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MULTICOM2 open‑source protein 
structure prediction system 
powered by deep learning 
and distance prediction
Tianqi Wu1, Jian Liu1, Zhiye Guo1, Jie Hou2 & Jianlin Cheng1*

Protein structure prediction is an important problem in bioinformatics and has been studied for 
decades. However, there are still few open-source comprehensive protein structure prediction 
packages publicly available in the field. In this paper, we present our latest open-source protein 
tertiary structure prediction system—MULTICOM2, an integration of template-based modeling (TBM) 
and template-free modeling (FM) methods. The template-based modeling uses sequence alignment 
tools with deep multiple sequence alignments to search for structural templates, which are much 
faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses 
the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without 
using any known structure as template. In the blind CASP14 experiment, the average TM-score of 
the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM 
(regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is 
capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 
CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a 
domain. The success rate is increased to 3% for both regular and hard domains if five predictions are 
made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling 
method on both TBM and FM targets is very close to the combination of template-based and 
template-free modeling methods. This demonstrates that the distance-based template-free modeling 
method powered by deep learning can largely replace the traditional template-based modeling 
method even on TBM targets that TBM methods used to dominate and therefore provides a uniform 
structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, 
MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were 
ranked among the top 20 automated server predictors in the CASP14 experiment. After combining 
multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. 
The source code of MULTICOM2 is freely available at https://​github.​com/​multi​com-​toolb​ox/​multi​com/​
tree/​multi​com_​v2.0.

Building the high-quality structure of a protein from its sequence is important for studying protein function 
and has important applications in protein engineering, protein design and drug design. Because the expensive, 
time-consuming and low-throughput experimental methods for determining protein structures (e.g., X-ray 
crystallography, nuclear magnetic resonance spectroscopy-NMR, or cryo-electron microscopy) can only be 
used to solve the structures of a small portion of proteins, fast high-throughput computational protein structure 
prediction is necessary for constructing structures of the majority of millions of proteins in the nature1,2. Various 
computational methods for protein structure prediction have been proposed, which can be largely classified as 
template-free modeling (FM, also called ab initio/de novo prediction) and template-based modeling (TBM, also 
called homology/comparative modeling) methods. When significant structural templates and good template-
target sequence alignments are available for a target, template-based modeling methods can generate accurate 
models for the target. But when there are no good templates, template-free modeling methods are the only 
viable choice for constructing good structural models without referring to known protein structure templates. 
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Template-free modeling had been studied for decades and progressed very slowly until some breakthroughs in 
the several few years. The breakthroughs were enabled by two major technical advances, leading to the accurate 
model prediction for both template-based and template-free targets by template-free modeling methods such 
as AlphaFold3. One advance is the residue-residue co-evolution analysis that provides informative features to 
improve residue-residue contact/distance predictions for guiding template-free structure reconstruction. Another 
one is the application of deep learning to protein contact/distance prediction, which dramatically improves the 
accuracy of contact/distance prediction and therefore substantially enhances the distance-guided template-free 
modeling3–6.

Most recently, the attention mechanism integrated with deep learning was applied to predict residue-
residue distances and even 3D coordinates of atoms, which further enhanced the prediction accuracy and 
interpretability7,8. Despite the substantial advances in the field, there are still very few state-of-the-art automated 
open-source template-based and template-free modeling system available for the community to use6,9, hindering 
the development of new methods and application of protein structure prediction in biomedical research and 
technology development. Here we introduce our latest open-source protein structure modelling system MUL-
TICOM2 that was recently benchmarked in the 14th Critical Assessment of Techniques for Protein Structure 
Prediction (CASP14) in 2020. Compared to its previous version (MULTICOM1) tested in CASP1310, its template-
based modeling method is leaner, more accurate and much faster. Its distance-based template-free modeling 
method uses our newly developed deep-learning-based inter-residue distance prediction method—DeepDist11 
and is much more accurate than the contact-based tertiary structure modeling based on CONFOLD212 in 
MULTICOM110. The server predictors based on MULTICOM2 generated structural models with correct topolo-
gies for almost all TBM targets and most FM and FM/TBM targets in the CASP14 experiment and were ranked 
among the top CASP14 server predictors.

Results
Performance of MULTICOM2 in CASP14.  The global distance test score (GDT_TS)13 and TM-score14 
are the two standard metrics to evaluate the model quality. The value of TM-score ranges from 0 to 1. A TM-
score greater than or equal to 0.5 indicates the predicted model and the native structure have the same fold 
topology, while a TM-score less than 0.17 means no structural similarity between the predicted model and the 
native structure. GDT_TS score ranges from 0 to 100% (or simply from 0 to 1), a higher value indicating better 
model accuracy. Both GDT_TS and TM-score measure the global backbone similarity between a model and the 
native structure without considering side chain atoms.

Table 1 reports the average TM-score of the top 1 model and the best of top 5 models predicted by MUL-
TICOM-HYBRID, MULTICOM-DEEP, and MULTICOM-DIST for the CASP14 domains, including 58 TBM 
(regular) domains and 38 FM and FM/TBM (hard) domains. For 58 CASP14 TBM domains, MULTICOM-DEEP 
ranks highest among three MULTICOM2 sever predictors. It has the average TM-score of 0.730 if it only makes 
one prediction (one trial) for each domain. Since a model with TM-score > 0.5 is considered to have the correct 
fold (or topology), we define the success rate as the number of domains for which a correct fold is predicted 
divided by the total number of domains in consideration. MULTICOM-DEEP predicts correct folds (TM-score 
> 0.5) for 55 out of 58 domains (i.e., ~ 95% of domains) if it predicts one model domain, and therefore its success 
rate of one trial is 95% for TBM domains. If the best of the top five models predicted by MULTICOM-DEEP 
(five trials) is considered, its success rate increases to 98% on the TBM domains. The other two predictors 
(MULTICOM-HYBRID and MULTICOM-DEEP) has the similar performance.

The average TM-score of the pure ab initio predictor—MULTICOM-DIST on the TBM domains is 0.702 for 
one trial, close to that of MULTICOM-HYBRID and MULTICOM-DEEP, indicating that the performance of the 
distance-based template-free modeling method has reached the performance of the template-based modeling 
method on the TBM domains. It is remarkable progress considering the substantial gap between the two just 
a few years ago. Moreover, on the 38 very hard FM and FM/TBM domains, the average TM-score of the three 
predictors is very close and ranges from 0.512 to 0.514 for one trial. The success rate of MULTICOM-HYBRID 
on the FM and FM/TBM domains is 55% for one trial. For five trials, its success rate on the FM and FM/TBM 
domains increases to 58%. MULTICOM-DIST and MULTICOM-DEEP’s performance on the hard domains 
is similar to MULTICOM-HYBRID, which is not surprising because they are based on the same template-free 
modeling pipeline of MULTCOM2 for FM and FM/TBM domains.

Table 1.   TM-scores of models generated by each MULTICOM2 server predictor on CASP14 domains.

Method
Mean TM-score (first 
model)

Mean TM-score (best of 
five models)

TM-score > 0.5 (first 
model)

TM-score > 0.5 (best of 
top five models)

(A) On CASP14 58 TBM domains

MULTICOM-HYBRID 0.720 0.751 55 57

MULTICOM-DEEP 0.730 0.757 55 57

MULTICOM-DIST 0.702 0.722 53 56

(B) On CASP14 38 FM and FM/TBM domains

MULTICOM-HYBRID 0.514 0.540 21 22

MULTICOM-DEEP 0.512 0.542 20 22

MULTICOM-DIST 0.513 0.554 20 23
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To fairly compare different predictors that may perform well according to different evaluation metrics, the 
CASP14 assessors used the summation of Z-scores over the CASP14 targets to rank them15, considering three 
complementary metrics including GDT_TS13, Quality Control Score(QCS)16 that measures the assembly of sec-
ondary structure elements and Molprobity17 that evaluates the quality of all the atoms of a model including side 
chain atoms. The raw score of a model is the weighted average of the three metrics (i.e., GDT_TS + QCS + 0.1 × 
Molprobity). And it is converted into a Z-score based on the raw scores of all the models for a target. A Z-score 
less than − 2 is discarded in calculating the summation of Z-scores on all the targets18. Since MULTCOM2 is 
an automated prediction system, we evaluated its performance together with other CASP14 automated server 
predictors on 38 FM and FM/TBM (hard) domains, excluding CASP14 human predictors involving human 
intervention in prediction.

On the 38 CASP14 hard (FM and FM/TBM) domains, all the three MULTICOM2 server predictors, MUL-
TICOM-HYBRID, MULTICOM-DEEP, and MULTICOM-DIST are ranked among the top 20 automated server 
predictors based on the CASP14’s official sum of Z-scores (Fig. 1). The three MULTICOM2 predictors also 
performed better than MULTICOM-CONSTRUCT and MULTICOM-CLUSTER—the enhanced version of 
MULTICOM110 (results not shown). If the multiple predictors from the same research group (e.g., QUARK, 
ZhangServer, ZhangCEThreader, ZhangTBM, and Zhang_Ab_Initio from Zhang Group) are combined into one 
entry represented by one predictor with the best performance (e.g., QUARK), MULTICOM-HYBRID represent-
ing the MULTICOM2 Group is ranked No. 5. Although the difference in the relatively Z-score of the top five 
groups is pronounced, the absolute average quality score (e.g., TM-score) of these predictors is much closer. As 
shown in Fig. 1, the difference of Z-score between MULTICOM-HYBRID and the best predictor of the top four 
groups—QUARK is 23.9 on the 38 CASP14 FM and FM/TBM hard domains, while the difference of TM-score 
between them is 0.1.

Impact of several factors on the performance of the MULTICOM2 system.  From the MULTI-
COM2 results on 58 CASP14 TBM domains in Table 1(A), the pure template-free modeling method of MUL-
TICOM2 (i.e., MULTICOM-DIST) can predict high-quality structures for TBM targets (i.e., average TM-score 
> 0.7), which is a significant improvement over MULTICOM1. The two integrated MULTICOM2 methods 
(MULTICOM-HYBRID and MULTICOM-DEEP) that combine the template-free modeling and the traditional 
template-based homology modeling still outperform MULTICOM-DIST. However, the difference in their per-
formance is not statistically significant.

To analyze the impact of the template-based modeling branch of MULTICOM2, we compared the top-1 
ranked models from the two integrated methods (MULTICOM-HYBRID and MUTICOM-DEEP) and top-1 
ranked template-based models built by their templated-based modeling branch. We found that E-value (i.e., a 
measure of the significance) of the top template from homology search could be one simple criterion to assess if 
the templated-based modeling branch can contribute to the final prediction. According to the results on CASP14 
TBM domains in Fig. 2 and Table 2, when the top template hits have E-value ≤ 10−50 (i.e., highly significant), 

Figure 1.   The top 20 server predictors on the 38 CASP14 FM and FM/TBM hard domains ranked by the sum 
of Z-score calculated according to the CASP14 assessor’s evaluation. The predictors are ranked based on the first 
models they predicted for 38 CASP14 domains. The predictors from the same group are marked with the same 
color. The Y-axis denote the sum of the Z-score. The average TM-score of each predictor is reported on top of 
the bar representing each predictor.
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the top templated-based models from the template-based modeling branch have the quality comparable to that 
of the final top models predicted by the integrated system. For MULTICOM-HYRBID, the average TM-score 
of top 1 models from the template-based branch and the integrated system are 0.738 and 0.731, respectively. 
For MULTICOM-DEEP, the average TM-score of top 1 models from the template-based branch and the final 
integrated system are 0.739 and 0.740, respectively. In this situation, the template-based models sometimes are 
selected as top-1 models of the integrated system. When the top template hits have E-value between 10−50 and 
1, the average TM-score of top templated-based models from the template-based modeling branch is 0.642 for 
MULTICOM-HYBRID_TBM and 0.648 for MULTICOM-DEEP_TBM, which is much lower than the scores 
(0.730 and 0.746) of top models of the integrated systems (MULTICOM-HYBRID and MULTICOM-DEEP), 
indicating that the template-based modeling has a much less impact in this situation. When the top template 
hits have E-value ≥ 1 (i.e., insignificant), the average TM-score of the top-1 models from MULTICOM-HYBRID 
and MULTICOM-DEEP is 0.730 and 0.692, much higher than 0.473 and 0.452 of the top-1 template models 
from the template-based modeling branch, indicating that the template-based models are not useful in this situ-
ation. The detailed per-domain comparison is shown in the Supplementary Table S1. Overall, the performance 
of template-based modeling method on TBM domains quickly decreases as templates become less significant, 
while the integrated prediction system such as MULTICOM-HYBRID still maintains a high prediction accu-
racy, indicating that the template-free modeling method can achieve a rather good accuracy on TBM domains 
across the board regardless of their difficulty. In fact, according to the analysis on 74 full-length CASP14 targets, 
MULTICOM-HYBRID selected template-free modeling models as top-1 models for 55 targets including ones 
having highly significant templates (see Table S2 for details).

While the significance of templates determines the quality of template-based models and their contribution 
to the whole system, the number of effective sequence (Neff)19 or more precisely quality of multiple sequence 
alignments (MSA) and the accuracy of the inter-residue distance prediction are critical for the template-free 
modeling branch and the entire MULTICOM2 prediction system. Fig. 3A shows the comparison between the 
quality of MSA roughly measured by the logarithm of Neff and the quality (i.e., TM-score) of the top-1 models 
built by the three MULTICOM2 server predictors. There is a moderate correlation between the two on all 91 

Figure 2.   The box plots of the quality of top-1 models from MULTICOM2 integrated server predictors and 
top-1 models from their templated-based modeling branches on CASP14 TBM domains. (A) Comparison 
between MULTICOM-HYBRID and its templated-based models (MULTICOM-HYBRID_TBM). (B) 
Comparison between MULTICOM-DEEP and its templated-based models (MULTICOM-DEEP_TBM). Top1 
templated-based models are selected based on the same model selection methods of MULTICOM-HYBRID and 
MULTICOM-DEEP mentioned the “Methods” section.

Table 2.   Comparison of the quality of top-1 models from MULTICOM2 integrated server predictors 
(MULTICOM-HYBRID and MULTICOM-DEEP) and top-1 models from their templated-based modeling 
branches (MULTICOM-HYBRID_TBM and MULTICOM-DEEP_TBM) on 54 CASP14 TBM domains with 
native structures available for this analysis. The central line in the box marks the average TM-score values of 
top 1 models. Top-1 templated-based models are selected based on the same model selection method of 
MULTICOM-HYBRID and MULTICOM-DEEP described in the “Methods” section.

Method MULTICOM-HYBRID MULTICOM-HYBRID_TBM MULTICOM-DEEP MULTICOM-DEEP_TBM

E-value ≤ 10–50 0.731 0.738 0.740 0.739

10–50 < E-value < 1 0.730 0.642 0.746 0.648

E-value ≥ 1 0.730 0.473 0.692 0.452
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CASP14 domains whose native structures are available. The Pearson’s correlation coefficients of MULTICOM-
DIST, MULTICOM-HYBRID and MULTICOM-DEEP are 0.56, 0.53 and 0.53, respectively. Figure 3B shows a 
stronger correlation between the distance prediction accuracy (measured as the precision of top L/2 long-range 
contact predictions20; L: sequence length) and the quality of the top-1 models. Pearson’s correlation coefficient 
for MULTICOM-DIST, MULTICOM-HYBRID, and MULTICOM-DEEP is 0.67, 0.70, and 0.70, respectively. 
The detailed results for each CASP domain are shown in the Supplementary Table S3.

Runtime of MULTICOM2.  It typically requires 12 hours for a protein of typical length (e.g., 300 residues) 
for MULTICOM2 to complete the entire modeling process on an Intel(R) Xeon(R) CPU E5-2660 v3 10-core 
processor, which is about two times faster than MULTICOM1. With hundreds of cores available on a computer 
cluster, MULTICOM2 can be used to predict structures of many proteins per day and therefore is applicable to 
the genome-level protein structure modeling.

Figure 3.   Impact of Neff and the accuracy of the inter-residue distance prediction on the model quality of 
the MUTLICOM2 system on 91 CASP14 domains whose experimental structures are available for analysis. 
(A) Logarithm of Neff of MSA vs. the quality of models built from three MULTICOM server predictors 
(MULTICOM-DEEP, MULTICOM-DIST and MULTICOM-HYBRID). The size of a dot is proportional to the 
value of Neff. (B) The precision of top L/2 long-range contact predictions vs. the quality of models.
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Conclusion
We develop and release our latest automated protein structure prediction system (MULTICOM2) as an open-
source software package for the community to use. MULTCOM2 is leaner, more accurate, and much faster than 
MULTICOM1. It was ranked among top automated server predictors in the latest 2020 CASP14 experiment. It 
can predict correct folds for almost all regular targets and a majority of very hard targets. Its template-free mod-
eling without using any known structures as templates can work well on both regular template-based modeling 
targets and hard template-free modeling targets, which provides a uniform, reliable approach to modeling the 
structure of any protein. Therefore, it can be a useful tool for both the current development and application of 
protein structure prediction methods. While the inter-residue distance prediction can be converted to tertiary 
structures, significant modeling effort is still needed to do the conversion. The recent success of AlphaFold28 in 
CASP14 demonstrates that an end-to-end deep learning system with the attention mechanism can directly predict 
the tertiary structure of a protein from its multiple sequence alignment, skipping the distance-to-structure con-
version. In the future, we plan to develop deep learning-based end-to-end protein structure prediction methods 
and add them into the next release of MULTICOM.

Methods
Figure 4 illustrates the flowchart of the MULTICOM2 system. It is an automated and integrated protein mod-
eling system that combines template-based modeling, template-free modeling, and model quality assessment. 

Given a target sequence, MULTICOM2 searches it against the non-redundant protein sequence databases 
to build target sequence profiles such as position-specific scoring matrices (PSSM) and hidden Markov models 
(HMMs) using HH-suite21, PSI-BLAST1, and HMMER22. Each profile is searched against a template library in 
order to identify a list of structurally similar templates and their sequence alignments with the target sequence. 
The pairwise target-template alignments are combined into multi-template alignments between the target and the 
multiple templates if the structures of the templates are consistent23,24. Multi-template alignments along with the 
template structures are fed into Modeller25 to build the structural models for the target protein. Different from 
MULTICOM110 that uses more than a dozen sequence alignment tools and relatively slow threading tools (e.g. 
COMPASS26, FFAS27, SAM28, PRC29, HH-suite21, PSI-BLAST1, HMMER22, RaptorX30, I-TASSER/MUSTER9,31), 
MULTICOM2 only uses HH-suite21, PSI-BLAST1, and HMMER22 to build profiles, identify protein templates and 
generate target-template sequence alignments. Among those tools, hhblits and hhsearch in HH-suite are much 
more sensitive than PSI-BLAST and HMMER and play an essential role in the template identification. Therefore, 
the template search process in MULTICOM2 is much faster than MULTICOM1. In order to further improve the 
sensitivity of template identification, MULTICOM2 applies DeepMSA32 to search the target sequence against 
large sequence databases (Uniclust3033, Uniref90, metagenomics sequence database34) for generating the deep 
multiple sequence alignments, which are used to build profiles to identify templates for template-based modeling.

In parallel to the template-based modeling, the target sequence is also used as input for a deep learning 
distance predictor—DeepDist35 to predict inter-residue distances. The predicted distance maps are used by 
DFOLD35,36 (our in-house distance-guided ab initio modeling tool based on Crystallography and NMR System—
CNS37) and trRosetta6 to generate template-free models. DFOLD differs from CONFOLD2 (also based on CNS) 
that takes binary contacts as input to build tertiary structures. To use trRosetta, the distance maps predicted by 
DeepDist are used to substitute the default distance maps generated by trRosetta from the multiple sequence 
alignments before ab initio tertiary structure modeling. The DeepDist’s distance prediction is also used to select 
templates based on their matching with the predicted distance maps for template-based modeling. By default, 
about 100 template-free and template-based models are constructed for a target. The models are ranked by three 
different model quality assessment methods: APOLLO38 of ranking models based on their pairwise structural 
similarity, SBROD39—a single model energy function of ranking models, and the distance-based ranking based 
on the similarity between the predicted distance maps and the distance maps of a model40. Any one of the three 
rankings or their consensus can be used to select top models for the target.

Based on the target-template sequence alignment generated by HH-suite, MULTICOM2 also predicts if a 
target needs to be split into multiple domains or modeling units. If some region (> 40 residues) of a target does 
not have significant templates but other regions have, it will be split into multiple template-based and template-
free domains according to the alignment. The structural models for each domain are then predicted by the same 
pipeline above. The top five ranked models from each domain are joined into full-length models for the multi-
domain target by Modeller25 or AIDA41.

In order to evaluate different modeling options of MULTICOM2, three predictors based on MULTICOM2—
MULTCOM-HYBRID, MULTICOM-DEEP, and MULTICOM-DIST participated in the CASP14 experiment. 
MULTICOM-HYBRID and MULTICOM-DEEP used both the template-based and template-free modeling 
and differed only in model ranking. MULTICOM-HYBRID primarily used APOLLO38 to rank models, whereas 
MULTICOM-DEEP primarily used the average ranking of SBROD39 and the distance-based ranking (the match-
ing between a model and the predicted distance map) to select final models. MULTICOM-DIST skipped tem-
plate-based tertiary structure modeling entirely and only used the template-free modeling to generate tertiary 
structure models and used SBROD39 to rank them, even though it still used template-target alignments to identify 
domain boundaries if needed.
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