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A B S T R A C T

Background: Multiple organ dysfunction syndrome (MODS) occurs in the setting of a variety of pathologies
including infection and trauma. Some patients decompensate and require Veno-Arterial extra corporeal
membrane oxygenation (ECMO) as a palliating manoeuvre for recovery of cardiopulmonary function. The
molecular mechanisms driving progression from MODS to cardiopulmonary collapse remain incompletely
understood, and no biomarkers have been defined to identify those MODS patients at highest risk for pro-
gression to requiring ECMO support.
Methods: Whole blood RNA-seq profiling was performed for 23 MODS patients at three time points during
their ICU stay (at diagnosis of MODS, 72 hours after, and 8 days later), as well as four healthy controls under-
going routine sedation. Of the 23 MODS patients, six required ECMO support (ECMO patients). The predictive
power of conventional demographic and clinical features was quantified for differentiating the MODS and
ECMO patients. We then compared the performance of markers derived from transcriptomic profiling includ-
ing [1] transcriptomically imputed leukocyte subtype distribution, [2] relevant published gene signatures
and [3] a novel differential gene expression signature computed from our data set. The predictive power of
our novel gene expression signature was then validated using independently published datasets.
Finding: None of the five demographic characteristics and 14 clinical features, including The Paediatric Logis-
tic Organ Dysfunction (PELOD) score, could predict deterioration of MODS to ECMO at baseline. From previ-
ously published sepsis signatures, only the signatures positively associated with patient’s mortality could
differentiate ECMO patients fromMODS patients, when applied to our transcriptomic dataset (P-value ranges
from 0.01 to 0.04, Student’s test). Deconvolution of bulk RNA-Seq samples suggested that lower neutrophil
counts were associated with increased risk of progression from MODS to ECMO (P-value = 0.03, logistic
regression, OR=2.82 [95% CI 0.63 - 12.45]). A total of 30 genes were differentially expressed between ECMO
and MODS patients at baseline (log2 fold change � 1 or � -1 with false discovery rate � 0.01). These genes
are involved in protein maintenance and epigenetic-related processes. Further univariate analysis of these
30 genes suggested a signature of seven DE genes associated with ECMO (OR > 3.0, P-value � 0.05, logistic
regression). Notably, this contains a set of histone marker genes, including H1F0, HIST2H3C, HIST1H2AI,
HIST1H4, HIST1H2BL and HIST1H1B, that were highly expressed in ECMO. A risk score derived from expres-
sion of these genes differentiated ECMO and MODS patients in our dataset (AUC = 0.91, 95% CI 0.79-1.00, P-
value = 7e-04, logistic regression) as well as validation dataset (AUC= 0.73, 95% CI 0.53-0.93, P-value = 2e-02,
logistic regression).
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Abbreviation

Multiple organ dysfunction syndrome
MODS
Veno-Arterial Extracorporeal Membrane O
ECMO
patients did not develop MODS
MODS
paediatric intensive care unit
Differentially expressed
False discovery rate
Area under curve
principal component analysis
Odds ratio
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Interpretation: This study demonstrates that transcriptomic features can serve as indicators of severity that
could be superior to traditional methods of ascertaining acuity in MODS patients. Analysis of expression of
signatures identified in this study could help clinicians in the diagnosis and prognostication of MODS patients
after arrival to the Hospital.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Multiple organ dysfunction syndrome (MODS) is common in the
paediatric intensive care unit (PICU), being diagnosed in the majority
of patients with sepsis as well as many trauma patients [1]. MODS
complicates a wide range of pathologies included severe hypoxemia
and cardiorespiratory arrest [2]. Contemporary management of MODS
is entirely supportive, and focused on addressing the underlying
disease process.

The ICU course of MODS patients is very variable and not entirely
dependent on the presenting symptoms. Some paediatric patients
who develop MODS deteriorate and require intensive life support in
the form of Veno-Arterial Extracorporeal Membrane Oxygenation
(ECMO). It has been observed that paediatric patients requiring
Veno-Arterial ECMO support (ECMO) have a 50-60% mortality rate
[3]. Since no clinical scoring tool or molecular biomarker currently
exists to identify the patients who may require advanced life support,
the decision to initiate ECMO remains subjective based on the empiri-
cal experience of the multidisciplinary care team and criteria pro-
vided by the Extracorporeal Life Support Organization (ELSO) [4].
ELSO recommends ECMO only after less invasive measures such as
high frequency ventilation, inhaled Nitric Oxide or prone positioning
have failed [4]. In the paediatric population, there is a dire need for
objective markers that predict the need for aggressive supportive
measures such as ECMO that could simplify the decision-making
process and enable earlier intervention for these patients. Therefore,
developing biomarkers for identifying MODS patients at high risk of
requiring ECMO support remains an unmet need.

Whole blood transcriptomic profiling has been evaluated to per-
form risk-stratification of sepsis patients, predict mortality in sepsis
and better understand the pathogenesis of MODS [5]. A number of
published gene expression signatures shed some light on the molecu-
lar mechanism of MODS [6,7]. However, none of the signatures were
developed with a view towards identifying MODS patients that
require ECMO support.

In this work, we present a cohort of healthy controls (CT) and
MODS patients including a subset of whom progressed to requiring
ECMO support (MODS vs ECMO). Here we use the term MODS to
denote those MODS patients that did not require ECMO and ECMO
for MODS patients deteriorated to needing Veno-Arterial ECMO
support. These patients were assessed using a combination of
xygenation

no-

PICU
DE
FDR
AUC
PCA
OR.
conventional demographic and clinical markers, as well as whole
blood transcriptomic profiling in an effort to identify diagnostic
markers that can distinguish between the MODS and ECMO patient
population.

2. Methods

2.1. Ethics

The IRB of this study (2016-062-SH/HDVCH) was approved by
Spectrum Health, Grand Rapids, Michigan, on May 17, 2016. All the
patients were minors and their parents were consented prior to
recruitment into our study. After IRB approval, only deidentified data
was used to adopt a short-term longitudinal design to assess the tran-
scriptomic profiles of patients from the PICU at Helen DeVos Child-
ren’s Hospital, Michigan.

2.2. Patients and blood sampling

Critically ill patients meeting criteria for MODS were determined
by clinical observations that were first described by Proulx et al.,
1996 [8] and recently used in the ABC PICU trial [9]. Once patients
met criteria they were screened for eligibility and consented. Blood
samples were collected at three time points: at recognition of MODS
(0h), 72 hours after, and 8 days later (N=27). Samples were collected
in PaxGene� tubes and stored at �80 °C. Healthy controls (N=4) were
patients that presented for same day sedation. Samples from each
control patient were obtained only once and were reported as 0h. Of
the 23 MODS patients, 6 required Veno-Arterial ECMO support
(“ECMO patients”). From admission to day 8, 47% of the MODS
patients were discharged to home or out of the ICU to a medical floor.
Patients who left the ICU did not have further blood draws. One
patient from the ECMO group died during the study and two other
MODS patients died six months later. Patients presenting with MODS
are limited, so we consented and used all the MODS patients available
in hospital during study period.

2.3. Sequencing

RNA samples were prepared using KAPA RNA HyperPrep Kit, and
sequenced on an Illumina NextSeq500. Using ribosomal reduction
RNAseq methodology, we were able to capture both cellular and acel-
lular RNA signatures of all PICU patients.

2.4. Validation datasets

For validation, we were unable to identify any analogous publicly
available gene expression datasets that included paediatric MODS
patients with measurements at multiple timepoints. There were
many datasets of paediatric patients with sepsis but none that MODS
patients that progressed onto ECMO. We therefore chose a dataset
describing an adult cohort (23-63 years) that developed MODS in the
hyperacute phase of trauma [10]. This dataset was used as an inde-
pendent cohort to validate our signature genes. The MODS patients
in this validation dataset were those patients, who require intensive
care support (ICU) for their survival (similar to our ECMO patients)
and those do not need ICU support were labelled as “noMODS”
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(similar to our MODS patients) as described in patient demographics
[10]. In addition, a single cell RNA-Seq dataset was also available for
adult ECMO patients [11]. We used the immune cell markers from
this dataset to validate our immune response analysis.
2.5. Bioinformatics analysis
2.5.1. RNA-Seq data analysis
All the sequencing reads were mapped on Hg38 transcriptome

using the ENSEMBL GRCh38.p3 annotation with the STAR aligner
[12]. The edgeR package [13] was used for quantification of differen-
tially expressed (DE) genes with criteria: log2 fold change � 1 or � -1
with adjusted P-value (False Discover Rate) < 0.01. DE genes were
identified between the two groups in all the three-time points sepa-
rately. The DE genes were used for co-expression network analysis
using CEMiTools package [14]. The gene ontology (GO) enrichment of
DE genes was performed using the clusterProfiler R package [15]. Bio-
logical processes with P-value � 0.001 were considered as signifi-
cantly enriched. Dotplot function provided in clusterProfiler was
used to visualize enriched pathways. In addition, gene interaction
network was visualized using STRING: functional protein association
network (https://string-db.org/).
2.5.2. Immune cell deconvolution
CIBERSORT was used to estimate the relative composition of

immune cells in bulk RNA-Seq samples [16] using a machine learning
model named as nu�support vector regression (n-SVR) [17]. For each
patient, a complete blood count (CBC) was obtained upon presenta-
tion as part of their standard of care clinical evaluation. We were
therefore able to calculate estimated absolute counts for each leuko-
cyte subpopulation. This was done by multiplying the proportion for
each subpopulation as determined by CIBERSORT to the total white
blood cell count from the CBC. This analysis was validated by compar-
ing the absolute neutrophil counts (ANC) as estimated by CIBERSORT
with the ANC reported by the clinical laboratory. In addition, we
obtained gene markers specific to different immune cells and path-
ways important for MODS patients described previously [18]. Genes
specific to immune cells and pathways were used for gene set enrich-
ment analysis (ssGSEA) in each sample using GSVA package [19]. The
ssGSEA score for each cell represents the enrichment of that cell
markers in each sample.
2.5.3. Statistical analyses
All plots and statistical analyses were carried out using R pro-

gramming language (v3.5.1) (https://www.r-project.org/). By default,
two-sided student’s t-test was performed to compute the significance
between two groups (either Control vs MODS or MODS vs ECMO). For
categorical variables, Fisher’s exact test was used to compute associa-
tion and Pearson correlation method was used to compute the corre-
lation between continuous variables. The generalized linear model
function (glm) was used to calculate odds ratio (OR, 95% CI, MODS as
the reference). Principal component analysis (PCA) of gene expres-
sion profiles was performed using the prcomp function. The risk
score was estimated using the signature gene expression for each
patient based on the geometric mean [5,20�22]. The geometric mean
for x1, x2, ..., xn was calculated as follows:

∏
n

i¼1
xi
1
n
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2::::::::::xnn
p

A risk score was further used to re-classify patients into two groups
and receiver operating characteristic (ROC) and area under curve
(AUC) were adopted to assess the performance using the pROC
package [23].
3. Results

The workflow of the study is summarized in Fig. 1. Patient demo-
graphics and baseline clinical parameters are provided in Table 1,
with 72h and 8 days values presented in supplemental Table S1. In
total, five demographic characteristics (i.e., age, gender, BMI, weight,
height) and 14 different clinical features were examined for all
patients. There was high variation between MODS and ECMO for
many clinical parameters (e.g., platelet count), diluting the predictive
power of these measures.

Some outcomes differed significantly between MODS and ECMO,
specifically the renal failure rate (89% in MODS and 100% in ECMO)
and liver failure rate (30% in MODS and 50% in ECMO). However, no
baseline demographic or clinical parameter, including PELOD score,
was predictive of progression from MODS to ECMO. This observation
highlighted the need to explore molecular features for identifying
risk markers.

3.1. Immune cells deconvolution and transcriptome analysis

Immune responses were examined for individual patients and
compared to elucidate their role. The relative proportions of
immune cell subtypes were estimated using CIBERSORT based on
bulk RNA-Seq data. WBC counts obtained upon arrival in the emer-
gency department were used to quantify the absolute abundance of
immune cell subtypes. The ANC as determined by the clinical labo-
ratory and the ANC derived from CIBERSORT were high correlated
(correlation value 0.85) (Figure S1), suggesting the high fidelity of
the inferred leukocyte subtype composition. Comparison of neutro-
phils between ECMO and MODS showed decreased level in ECMO
(P-value = 0.03, OR=2.82 [95% CI 0.63 � 12.45], logistic regression)
as compared to MODS (Fig. 2a). Interestingly, the two lowest neu-
trophil counts were among MODS. Clinical data of these two
patients revealed that one patient did not survive and another had
the PELOD score of 32, the highest score among all patients, suggest-
ing that these patients had a risk profile similar to the ECMO
patients despite not being started on ECMO.

We then examined the expression of marker genes of neutro-
phils (from CIBERSORT), monocytes, cytokines and genes involved
in NF-kB and inflammatory response from Hall et al., 2007 [18]. All
the marker genes were down-regulated in ECMO compared to
MODS (Figure S2-S6). In addition to CIBERSORT, ssGSEA was per-
formed on cell-type specific biomarker genes for each cell type and
pathways in order to confirm the findings. Neutrophil cells (ssGSEA
score) and inflammatory response pathway displayed significantly
(P-value < 0.03, Student’s T-test) decreased in ECMO compared to
MODS (Fig. 2b and 2c). This observation is aligned to CIBERSORT
results showing the decrease level of neutrophils. In contrast,
marker genes pertaining to monocytes, cytokines, and NF-kB displayed a
significant higher enrichment in MODS compared to CT (P-value < 0.04,
Student’s T-test) (Fig. 2d-2f).

The finding of changes in the neutrophil count was independently
validated using additional single cell RNA-seq data of ECMO adult
patients data [11], where we observed decrease of expression of neu-
trophil gene markers and genes involved in inflammatory response
in deceased ECMO patients compared to patients that survived
(Figure S7 and S8). Further, paired comparison of neutrophil levels
for each patient showed no significant change across different time
points (Fig. 2g and 2h).

Furthermore, differential expression (DE) analysis between
MODS and control (CT) as well as between ECMO and MODS was
performed at baseline (0h). A total of 73 DE genes (log2 fold change
� 1 or � -1 with FDR < 0.01) between MODS and CT, and 30 DE
genes between ECMO and MODS were identified at baseline
(Fig. 3a). Comparison of DE genes from these two groups showed
only one pseudogene (RNU1-67P) common to these two DE lists.

https://string-db.org/
https://www.r-project.org/


Fig. 1. An overview of the analysis. DGE: Differential gene expression.

Table 1
Patient demographics at baseline (Pre-ECMO,0h) time point.

RNA-Seq cohort
Demographics Control MODS ECMO P-value
Time 0h 0h 0h -
Number 4 17 6 -
Age (months) 84.75(28-122) 90(0.14-202) 63.25(0.5-202) 0.54
Male 2 10 5

0.36
Female 2 7 1
BMI 17(14-21) 20.3(13-38.5) 19(14-32.4) 0.74
Weight 26.5(12-35) 42.85(3.5-178) 25.87(3.9-81) 0.35
Height 122(80-142) 103(51-157) 90(53-160) 0.59
Mortality - 2 1
Clinical Features
Liver Failure (%) - 30 50 -
Bilirubin - 0.92(0.1-5.6) 0.51(0.1-1.1) 0.28
AST - 258.88(13-3296) 215.67(7-726) 0.85
Albumin - 2.35(1.6-3.5) 2.35(1.9-2.8) 0.96
CRP - 83.75(0.3-234) 75.75(2.8-211) 0.87
Renal Failure (%) - 89 100 -
Creatinine - 0.65(0.13-0.29) 0.77(0.22-0.29) 0.71
Lactate - 2.2(0.9-4.6) 6.05(0.6-14.5) 0.19
WBC - 14.9(3.95-62.6) 12.67(4.6-20) 0.56
platelet - 232(37-718) 208(92-378) 0.68
PELOD Score - 14.37(1-32) 12.5(10-20) 0.21
Bacterial infection (%) - 35 33
Viral infection (%) - 52 50
Inotrope usage 88 100
Respiratory failure (%) - 100 100
Neurological (%) - 23 33

Where relevant, mean(range). T-test and fisher's exact test was used to compute P-value
between MODS and ECMO.
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Fig. 2. Immune cell composition analyses in ECMO and MODS patients. (a) Neutrophils counts computed from CIBERSORT decreased in ECMO (P = 0.034, Student’s T-test) compared
to MODS at baseline. (b-f) Enrichment of genes involved in various immune responses (Monocytes, Cytokines, NF-kB, Neutrophils and Inflammation) in CT, MODS and ECMO at dif-
ferent time points (0h, 72h and 8d). Abundance of neutrophils in MODS (g) and ECMO (h) patients at different time points (0h, 72h and 8days). Blue colour - control (CT), grey colour
- MODS patients and cyan colour - ECMO patients, filled dark red colour-0h, filled blue colour-72h and filled green colour-8 days. Student's T-test was used to compute p values. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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As expected, these DE genes clearly separate CT, MODS and ECMO
patients (Fig. 3b and 3c) in reduced dimensional space. Heatmap
visualization of these genes highlights their differential patterns of
expression between groups (Fig. 3d). In addition, 56 and 33 DE
genes between MODS and CT were identified at 72h and 8d time
points, respectively (Figure S9a), while 7 and 2 DE genes were
identified between ECMO and MODS at 72h and 8d time points,
respectively (Figure S9b). Only one gene (pseudogene- RNU1-67P)
was common among all the three time points (0h, 72h and 8d) in
both comparisons.
3.2. Biological processes and co-expression networks regulated by DE
genes

Gene ontology (GO) enrichment analysis of total DE genes from
MODS to CT comparison revealed that immune-related (regulation of
leukocytes degranulation, mast cell activation, acute inflammatory
response, interleukin-6 production, and cytokine production) and
glucose import pathways are enriched in MODS compared to CT
(Fig. 4a). Notable genes included in immune responses are ADGRE2,
C3AR1, CD177, FCER1G, IRAK3, MMP8, PLSCR1, PPARG, SOCS3, and TLR5.



Fig. 3. Differential gene expression analyses at baseline (0h). (a) Comparison of differentially expressed (DE) genes between MODS vs. control (CT), and ECMO vs. MODS at baseline
(0h). (b) First two principal component analysis and (c) first three principal component analysis, using the union of DE genes obtained from the comparison between MODS and CT,
and that those between ECMO and MODS at baseline. Patients are clustered by their pathology group (CT, MODS and ECMO). (d) Expression of the DE genes.
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Similar pathways were also observed in a previous analysis between
MODS and CT [10]. In addition, gene expression related to epigenetic
processes (e.g., regulation of gene silence, DNA packaging, chromatin
assembly) was activated in ECMO compared to MODS (Fig. 4b).

Further, co-expression analysis was performed to delineate the
relationships between gene expression and their regulated pathways.
The transcripts per million (TPM) count of all the genes for baseline
patients was used to create co-expressed network modules. The DE
genes from MODS to CT and ECMO to MODS were mapped on these
modules and identified the corresponding modules. Two modules
were identified in each comparison (Fig. 4c and 4d). Notably, some of
the DE genes from MODS to CT were mapped on module M15 of
ECMO to MODS, deciphering the phase transition of MODS to ECMO
support. Module M14 was specific to the comparison of ECMO and
MODS, whereas modules M1 and M4 were specific to the comparison
of MODS and CT.

Pathways analysis of each module showed that genes in module
M1 were involved in immune responses (Figure S10a) and genes in
module M4 were involved in glucose metabolisms and glycogen
breakdown (Figure S10b). However, module M15 (shared by both
comparisons) showed enrichment of signalling pathways and pro-
teins maintenance (Figure S10c). Module M14 belonging to genes
that differed between ECMO and MODS was enriched with genes
related to DNA damage, DNA maintenance and histone acetylation
(Figure S10d). Together, DE analysis showed enrichment of immune
related and glycogenolysis pathways in MODS, while protein main-
tenance and epigenetic-related pathways were enriched in ECMO.
The protein-protein interaction network of the DE genes also
revealed two distinct clusters: histone activation and blood coagula-
tion were uniquely enriched in ECMO (Figure S11).

The GO enrichment analysis and co-expression analysis of DE
genes expressed at 72h and 8d did not show any significantly
enriched pathway in any of the comparisons. This observation may
suggest that the MODS and ECMO patients have important physiolog-
ical differences at baseline, but other processes obfuscate these differ-
ences as diverse disease processes and therapeutic interventions
unfold. Such baseline differences could be exploited for prognostic
and potentially diagnostic purposes.



Fig. 4. Gene enrichment and co-expression network analysis of DE genes in MODS and CT, and in ECMO and MODS. (a) Gene ontology (GO) enrichment of DE genes from MODS to
CT showed their involvement in immune responses. (b) However, GO enrichment of DE genes from ECMO to MODS displayed enrichment in epigenetic regulations. (c) The DE
genes obtained from the comparison of MODS and CT were clustered into two separate groups. (d) Similarly, two co-expression networks were created after mapping the DE genes
in ECMO and MODS. The highlighted genes in co-expressed networks are hub genes. Notably, many DE genes from both comparisons were shared in module 15 (M15), suggesting
phase transition. Size of circles in GO represents the number of mapped genes.
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3.3. Identification of molecular signatures associated with ECMO

In 2018, Sweeney et al. [5] evaluated four prognostic biomarker
signatures consisting of genes positively or negatively correlated
with mortality in sepsis. We computed the geometric mean of the
expression of these signature genes and investigated whether these
values could be used as risk scores for MODS to ECMO progression.
We observed that the risk scores derived from the signature genes
that are positively correlated with mortality among sepsis patients
could differentiate ECMO and MODS (P-value ranges from 0.04 to
0.01, Student’s T-test) (Figure S12).

We next sought to derive the predictive power of the differen-
tially expressed genes identified between ECMO and MODS. Seven
genes from our differential gene expression analysis demonstrated
a very strong association with MODS for their progression to ECMO
Fig. 5. Univariate analysis of differentially expressed (DE) genes in ECMO and MODS. (a) Odd
DE genes are significant (OR > 1 and P value < 0.05, logistic regression). (b) Expression of th
sion of the genes in ECMO than in MODS at three time points (0h, 72h and 8d) suggests thei
control (CT), grey colour displayed- MODS patients and cyan colour displayed- ECMO patien
in this figure legend, the reader is referred to the web version of this article.)
(P-value < 0.04, logistic regression) (Fig. 5a) and these were used to
create a signature for ECMO prediction. Most of these genes belong
to the histone family (HIST2H3C, HIST1H4A, HIST1H2AI, HIST1H1B,
HISTH2BL, and H1F0, Table 2) and these were expressed significantly
higher in ECMO than MODS (P-value < 3.5e-6, Student’s T-test)
(Fig. 5b). In addition, the Human Protein Atlas dataset showed the
enhanced expression of some genes in neutrophils (Figure S14).

3.4. Re-classification of patients and signature-based risk estimation

Expression of the genes in our 7 gene risk signatures was higher in
ECMO than MODS (Fig. 6a). Interestingly, when the additional time
points (72h and 8d) were added, these signature genes were not dif-
ferent in MODS and ECMO and could also be confirmed by the over-
lap of patients (Figure S15a and S15b). The risk scores derived from
s ratio of the DE genes between ECMO and MODS (reference). A total of 7 genes from 30
e DE genes in CT, ECMO and MODS patients at different time points. The higher expres-
r strong association with the deterioration from MODS to ECMO. Blue colour displayed-
ts. *** P-value < 1E-06 (Student’s T-test). (For interpretation of the references to colour



Table 2
List of signature genes strongly associated with ECMO.

Gene Ensembl Log2 fold change Log CPM P-value Adj. P-value Protein coding Function

DDIT4 ENSG00000168209 2.02 3.74 4.36E-07 0.0015 Y DNA-damage-inducible transcript 4
HIST1H1B ENSG00000184357 1.92 4.23 2.43E-06 0.0055 Y histone cluster 1, H1b
HIST1H2BL ENSG00000185130 1.94 2.93 4.84E-06 0.0091 Y histone cluster 1, H2bl
H1F0 ENSG00000189060 1.72 4.5 3.50E-06 0.0073 Y H1 histone family, member 0
HIST1H2AI ENSG00000196747 1.61 3.85 3.43E-06 0.0073 Y histone cluster 1, H2ai
HIST2H3C ENSG00000203811 2.11 3.87 9.08E-07 0.0026 Y histone cluster 2, H3c
HIST1H4A ENSG00000278637 1.85 0.24 1.02E-06 0.0028 Y histone cluster 1, H4a

a

Fig. 6. Signature based re-classification of patients in the test (CT, MODS and ECMO) dataset and validation dataset. (a) Heatmaps showed the clustering of signature genes in ECMO
patients compared to control (CT) and MODS patients. Risk scores derived from the signature genes showed difference in (b) ECMO and MODS in our data, and in (c) MODS (require
ICU support similar to our ECMO patients) and noMODS (do not require ICU support similar to our MODS patients) in the validation data (Cabrera et at., 2017) [10]. (d) Receiver
operating characteristics (ROC) of the classification using our data and the validation data. A risk score for each patient was computed based on the geometric mean of the signature
gene expression. Risk scores were strongly associated with ECMO and can be helpful to predict the probability of the MODS patients who require ECMO support.
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these genes were significantly different between ECMO and MODS
(95%CI 1.54-42.91, P-value=0.001, logistic regression; P-value = 9.6E-
04, Student’s T-test, Fig. 6b) at baseline. In contrast, risk scores of
MODS patients at 72h and 8d are close to those of ECMO patients at
72h and 8d (Fig. 6b).

Due to the lack of an appropriate paediatric cohort, we used previ-
ously published microarray data of adult patients that developed
MODS after a major trauma as validation data. The authors had cate-
gorized the patients into two groups, those that developed MODS
(require ICU support similar to our ECMO patients) and those that did
not (noMODS) (do not require ICU support similar to our MODS
patients); however these were more sick compared to controls [10].
In their cohort, the risk score derived from our signature was signifi-
cantly higher (95%CI 1.02-10.35, P-value=0.04, logistic regression;
P-value = 0.027, Student’s T-test) in MODS than noMODS (Fig. 6c).

We further found that our signature genes can also classify
patients (noMODS, and MODS) in the validation cohort at 0h (Figure
S17a) as well as 72h timepoint (Figure S17b). Using logistic regres-
sion to train the risk scores led to a remarkable separation (AUC of
0.90 [95%CI 0.79-1.00] for ECMO and MODS patients at baseline in
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our data and AUC of 0.75 [95%CI 0.53-0.93] in the validation set) of
two group of patients from our data as well as validation data, indi-
cating a strong association of risk scores with MODS deterioration
(Fig. 6d).

4. Discussion

The decision to initiate ECMO is often subjective, determined by
the clinical judgement of the multidisciplinary care team in a very
stressful and dynamic setting as opposed to quantitative measures of
pathophysiology. ELSO does provide criteria that recommends the
initiation of ECMO in paediatric patients using evidence that have
evolved over time to predict mortality [4]. ELSO recommends ECMO
only after less invasive measures such as high frequency ventilation,
inhaled Nitric Oxide or prone positioning have failed. This process is
time consuming and still involves some trial and error and the pres-
ence of some more objective data could enhance clinical decision
making [4]. Biological sampling of the exact failing organs is impracti-
cal if not impossible but circulating white blood cells may serve as a
proxy readout of the stress being experienced by multiple organ sys-
tems. We employed transcriptomics of peripheral white cells in an
effort to improve our understanding of the response of circulating
cells to multi-organ failure and its progression to either recovery or
cardiopulmonary collapse culminating in the need for extra corporeal
life support.

White blood cells are uniquely suited for this because aside from a
few exceptions (e.g., memory T cells, some tissue macrophages), most of
the mature blood cell types are mitotically inactive, metabolically active
and relatively short-lived with half-lives ranging over hours to a few
days. Thus, they are reflective of the environment they course through
[24]. We found the gene AREG which regulates Amphiregulin a mediator
for macrophage activity were preferentially activated in patients prior to
ECMO [25,26]. Amphiregulin has been shown to an essential cardiopro-
tective mediator produced by cardiac Ly6C macrophages in response to
fluid overload, which is very common inMODS [27].

The activation of immune response and glycogenolysis in MODS
compared to CT showed that patients in MODS need excessive energy
for cellular homeostasis and activation of immune response against
the initial infections. However, during the transition from MODS to
ECMO, various signalling and protein maintenance pathways also got
activated. Notably, DNA repair, DNA methylation and other epige-
netic changes were activated in the patients who deceased further
and needed ECMO support. This aligns with the decompensated state
that patients needing ECMO often experience from hypoxia, inade-
quate circulation and cardiorespiratory arrest. This leads to the acti-
vation of various oxidative stress and inflammatory responses
resulting in DNA methylation and repair as observed in various dis-
ease and cancer [28,29].

One of the key observations is the enrichment and strong association
of histone genes with ECMO. The histone octamer HIST2H3C, HIST1H2AI,
HIST1H4, and HIST1H1B, are genes that increase the availability of histo-
nes. Among these histones, HIST2H3C, HIST1H2AI, and HIST1H4A are
highly expressed in neutrophils (Figure S14). Histones are a protein
class, containing histone H1 and the core histones H2A, H2B, H3, and
H4 [30] that are involved in numerous biological processes, largely
through repressing transcription [31,32]. These are important due to
their capability to determine if DNA is accessible for transcription and
they have a major impact on gene expression, too [33]. However, to
allow processes like transcription or replication, this structure needs to
change dynamically from a condensed state to an open one.

Genes that are associated with the histone cluster were found to
be elevated. Increases in serum histones have previously been shown
to be elevated in patients with sepsis and heart failure [34,35]. In
addition, higher concentrations of circulatory histones are associated
with poor survival in patients undergoing ECMO [36]. The increased
availability of histones in pathologies that concur with a prolonged
inflammatory response as is the case of sepsis. This is not only due to
tissue damage but also to a second source: activated neutrophils gen-
erate neutrophil extracellular traps (NETs), structures made of cellu-
lar components which include specifically modified histones [37].
Generation of circulating histones from NETs or from necrotic neutro-
phils implies the release of a high concentration of histones to the
bloodstream. Both processes, NET and apoptosis and necrosis of neu-
trophils and other immune cells, contribute to the pathogenesis of
sepsis. NET however has been linked to organ failure [38,39,40]. In
this study we showed that these processes are active enough to be
uncovered by gene-expression. There is now evidence being accumu-
lated that an aptamer-based therapeutic approach directed specifi-
cally against histones could potentially reverse some of the clinical
findings seen in histone mediated diseases [41]. Recently, molecular
medications such as nuclease-resistant RNA aptamers have been
used in experimental MODS to bind with high affinity and specificity
to human histones H3 and H4 implicated in MODS [41,42].

This study shows that serial whole-blood transcriptomic profiling
holds a great promise to predict which MODS patients may need
ECMO support. Several published gene signatures developed to pre-
dict mortality showed a significance in predicting ECMO, but none of
them suffice as a marker in our case. Our new signature genes could
remarkably differentiate MODS and ECMO. Their association with
ECMO is considerably strong and is also able to distinguish the severe
and moderate adult MODS patients in the validation cohort. This
showed the broad uses of this signature for diagnosing the patients
needed ICU support. The risk score derived from the signature genes
for each patient can be used to classify patients into two groups
(ECMO and MODS) in our cohort. This is important because in spite of
the limited sample size, using paediatric ECMO samples, the multiple
time points and validation datasets increase the robustness of our
findings. Furthermore, the study included patients, where sepsis was
not the primary cause of MODS indicating that histone signatures
that occur in patients with MODS do so regardless of the initial insult.
The signature genes need further evaluation by prospective studies
in paediatric MODS/ECMO patients as these pathways are being cur-
rently explored as therapeutic targets in multiple diseases [43,44].
Nevertheless, this study is one of the first to demonstrate that there
exists the potential for using clinical and transcriptomic features in
identifying MODS patients from those requiring ECMO. The earliest
identification of the expression factors in patients with MODS could
be used by the clinical team to predict which patient may need
aggressive life support measures such as ECMO.

This study has a few limitations. For the diseases like MODS,
patients and research resources are scant and no reliable preclinical
models are readily available, so starting with a relatively small cohort
is one effective way, if not the only, to derive the findings that are
critical to drive and design a subsequent larger cohort study. In addi-
tion, due to the limitation of patients and resources, finding a valida-
tion dataset is also quite difficult, thus adult patients with similar
clinical conditions were used as a surrogate. Lastly, as patients in this
study presented very diverse clinical and biological characteristics,
finding matched control samples was also challenging. The ECMO
cases are also less than 50% of the ones with only MODS and the tran-
scriptomic analysis still revealed some robust biomarkers. This work
may be of some help to guide the diagnosis of infected patients (irre-
spective of pathogenesis) at a higher risk for progression to requiring
ECMO and the findings warrant the investigation of these biomarkers
in a larger patient cohort in the future.
5. Data and code availability

The codes used in these analyses are available at https://github.
com/Bin-Chen-Lab/MODS. The processed data used in this study is
available through NCBI GEO accession GSE144406.

https://github.com/Bin-Chen-Lab/MODS
https://github.com/Bin-Chen-Lab/MODS
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9. Research in context

9.1. Evidence before this study

MODS is common in paediatrics patients in the intensive care
unit. Some MODS patients need ECMO support as manoeuvre for sur-
vival. No clinical scoring tool or molecular biomarker currently exists
to identify the patients who may require ECMO support, the decision
to initiate ECMO remains subjective based on the empirical experi-
ence of the multidisciplinary care team. Whole blood transcriptomic
profiling has been widely explored to develop biomarkers for diagno-
sis or prognosis in many diseases.

9.2. Added value of this study

We performed transcriptome analysis of whole blood samples
taken from MODS and ECMO (MODS patients needed ECMO support)
patients. Bioinformatics analysis of differentially expressed genes
suggested that various epigenetic related pathways and DNA methyl-
ation were activated in ECMO patients as compared to MODS. Cellular
deconvolution analysis revealed that neutrophil level decreased in
ECMO. In addition, we developed a signature of seven genes, present-
ing diagnostic potential for ECMO patients at base line.

9.3. Implications of all the available evidence

The decreased level of neutrophils reflect that immune responses
would have been compromised in ECMO patients. In addition, a large
number of mechanisms including inflammation and oxidative stress
might have activated in the ECMO group due to hypoxia and cardio-
respiratory arrest, resulting in the activation of DNA methylation and
DNA repair processes. The earliest identification of the expression
patterns in patients with MODS could be used by the clinical team to
predict which patient may need aggressive life support measures
such as ECMO.
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