on the most suspicious areas of ALN to measure 
SWVs, such as thickened or focally bulged cortex and 
hypoechoic areas in an irregular mass. The VTIQ was 
performed twice for each TALN. A detailed introduc-
tion to the calculation of quantitative SWE parameters 
provided in the Supplementary Information. There were 
two combination methods of US and SWE: (i) UEor: 
ALN was considered as suspicious if either the result of 

Fig. 1  The flowchart of patient recruitment
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conventional US or SWE was positive. (ii) UEand: ALN 
was considered as suspicious if both the results of con-
ventional US and SWE were positive.

FNAB procedures
All FNAB procedures were performed by one radiolo-
gist (J.L) with at least 10 years of experience in interven-
tional US. Each TALN enrolled underwent FNAB against 
the TALN cortex guided by grey-scale US. The 23-gauge 
needles were used to obtain the sample from suspicious 
TALN area with SWE measurements: (1) FNAB of posi-
tive US TALNs was regarded as US-guided biopsy. (2) 
FNAB of positive SWE TALNs was regarded as SWE-
guided biopsy. (3) FNAB of positive US and SWE TALNs 
was regarded as UEand-guided biopsy. (4) FNAB of posi-
tive US or positive TALNs was regarded as UEor-guided 
biopsy. In order to obtain enough cells for diagnosis, 
each TALN was punctured twice on average and placed 
directly into the CytoLyt solution. In our study, when 
lymph node cytology revealed metastatic involvement, 
the FNAB result was deemed positive.

Clinicopathological information
All patients underwent breast conserving surgery (n = 19) 
or mastectomy (n = 204). Histopathological diagnosis of 
ALN confirmed via SLNB or ALND was considered as 
the gold standard [25]. Clinical data including age, clini-
cal T stage and tumor location were recorded. Patho-
logical data including Ki67 index, estrogen receptors 
(ER), progesterone receptors (PR), human epidermal 
growth factor receptor 2 (HER2) status, lymphovascular 
invasion, histologic type and histologic grade were also 
obtained from the pathology results of breast surgery.

Statistical analysis
The statistical analyses were performed using SPSS soft-
ware (V.26.0) and MedCalc software (V.11.2). All con-
tinuous variables following normal distribution were 
presented as mean ± standard deviation and all variables 
not following normal distribution were described as 
median (interquartile range [IQR]). All categorical vari-
ables were described by number and frequency. Using T 
test to compare the continuous variables following nor-
mal distribution between the metastatic and non-met-
astatic groups, using Mann-whitney U test to compare 
the continuous variables not following normal distri-
bution between the two groups, and using Chi-square 
test to compare the categorical variables between the 
two groups. Using surgical axillary staging as the refer-
ence standard, Youden’s method was used to determine 
the optimal cutoff points. The diagnostic performance 
of different methods was evaluated using AUC, sensitiv-
ity, specificity, accuracy, positive predictive value (PPV) 
and negative predictive value (NPV). DeLong test was 

used to compare the difference between AUCs. The 
univariate and multivariable logistic regression analy-
sis was performed to find the independent predictors 

Table 1  Clinical and pathological characteristics of 223 lesions in 
222 breast cancer patients
Characteristics Number of patients or lesions (%)
Age
  < 40 years old 38(17.12)
  ≥ 40 years old 184(82.88)
Tumor location
  Left 124(55.86)
  Right 97(43.69)
  Bilateral 1(0.45)
Clinical T stage
  T1 94(42.15)
  T2 129(57.85)
Histologic type
  Invasive ductal carcinoma 193(86.55)
  Invasive lobular carcinoma 4(1.79)
  Others 26(11.66)
ALN status
  Metastatic 100(44.84)
  Non-metastatic 123(55.16)
ER status
  Negative 59(26.46)
  Positive 163(73.09)
  Not available 1(0.45)
PR status
  Negative 75(33.63)
  Positive 147(65.92)
  Not available 1(0.45)
HER2 status
  Negative 143(64.13)
  Positive 77(34.53)
  Not available 3(1.34)
Ki-67
  ≥ 14% 199(89.24)
  < 14% 24(10.76)
Axillary surgery
  SLNB 97(43.50)
  ALND 126(56.50)
Lymphovascular invasion
  Present 74(33.18)
  Absent 127(56.95)
  Not available 22(9.87)
Histologic grade
  I 2(0.90)
  II 96(43.05)
  III 95(42.60)
  Not available 30(13.45)
ALN: axillary lymph node; ER: estrogen receptor; PR: progesterone receptor; 
HER2: human epidermal growth factor receptor; The age and tumor location 
were described based on number and percentage of patients. The remaining 
clinical and pathological characteristics were described based on number and 
percentage of lesions
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of axillary burden. All statistics were two sided and the 
p values < 0.05 was considered statistically significant.

Results
Study population
From January 2018 to December 2021, 286 female 
patients were included in this study, of whom 64 were 
excluded. At last, a total of 222 patients aged from 23 to 
78 (Median, 50; IQR, 14) years old with 223 target ALNs 
were eligible for this study, of whom one had bilateral 
breast cancer. According to the surgical histopathol-
ogy results, 44.84% (n = 100) of ALNs were metastatic, 
whereas 55.16% (n = 123) were benign. Of metastatic 
axilla, 53 were with less than 3 metastatic ALNs and 47 
were with 3 or more metastatic ALNs. Table  1 details 
clinical and pathological characteristics of the patients 
and lesions.

The performance of axillary conventional US, SWE and 
conventional US combined with SWE
The Conventional US characteristics of benign and meta-
static ALNs were shown in Table 2. The performance of 
Conventional US, SWE, and Conventional US combined 
with SWE were shown in Table 3; Fig. 2.

False negative rates (FNR) ranging from 35 to 44% in 
diagnosing ALN metastasis using different SWE param-
eters. Among all parameters, SWVmax with a cut-off 
value of 2.46 m/s had the superior sensitivity (65%) and 
lowest FNR (35%), which was chosen to be the perfor-
mance of SWE (Fig.  3). The diagnostic performance of 

Table 2  Conventional US characteristics of benign and metastatic axillary lymph nodes
Characteristics Benign (123) Metastatic (100) p Value
Cortical thickness (mm) 2.6 (1.5) * 4.5 (3.9) < 0.001
Long-diameter (mm) 14.4 (9.8) 13.8 (8.6) = 0.308
Short-diameter (mm) 6.2 (2.5) 8.0 (4.6) < 0.001
Short / Long diameter ratio 0.44 (0.22) 0.57 (0.25) < 0.001
Hilum < 0.001
  Present 117 (95.12%) 57 (57.00%)
  Absent 6 (4.88%) 43 (43.00%)
Blood Flow < 0.001
  Non- or Normal 116 (94.31%) 54 (54.00%)
  NHBF 7 (5.69%) 46 (46.00%)
* median (interquartile range [IQR]); US: Ultrasound; NHBF: Non-hilum Blood Flow

Table 3  Diagnostic performance of conventional US, SWE, UEand, and UEor in predicting ALN status
Method Sensitivity % Specificity % PPV % NPV % Accuracy % AUC
US 78.00

[68.61–85.67]
60.98
[51.77–69.64]

61.90
[56.00–67.47]

77.32
[69.66–83.50]

68.61 0.69
[0.63–0.75]

SWE 65.00
[54.82–74.27]

66.67
[57.60–74.91]

61.32
[54.30–67.90]

70.09
[63.56–75.88]

65.92 0.66
[0.59–0.72]

UEand 57.00
[46.71–66.86]

85.37
[77.86–91.09]

76.00
[66.67–83.37]

70.95
[65.83–75.58]

72.65 0.71
[0.65–0.77]

UEor 86.00
[77.63–92.13]

42.28
[33.42–51.51]

54.78
[50.52–58.96]

79.45
[68.66–86.30]

61.89 0.64
[0.57–0.70]

US: ultrasound; SWE: shear wave elastography; UEor: US positive or SWE positive; UEand: US positive and SWE positive; PPV: positive predictive value; NPV: negative 
predictive value; AUC: area under the receiver operating characteristic curve

Data in brackets are the 95% confidence intervals

Fig. 2  The receiver operating characteristic (ROC) curve for using conven-
tional US, SWE, UEand, and UEor in predicting ALN (axillary lymph node) 
status
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SWE parameters in evaluating the ALN status with refer-
ence to surgical staging was shown in the Supplementary 
Table.

Two different combination methods of US and SWE 
were used to explore the diagnostic performance for 
metastatic ALNs, which were defined as UEor and UEand. 
The method of UEor showed the highest sensitivity com-
pared with conventional US alone (86.00% vs. 78.00%, 
p < 0.001), SWE alone (86.00% vs. 65.00%, p < 0.001) and 
the method of UEand (86.00% vs. 57.00%, p < 0.001), while 
the UEand showed the highest specificity among the con-
ventional US alone (85.37% vs. 60.98%, p < 0.001), SWE 
alone (85.37% vs. 66.67%, p < 0.001) and method of UEor 
(85.37% vs. 42.28%, p < 0.001).

The performance of FNAB in different sub-populations
The performance of FNAB in different sub-populations 
were shown in Table  4. FNAB achieved superior per-
formance (accuracy > 90%) in the US+, US + SWE + and 
SWE + sub-population. In the US- SWE- sub-population, 
FNAB showed lowest sensitivity (7.14%) and highest 
specificity (100%).

The performance of different methods to guide FNAB of 
axilla and FNR
The performance of different methods to guide FNAB 
was shown in Table 5; Fig. 4. The AUC of the UEor-guided 
FNAB [0.85 (95% CI, 0.80–0.90)] was significantly higher 
than that of US-guided FNAB [0.83 (95% CI, 0.78–0.88), 

Fig. 3  A 49-year-old patients with breast carcinoma. a Conventional US image of negative ALN with normal cortex (1.2 mm) and hyperechoic hilum. 
b Quality map of quantitative SWE. c Velocity map of quantitative SWE, and SWVmax is negative as 2.37 m/s. Fine needle aspiration biopsy and surgi-
cal pathology of the node revealed benign ALN. B 56-year-old patients with breast carcinoma. d Conventional US image of negative ALN with normal 
cortex (2.6 mm) and hyperechoic hilum. e Quality map of quantitative SWE. f Velocity map of quantitative SWE, and SWVmax is suspicious as 2.80 m/s. 
Fine needle aspiration biopsy and surgical pathology of the node revealed metastatic ALN. C 59-year-old patients with breast carcinoma. g Conventional 
US image of suspicious ALN with diffuse cortical thickening and eccentric hilum. h Quality map of quantitative SWE. i Velocity map of quantitative SWE, 
and SWVmax is negative as 2.37 m/s. Fine needle aspiration biopsy and surgical pathology of the node revealed benign ALN. D 51-year-old patients 
with breast carcinoma. j Conventional US image of suspicious ALN with a rounded hypoechoic node. k Quality map of quantitative SWE. l Velocity map 
of quantitative SWE, and SWVmax is suspicious as 2.56 m/s. Fine needle aspiration biopsy and surgical pathology of the node revealed metastatic ALN
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p = 0.042], SWE-guided FNAB [0.79 (95% CI, 0.73–0.84), 
p = 0.001], and UEand-guided FNAB [0.77 (95% CI, 0.71–
0.82), p < 0.001]. The FNR of the UEor-guided FNAB was 
lowest with a value of 28.00%, and the FNR of US-guided 
FNAB, SWE-guided FNAB and UEand-guided FNAB were 
32.00%, 41.00% and 45.00%, respectively. Four patients 
were detected by the UEor-guided FNAB but missed by 
the method of US-guided FNAB, 3 of whom had high 
burden disease (≥ 3 lymph node metastases).

Preliminary exploration of independent predictors of 
axillary burden in early breast cancer patients
The univariate and multivariate logistic regression analy-
ses based on clinical and ultrasound characteristics were 
performed to explore the independent predictors of axil-
lary burden in early breast cancer patients. As shown in 

Table 6, clinical T stage (T2, p = 0.011), the number of sus-
picious ALNs (> 2, p < 0.001), SWE (> 2.46 m/s, p < 0.001), 
positive FNAB (p < 0.001) and characteristics of TALN 
(short axis [> 6.6 mm, p < 0.001], Hilum [lymphatic hilum 
shifted or disappeared, p < 0.001], Blood signal [mixed-
blood flow or peripheral blood flow, p < 0.001], Cortical 
thickness [> 3.0  mm, p < 0.001] were detected to be sig-
nificantly associated with axillary burden. Furthermore, 
multivariable analysis showed that the enrolled patients 
with positive FNAB result (odds ratio [OR],36.034, 95% 
CI, 7.618-170.434; p < 0.001) and more than 2 suspicious 
ALNs (odds ratio [OR],21.257, 95% CI, 4.584–93.082; 
p < 0.001) were observed to be the independent factors of 
axillary burden.

Table 4  The performance of FNAB in different sub-populations
Sub-populations n Sensitivity %

(No. of cases)
Specificity %
(No. of cases)

PPV %
(No. of cases)

NPV %
(No. of cases)

Accuracy
%

ALL 223 73.00(73/100) 98.37(121/123) 97.33(73/75) 81.76(121/148) 87.00
US + 126 87.18 (68/78) 95.83 (46/48) 97.14 (68/70) 82.14 (46/56) 90.48
US + SWE + 75 96.49 (55/57) 88.89 (16/18) 96.49 (55/57) 88.89 (16/18) 94.67
US + SWE – 51 61.90 (13/21) 100.00 (30/30) 100.00 (13/13) 78.94 (30/38) 84.31
US – 97 22.73 (5/22) 100.00 (75/75) 100.00 (5/5) 81.52 (75/92) 82.47
US – SWE + 31 50.00 (4/8) 100.00 (23/23) 100.00 (4/4) 85.18 (23/27) 87.10
US – SWE – 66 7.14 (1/14) 100.00 (52/52) 100.00 (1/1) 80.00 (52/65) 80.30
SWE + 106 90.77 (59/65) 95.12 (39/41) 96.72 (59/61) 86.67 (39/45) 92.45
FNAB: Fine-needle aspiration biopsy; US: ultrasound; SWE: shear wave elastography; PPV: positive predictive value; NPV: negative predictive value; +: positive; –: 
negative; Data in brackets are present as the number of FNAB/ Surgery cases

Table 5  The performance of different modality-guided FNAB in predicting ALN status
Different modali-
ty-guided FNAB

Metastatic 
Axilla
(N = 100)

Non-metastat-
ic Axilla
(N = 123)

AUC Sensitivity
%

Specificity
%

PPV% NPV% Accu-
racy
%

US-guided FNAB Positive
(N = 70)

68 2 0.83a

[0.78–0.88]
68.00
[57.92–
76.98]

98.37
[94.25–
99.80]

97.14
[89.52–
99.27]

79.08
[73.95–
83.43]

84.75

Negative
(N = 153)

32 121

SWE-guided FNAB Positive
(N = 61)

59 2 0.79b

[0.72–0.84]
59.00
[48.71–
68.74]

98.37
[94.25–
99.80]

96.72
[88.08–
99.16]

74.69
[69.97–
78.89]

80.72

Negative
(N = 162)

41 121

UEand-guided FNAB Positive
(N = 57)

55 2 0.77c

[0.71–0.82]
55.00
[44.73–
64.97]

98.37
[94.25–
99.80]

96.49
[87.30–
99.10]

72.89
[68.38–
76.98]

78.92

Negative
(N = 166)

45 121

UEor-guided FNAB Positive
(N = 74)

72 2 0.85
[0.80–0.90]

72.00
[62.13–
80.52]

98.37
[94.25–
99.80]

97.30
[90.06–
99.31]

81.21
[75.92–
85.55]

86.55

Negative
(N = 149)

28 121

FNAB: Fine-needle aspiration biopsy; US: ultrasound; SWE: shear wave elastography; UEor: US positive or SWE positive; UEand: US positive and SWE positive; AUC: area 
under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative predictive value; +: positive; –: negative; Data in brackets are the 95% 
confidence intervals
a indicates p = 0.042, Delong et al. in comparison with UEor-guided FNAB
b indicates p = 0.001, Delong et al. in comparison with UEor-guided FNAB
c indicates p < 0.001, Delong et al. in comparison with UEor-guided FNAB
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Discussion
Accurate identification of axillary lymph node (ALN) 
involvement before surgery will facilitate the manage-
ment of axilla for early breast cancer. This study found 
that the combination method of UEor (meets the diagnos-
tic criteria of either US or SWE) achieved high sensitiv-
ity of 86.00% in diagnosing the ALN metastasis, which 
could be used to identify target ALN for FNAB with an 
AUC value of 0.85 with the lowest FNR (28.00%). Com-
pared with conventional US-guided FNAB and SWE-
guided FNAB, the UEor-guided FNAB could detect 
more patients with metastatic ALNs. FNAB in the three 
sub-populations of US+, US + SWE + and SWE + demon-
strated the favorable diagnostic performance.

Conventional US is widely used as the first-line imag-
ing method to evaluate ALNs [26]. Nevertheless, it exhib-
its only modest performance, with AUCs ranging from 
0.59–0.72 [27]. In this study, axillary US exhibited an 
AUC of 0.69 in detecting ALN involvement, aligning with 
findings from previous studies [28]. Moreover, conven-
tional US demonstrated a sensitivity of 78%, slightly sur-
passing the previously reported range of 26–76% [29, 30].

Previous studies had shown that combining quantita-
tive SWE with conventional US can enhance the diagnos-
tic performance for metastatic ALNs [14, 31]. A previous 
study has shown that the combination method of US 
and SWE can improve the specificity compared to US 
alone (90.9% vs. 81.8%) at the expense of drop in sensi-
tivity (65.8% vs. 73.7%) [12]. In this study, the combina-
tion method of UEand (meets the both diagnostic criteria 
of US and SWE) exhibited high specificity (85.37%) but 

low sensitivity (57.00%) in diagnosing ALNs, potentially 
resulting in missed diagnoses for many patients. Con-
versely, the method of UEor achieved superior sensitiv-
ity (86%) compared to US (78%), SWE (65%), and UEand 
(57%), consistent with previous research [19, 32].

In the current clinical practice, conventional US-guided 
FNAB stands as a prevalent approach for ALN diagnosis 
before surgery [32]. Nonetheless, the moderate sensitiv-
ity of conventional US may result in a relatively elevated 
rate of false negatives during FNA guidance [33, 34]. A 
previous study has shown that the sensitivity and FNR of 
US-guided FNAB for detecting metastatic ALNs in early 
breast cancer were 45% and 55%, respectively [35]. In our 
study, the FNR of US-guided FNAB was still as high as 
32%, resulting in underestimation of the stage in some 
patients before treatment.

In real-world scenario, FNAB should be performed 
in the ALN that detected by the method with the high-
est sensitivity and lowest FNR. Therefore, the UEor with 
high sensitivity was more suitable for identifying TALN 
for FNAB. This study showed that the performance of 
UEor-guided FNAB was superior to that of US-guided 
FNAB. The FNR of UEor-guided FNAB (28%) was lower 
than that of US-guided FNAB (32%), and 3 patients with 
high burden disease was missed by US-guided FNAB but 
could be detected by UEor-guided FNAB, suggesting that 
UEor-guided FNAB could detect more patients with axil-
lary lymph node metastasis to avoid down-stage before 
surgery, which could reduce unnecessary SLNB and 
shorten the waiting time for surgery.

We also investigated the accuracy of FNAB in different 
subgroups of diagnostic method and found that the US+, 
US + SWE + and SWE + sub-populations exhibited greater 
suitability for FNAB due to their high diagnostic perfor-
mance. Conversely, the US-SWE- sub-population may 
not be as suitable for FNAB due to its the lower sensitiv-
ity (7.14%) in identifying the ALNM.

Certainly, our study has some limitations. First, because 
we did not perform any clip placement of the lymph 
nodes performing FNAB, it was difficult to match the tar-
get ALN to the lymph nodes cleared by surgical axillary 
staging. Second, SWE would prolong the examination 
time, and the reproducibility of elastography was limited 
due to the influence of patient respiration and operator 
experience. However, when both conventional US and 
SWE are applied for evaluating lesions, reproducibil-
ity of SWE is highly reliable for quantitative assessment 
[18]. Third, the method of UEor guidance did result in 
an increase of nonessential FNAB, and the cost-effective 
analysis or clinical benefit of UEor may need to be further 
studied, which will require a large and multi-centered 
data sample in the future to further assess clinical benefit 
and validate the authenticity of the results.

Fig. 4  The receiver operating characteristic (ROC) curve for using differ-
ent modality-guided FNAB in predicting ALN (axillary lymph node) status
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Conclusion
The combination method of UEor showed a better sensi-
tivity than US alone for diagnosing the ALNs metastasis. 
The application of UEor-guided FNAB had a better diag-
nostic performance than US-guided alone with a lower 
FNR, which may facilitate the management of axillary 
lymph nodes for early breast cancer patients.
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